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Abstract: The main aim of this paper is to prove that the maximal operator
∼
σ
∗
f := sup

n∈P

|σnf |
log2(n+1)

is bounded from the

Hardy space H1/2 to the space L1/2 , where σnf are Fejér means of bounded Vilenkin-Fourier series.

Key words and phrases: Vilenkin system, Fejér means, martingale Hardy space

1. Introduction
In one-dimensional case the weak type inequality

μ (σ∗f > λ) ≤ c

λ
‖f‖1 (λ > 0)

can be found in Zygmund [19] for trigonometric series, in Schipp [11] for Walsh series and in Pál and Simon

[10] for bounded Vilenkin series. Again in one-dimensional, Fujii [4] and Simon [13] verified that σ∗ is bounded

from H1 to L1 . Weisz [16] generalized this result and proved the boundedness of σ∗ from the martingale space

Hp to the space Lp for p > 1/2. Simon [12] gave a counterexample, which shows that boundedness does not

hold for 0 < p < 1/2. The counterexample for p = 1/2 is due to Goginava [7], (see also [3]). In the endpoint

case, p = 1/2, two positive results were showed. Weisz [18] proved that σ∗ is bounded from the Hardy space

H1/2 to the space weak-L1/2 . For Walsh-Paley system in 2008 Goginava [6] proved that the maximal operator

σ̃∗ defined by

σ̃∗f := sup
n∈P

|σnf |
log2 (n + 1)

is bounded from the Hardy space H1/2 to the space L1/2 . He also proved that for any nondecreasing function

ϕ : P+ → [1, ∞) satisfying the condition

lim
n→∞

log2 (n + 1)
ϕ (n)

= +∞ (1)

the maximal operator

sup
n∈P

|σnf |
ϕ (n)

∗Correspondence: giorgitephnadze@gmail.com

2000 AMS Mathematics Subject Classification: 42C10.
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is not bounded from the Hardy space H1/2 to the space L1/2.

For a Walsh-Kaczmarz system an analogical theorem is proved in [9].

The main aim of this paper is to prove that the maximal operator σ̃∗f with respect to Vilenkin system
is bounded from the Hardy space H1/2 to the space L1/2 (see Theorem 1).

We also prove that under the condition (1) the maximal operator

sup
n∈P

|σnf |
ϕ (n)

is not bounded from the Hardy space H1/2 to the space L1/2. Actually, we prove stronger result (see Theorem

2) than the unboundedness of the maximal operator σ̃∗f from the Hardy space H1/2 to the spaces L1/2. In

particular, we prove that

sup
n∈P

∥∥∥∥ σnf

ϕ (n)

∥∥∥∥
L1/2

= ∞.

2. Definitions and notation
Let P+ denote the set of the positive integers , P := P+ ∪ {0}.

Let m := (m0,m1....) denote a sequence of the positive integers not less than 2.

Denote by
Zmk := {0, 1, ...mk − 1}

the additive group of integers modulo mk.

Define the group Gm as the complete direct product of the group Zmj with the product of the discrete

topologies of Zmj s.

The direct product μ of the measures

μk ({j}) := 1/mk (j ∈ Zmk )

is the Haar measure on Gm with μ (Gm) = 1.

If sup
n

mn < ∞ , then we call Gm a bounded Vilenkin group. If the generating sequence m is not bounded

then Gm is said to be an unbounded Vilenkin group. In this paper we discuss bounded Vilenkin groups
only.

The elements of Gm are represented by sequences

x := (x0, x1,...,xj,...) (xk ∈ Zmk ) .

It is easy to give a base for the neighborhood of Gm

I0 (x) := Gm,

In(x) := {y ∈ Gm | y0 = x0, ...yn−1 = xn−1}(x ∈ Gm, n ∈ P )

Denote In := In (0) for n ∈ P and
−
In := Gm \ In .
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Let

en := (0, ..., 0, xn = 1, 0, ...) ∈ Gm (n ∈ P ) .

Denote

Ik,l
N :=

{
IN (0, ..., 0, xk �= 0, 0, ..., 0, xl �= 0, xl+1,...,xN−1), k < l < N
IN (0, ..., 0, xk �= 0, 0, ..., , 0), l = N

and
Ik,α,l,β
N := IN (0, ..., 0, xk = α, 0, ..., 0, xl = β, xl+1,...,xN−1), k < l < N.

It is evident

Ik,l
N =

mk−1∪
α=1

ml−1∪
β=1

Ik,α,l,β
N (2)

and
−
IN =

(
N−2⋃
k=0

N−1⋃
l=k+1

Ik,l
N

)
∪

(
N−1⋃
k=0

Ik,N
N

)
. (3)

If we define the so-called generalized number system based on m as

M0 := 1, Mk+1 := mkMk (k ∈ P ),

then every n ∈ P can be uniquely expressed as n =
∞∑

k=0

njMj where nj ∈ Zmj (j ∈ P ) and only a finite

number of nj s differ from zero. Let |n| := max {j ∈ P ; nj �= 0}.
Denote by L1 (Gm) the usual (one dimensional) Lebesgue space.

Next, we introduce on Gm an orthonormal system which is called the Vilenkin system.

At first define the complex valued function rk (x) : Gm → C, the generalized Rademacher functions as

rk (x) := exp (2πixk/mk)
(
i2 = −1, x ∈ Gm, k ∈ P

)
.

Now define the Vilenkin system ψ := (ψn : n ∈ P ) on Gm as

ψn(x) :=
∞
Π

k=0
rnk

k (x) (n ∈ P ) .

Specifically, we call this system the Walsh-Paley one if m ≡ 2.

The Vilenkin system is orthonormal and complete in L2 (Gm) [1, 14].

Now we introduce analogues of the usual definitions in Fourier-analysis.

If f ∈ L1 (Gm) we can establish the Fourier coefficients, the partial sums of the Fourier series, the Fejér
means, the Dirichlet and Fejér kernels with respect to the Vilenkin system ψ in the usual manner:

f̂(k) :=
∫

Gm

fψkdμ , (k ∈ P ) ,

Snf :=
n−1∑
k=0

f̂ (k)ψk , ( n ∈ P+, S0f := 0) ,
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σnf :=
1
n

n−1∑
k=0

Skf (n ∈ P+) ,

Dn :=
n−1∑
k=0

ψk, (n ∈ P+) ,

Kn :=
1
n

n−1∑
k=0

Dk , (n ∈ P+) .

Recall that

DMn (x) =
{

Mn if x ∈ In

0 if x /∈ In.
(4)

It is well known that

sup
n

∫
Gm

|Kn (x)|dμ (x) ≤ c < ∞, (5)

n |Kn (x)| ≤ c

|n|∑
A=0

MA |KMA (x)| . (6)

The norm (or quasinorm) of the space Lp(Gm) is defined by

‖f‖Lp
:=

(∫
Gm

|f(x)|p dμ(x)
)1/p

(0 < p < ∞) .

The σ -algebra generated by the intervals {In (x) : x ∈ Gm} will be denoted by �n (n ∈ P ). Denote by

f =
(
f(n), n ∈ P

)
a martingale with respect to �n (n ∈ P ) (for details, see e.g. [15]). The maximal function

of a martingale f is defended by

f∗ = sup
n∈P

∣∣∣f(n)
∣∣∣ .

In case f ∈ L1, the maximal functions are also given by

f∗ (x) = sup
n∈P

1
|In (x)|

∣∣∣∣∣
∫

In(x)

f (u)μ (u)

∣∣∣∣∣ .

For 0 < p < ∞ the Hardy martingale spaces Hp (Gm) consist of all martingales for which

‖f‖Hp
:= ‖f∗‖Lp

< ∞.

If f ∈ L1 , then it is easy to show that the sequence (SMn (f) : n ∈ P ) is a martingale. If f =
(
f(n), n ∈ P

)
is martingale then the Vilenkin-Fourier coefficients must be defined in a slightly different manner:

f̂ (i) := lim
k→∞

∫
Gm

f(k) (x)Ψi (x) dμ (x) .
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The Vilenkin-Fourier coefficients of f ∈ L1 (Gm) are the same as those of the martingale (SMn (f) : n ∈ P )
obtained from f .

For the martingale f we consider maximal operators

σ∗f = sup
n∈P

|σnf | ,

σ̃∗f := sup
n∈P

|σnf |
log2 (n + 1)

.

A bounded measurable function a is p-atom, if there exist a dyadic interval I , such that

⎧⎨⎩
a)

∫
I
adμ = 0,

b) ‖a‖∞ ≤ μ (I)−1/p
,

c) supp (a) ⊂ I.

3. Formulation of main results

Theorem 1 The maximal operator

∼
σ
∗
f := sup

n∈P

|σnf |
log2 (n + 1)

is bounded from the Hardy space H1/2 (Gm) to the space L1/2 (Gm) .

Theorem 2 Let ϕ : P+ → [1, ∞) be a nondecreasing function satisfying the condition

lim
n→∞

log2 (n + 1)
ϕ (n)

= +∞. (7)

Then there exists a martingale f ∈ H1/2, such that

sup
n∈P

∥∥∥∥ σnf

ϕ (n)

∥∥∥∥
L1/2

= ∞.

Corollary 1 The maximal operator

sup
n∈P

|σnf |
ϕ (n)

is not bounded from the Hardy space H1/2 to the space L1/2 .
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4. Auxiliary propositions

Lemma 1 [17] Suppose that an operator T is sublinear and for some 0 < p ≤ 1

∫
−
I

|Ta|p dμ ≤ cp < ∞

for every p-atom a , where I denotes the support of the atom. If T is bounded from L∞ to L∞ , then

‖Tf‖Lp(Gm) ≤ cp ‖f‖Hp(Gm) .

Lemma 2 [2, 8] Let 2 < A ∈ P+, k ≤ s < A and qA = M2A + M2A−2 + ... + M2 + M0 . Then

qA−1

∣∣KqA−1 (x)
∣∣ ≥ M2kM2s

4

for
x ∈ I2A (0, ..., x2k �= 0, 0, ..., 0, x2s �= 0, x2s+1, ...x2A−1) ;

k = 0, 1, ..., A− 3. s = k + 2, k + 3, ..., A− 1.

Lemma 3 [5] Let A > t, t, A ∈ P, z ∈ It\ It+1 . Then

KMA (z) =
{

0 if z − ztet /∈ IA,
Mt

1−rt(z) if z − ztet ∈ IA.

Lemma 4 Let x ∈ Ik,l
N , k = 0, ..., N − 1, l = k + 1, ..., N . Then

∫
IN

|Kn (x − t)|dμ (t) ≤ cMlMk

M2
N

when n ≥ MN .

Proof. Let x ∈ Ik,α,l,β
N . Then applying lemma 3 we have

KMA (x) = 0 when A > l.

Hence we can suppose that A ≤ l . Let k < A ≤ l . Then we have

|KMA (x)| =
Mk

|1 − rk (x)| ≤
mkMk

2πα
. (8)

Let A ≤ k < l . Then it is easy to show that

|KMA (x)| ≤ cMk. (9)
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Combining (8) and (9), from (2) we have

|KMA (x)| ≤ cMk, when x ∈ Ik,l
N

and if we apply (6) we conclude that

n |Kn (x)| ≤ c

l−1∑
A=0

MAMk ≤ cMkMl. (10)

Let x ∈ Ik,l
N , for some 0 ≤ k < l ≤ N − 1. Since x − t ∈ Ik,l

N and n ≥ MN from (10) we obtain

∫
IN

|Kn (x − t)| dμ (t) ≤ cMkMl

M2
N

. (11)

Let x ∈ Ik,N
N , then applying (6) we have

∫
IN

n |Kn (x − t)| dμ (t) ≤
|n|∑

A=0

MA

∫
IN

|KMA (x− t)| dμ (t) . (12)

Let

{
x =

(
0, ..., 0, xk �= 0, 0, ...0, xN, xN+1, xq, ..., x|n|−1, , ...

)
t =

(
0, ..., 0, xN, ...xq−1, tq �= xq, tq+1, ..., t|n|−1, ...

)
, q = N, ..., |n| − 1.

Then using Lemma 3 in (12) it is easy to show that

∫
IN

|Kn (x − t)|dμ (t) ≤ c

n

q−1∑
A=0

MA

∫
IN

Mkdμ (t) (13)

≤ cMkMq

nMN
≤ cMk

MN
.

Let

{
x =

(
0, ..., 0, xm �= 0, 0, ..., 0, xN, xN+1, xq, ..., x|n|−1, ...

)
,

t =
(
0, 0, ..., xN, ..., x|n|−1 , t|n|, ...

)
.

If we apply Lemma 3 in (12), we obtain∫
IN

|Kn (x − t)| dμ (t) (14)

≤ c

n

|n|−1∑
A=0

MA

∫
IN

Mkdμ (t) ≤ cMk

MN
.

Combining (11), (13) and (14) we complete the proof of lemma 4.
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5. Proof of the theorems
Proof of Theorem 1. By Lemma 1, the proof of Theorem 1 will be complete, if we show that

∫
IN

(
sup
n∈P

|σna|
log2 (n + 1)

)1/2

dμ ≤ c < ∞

for every 1/2-atom a, where I denotes the support of the atom. The boundedness of maximal operator

sup
n∈P

σnf
log2(n+1) from L∞ to L∞ follows from (5).

Let a be an arbitrary 1/2-atom with support I and μ (I) = M−1
N . We may assume that I = IN . It is

easy to see that σn (a) = 0 when n ≤ MN . Therefore we can suppose that n > MN .

Since ‖a‖∞ ≤ cM2
N , we can write

|σn (a)|
log2 (n + 1)

≤ 1
log2 (n + 1)

∫
IN

|a (t)| |Kn (x − t)|dμ (t)

≤ ‖a‖∞
log2 (n + 1)

∫
IN

|Kn (x − t)|dμ (t)

≤ cM2
N

log2 (n + 1)

∫
IN

|Kn (x − t)|dμ (t) .

Let x ∈ Ik,l
N , 0 ≤ k < l ≤ N . Then from Lemma 4 we get

|σn (a)|
log2 (n + 1)

≤ cM2
N

N2

MlMk

M2
N

=
cMlMk

N2
(15)

Combining (3) and (15) we obtain∫
IN

|σ̃∗a (x)|1/2
dμ (x)

=
N−2∑
k=0

N−1∑
l=k+1

mj−1∑
xj=0,j∈{l+1,...,N−1}

∫
I

k,l
N

∣∣∣∼σ∗
a (x)

∣∣∣1/2

dμ (x)

+
N−1∑
k=0

∫
Ik,N

N

|σ̃∗a (x)|1/2
dμ (x)

≤ c

N−2∑
k=0

N−1∑
l=k+1

ml+1 ...mN−1

MN

√
MlMk

N

+c

N−1∑
k=0

1
MN

√
MNMk

N

≤ c

N−2∑
k=0

N−1∑
l=k+1

√
Mk

N
√

Ml

+ c

N−1∑
k=0

1√
MN

√
Mk

N
≤ c < ∞.
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Which completes the proof of Theorem 1. �

Proof of Theorem 2. Let {λk; k ∈ P+} be an increasing sequence of the positive integers such that

lim
k→∞

log2 (λk)
ϕ (λk)

= ∞.

It is evident that for every λk there exists positive integers m,
k such that qm

′
k
≤ λk < qm′

k
+1 < M5 qm

′
k
,

M := sup
k

mk . Since ϕ (n) is a nondecreasing function we have

lim
k→∞

(
m

′
k

)2

ϕ
(
qm,

k

) ≥ c lim
k→∞

log2 (λk)
ϕ (λk)

= ∞; (16)

let {nk; k ∈ P+} ⊂ {m′
k; k ∈ P+} such that

lim
k→∞

n2
k

ϕ (qnk)
= ∞

and

fnk (x) = DM2nk+1 (x) − DM2nk
(x) .

It is evident

f̂nk (i) =
{

1, if i = M2nk
, ..., M2nk+1 − 1;

0, otherwise.

Then we can write

Sifnk(x) =

⎧⎨⎩
Di (x) − DM2nk

(x) , if i = M2nk
, ..., M2nk+1 − 1

fnk (x) , if i ≥ M2nk+1

0, otherwise .

(17)

From (4) we get

‖fnk‖H1/2
=

∥∥∥∥sup
n∈P

SMnfnk

∥∥∥∥
L1/2

(18)

=
∥∥∥DM2nk+1 − DM2nk

∥∥∥
L1/2

=

(∫
I2nk

\I2nk+1

M1/2
2nk

dμ (x) +
∫

I2nk+1

(
M2nk+1 − M2nk

)1/2

dμ (x)

)2

=

⎛⎜⎝m2nk
− 1

M2nk+1
M1/2

2nk
+

(
m2nk

+ 1
)1/2

M2nk
+1

M1/2
2nk

⎞⎟⎠
2

≤ c

M2nk

.
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By (17) we can write: ∣∣∣σqnk
fnk(x)

∣∣∣
ϕ (qnk)

=
1

ϕ (qnk) qnk

∣∣∣∣∣∣
qnk

−1∑
j=0

Sjfnk (x)

∣∣∣∣∣∣
=

1
ϕ (qnk) qnk

∣∣∣∣∣∣
qnk

−1∑
j=M2nk

Sjfnk(x)

∣∣∣∣∣∣
=

1
ϕ (qnk) qnk

∣∣∣∣∣∣
qnk

−1∑
j=M2nk

(
Dj (x) − DM2nk

(x)
)∣∣∣∣∣∣

=
1

ϕ (qnk) qnk

∣∣∣∣∣∣
qnk−1−1∑

j=0

(
Dj+M2nk

(x) − DM2nk
(x)

)∣∣∣∣∣∣
Since

Dj+M2nk

(x) − DM2nk
(x) = ψM2nk

Dj , j = 1, 2, .., M2nk
− 1,

we obtain ∣∣∣σqnk
fnk(x)

∣∣∣
ϕ (qnk)

=
1

ϕ (qnk) qnk

∣∣∣∣∣∣
qnk−1−1∑

j=0

Dj (x)

∣∣∣∣∣∣
=

1
ϕ (qnk)

qnk−1

qnk

∣∣∣Kqnk−1 (x)
∣∣∣ .

Let x ∈ I2s,2l
2nk

. Then from Lemma 2 we have

∣∣∣σqnk
fnk(x)

∣∣∣
ϕ (qnk)

≥ cM2sM2l

M2nk
ϕ (qnk)

.

Hence we can write: ∫
Gm

( |σqnk
fnk(x)|

ϕ (qnk)

)1/2

dμ (x)

≥
nk−3∑
s=0

nk−1∑
l=s+1

m2l+1∑
x2l+1=0

...

m2nk−1∑
x2nk−1=0

∫
I2s,2l
2nk

( |σqnk
fnk(x)|

ϕ (qnk)

)1/2

dμ (x)

≥ c

nk−3∑
s=0

nk−1∑
l=s+1

m2l+1 ...m2nk−1

M2nk

√
M2sM2l√

ϕ (qnk)M2nk

≥

c

nk−3∑
s=0

nk−1∑
l=s+1

√
M2s√

M2lM2nk
ϕ (qnk)

≥ cnk√
M2nk

ϕ (qnk)
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Then from (18) we have(∫
Gm

( |σqnk
fnk

(x)|
ϕ(nk)

)1/2

dμ (x)
)2

∥∥fnk(x)

∥∥
H1/2

≥ cn2
k

M2nk
ϕ (qnk)

M2nk

≥ cn2
k

ϕ (qnk)
→ ∞ when k → ∞.

Theorem 2 is proved. �
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