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Abstract: Let R be a commutative ring with nonzero identity and let M be an R -module with X = Spec(M) . It is

introduced a scheme OX on the prime spectrum of M and some of its properties have been investigated.
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1. Introduction
Throughout this paper, all rings are commutative with identity and all modules are unital. For a submodule
N of an R -module M , (N :R M) denotes the ideal {r ∈ R | rM ⊆ N} and annihilator of M , denoted by

AnnR(M), is the ideal (0 :R M). If there is no ambiguity we write (N : M) (resp. Ann(M)) instead of

(N :R M) (resp. AnnR(M)). An R -module M is called faithful if Ann(M) = (0).

A submodule N of an R -module M is said to be prime if N �= M and whenever rm ∈ N (where r ∈ R

and m ∈ M ) then r ∈ (N : M) or m ∈ N . If N is prime, then the ideal p = (N : M) is a prime ideal of R . In

these circumstances, N is said to be p -prime (see [2]). The set of all prime submodules of an R -module M is

called the prime spectrum of M and denoted by Spec(M). Similarly, the collection of all p -prime submodules of

R -module M for any p ∈ Spec(R) is designated by Specp(M). We remark that Spec(0) = ∅ and that Spec(M)

may be empty for some nonzero R -module module M . For example, the Z(p∞) as a Z -module has no prime

submodule for any prime integer p (see [3] and [7]). Such a module is said to be primeless. An R -module M is

called primeful if either M = (0) or M �= (0) and the natural map ψ : Spec(M) → Spec(R/Ann(M)) defined

by ψ(P ) = (P : M)/Ann(M) for every P ∈ Spec(M), is surjective (see [6]). Let p be a prime ideal of R , and
N ≤ M . By the saturation of N with respect to p , we mean the contraction of Np in M and designate it by

Sp(N) (see [5]).

Let M be an R -module. Throughout this paper X denotes the prime spectrum Spec(M) of M . Let

N be a submodule of M . Then V (N) is defined as, V (N) = {P ∈ X | (P : M) ⊇ (N : M)} (see [4]).

Set Z(M) = {V (N) : N ≤ M} . Then the elements of the set Z(M) satisfy the axioms for closed sets in a

topological space X (see [4]). The resulting topology is called the Zariski topology relative to M .

We recall some preliminary results.
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Remark 1.1 (See [4, Theorem 6.1].) The following statements are equivalent:

1. X is T0 -space;

2. The natural map ψ : Spec(M) → Spec(R/Ann(M)) is injective;

3. If V (P ) = V (Q) , then P = Q for any P, Q ∈ Spec(M) ;

4. |Specp(M)| ≤ 1 for every p ∈ Spec(R) .

Remark 1.2 (See [4].) For any element r of a ring R , the set Dr = Spec(R) \ V (rR) is open in Spec(R)

and the family F = {Dr|r ∈ R} forms a base for the Zariski topology on Spec(R) . Each Dr , in particular,

D1 = Spec(R) is known to be quasi-compact. For each r ∈ R , we define Xr = X − V (rM) . Then every Xr is

an open set of X , X0 = ∅ , and X1 = X . By [4, Corollary 4.2], for any r, s ∈ R , Xrs = Xr ∩ Xs .

2. Main results

In this section we use the notion of prime spectrum of a module to define a sheaf of rings. Let M be an
R -module. For every open subset U of X we define Supp(U) = {(P : M) | P ∈ U} .

Definition 2.1 Let M be an R -module. For every open subset U of X we define OX(U) to be a subring

of
∏

p∈Supp(U) Rp , the ring of functions s : U → ∐
p∈Supp(U) Rp , where s(P ) ∈ Rp , for each P ∈ U and

p = (P : M) such that for each P ∈ U , there is a neighborhood V of P , contained in U , and elements

a, f ∈ R , such that for each Q ∈ V , f �∈ q := (Q : M) , and s(Q) = a/f in Rq .

It is clear that for an open set U of X , OX(U) is closed under sum and product. Thus OX(U) is a

commutative ring with identity (the identity element of OX(U) is the function which sends all P ∈ U to 1 in

R(P :M) ). If V ⊆ U are two open sets, the natural restriction map OX(U) → OX(V ) is a homomorphism of

rings. It is then clear that OX is a presheaf. Finally, it is clear from the local nature of the definition OX is a
sheaf. Hence

Lemma 2.2 Let M be an R -module.

1. For each open subset U of X , OX(U) is a subring of
∏

p∈Supp(U) Rp .

2. OX is a sheaf.

Next, we find the stalk of the sheaf.

Proposition 2.3 Let M be an R -module. Then for each P ∈ X , the stalk OP of the sheaf OX is isomorphic
to Rp , where p := (P : M) .

Proof Let P be a p -prime submodule of M and

m ∈ OP = lim−→
P∈U

OX(U).

Then there exists a neighborhood U of P and s ∈ OX(U) such that m is the germ of s at the point P . We

define a homomorphism ϕ : OP → Rp by ϕ(m) = s(P ). This is a well-defined homomorphism. Let V be
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another neighborhood of P and t ∈ OX(V ) such that m is the germ of s at the point P . Then there exists

an open subset W ⊆ U ∩ V such that P ∈ W and s|W = t|W . Since P ∈ W , s(P ) = t(P ). We claim that ϕ

is an isomorphism.

Let x ∈ Rp . Then x = a/f where a ∈ R and f ∈ R \ p . Since f �∈ p , P ∈ Xf . Now we define

s(Q) = a/f in Rq , where q := (Q : M), for all Q ∈ Xf . Then s ∈ O(Xf ). If m is the equivalent class of s in

OP , then ϕ(m) = x . Hence ϕ is surjective.

Now, let m ∈ OP and ϕ(m) = 0. Let U be an open neighborhood of P and m be the germ of s ∈ OX(U)

at P . There is an open neighborhood V ⊆ U of P and elements a, f ∈ R such that s(Q) = a/f ∈ Rq , where

q := (Q : M), for all Q ∈ V , f �∈ q . Thus V ⊆ Xf . Then 0 = ϕ(m) = s(P ) = a/f in Rp . So, there is h ∈ R\p

such that ha = 0. For Q ∈ Xfh = Xf ∩ Xh we have s(Q) = a/f ∈ Rq . Since h �∈ q , s(Q) = a
f

= h
h

a
f

= 0.

Thus s|O(Xfh) = 0. Therefore, s = 0 in O(Xfh). Consequently m = 0. This completes the proof. �

As a direct consequence of Proposition 2.3, we have

Corollary 2.4 If M is an R -module, then (Spec(M),OSpec(M)) is a locally ringed space.

Proposition 2.5 Let M and N be R -modules and φ : M → N be an epimorphism. Then φ induces a
morphism of locally ringed spaces

(f, f�) : (Spec(N),OSpec(N)) → (Spec(M),OSpec(M)).

Proof By [4, Proposition 3.9], the map f : Spec(N) → Spec(M) which is defined by P 
→ φ−1(P ), is

continuous. Let U be an open subset of Spec(M) and s ∈ OSpec(M)(U). Suppose P ∈ f−1(U). Then

f(P ) = φ−1(P ) ∈ U . Assume that W is an open neighborhood of φ−1(P ) with W ⊆ U with a, g ∈ R , such

that for each Q ∈ W , g �∈ q := (Q : M), and s(Q) = a/g in Rq . Since φ−1(P ) ∈ W , P ∈ f−1(W ). As we

mentioned, f is continuous, so f−1(W ) is an open subset of Spec(N). We claim that for each Q′ ∈ f−1(W ),

g �∈ (Q′ : N). Suppose g ∈ (Q′ : N) for some Q′ ∈ f−1(W ). Then φ−1(Q′) = f(Q′) ∈ W . Since φ an

epimorphism, (Q′ : N) = (φ−1(Q′) : M). So, g ∈ (φ−1(Q′) : M). This is a contradiction. Therefore, we can
define

f�(U) : OSpec(M)(U) → OSpec(N)(f−1(U))

by f�(U)(s) = s ◦ f .

Assume that V ⊆ U and P ∈ f−1(V ). According to the commutativity of the diagram

,f−1(U)
f �� U

t �� R(P :M)

f−1(V )
f ��

��

��

V
��

��

t|V

�����������

we have
(t ◦ f)|f−1(V )(P ) = t|V ◦ f(P ). (2.1)

Consider the diagram
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OSpec(M)(U)
f�(U)��

ρUV

��

OSpec(N)(f−1(U))

ρ′
f−1(U)f−1(V )

��
OSpec(M)(V )

f�(V )�� OSpec(N)(f−1(V )).
(A)

Since

ρ′f−1(U)f−1(V )f
�(U)(t)(P ) = ρ′f−1(U)f−1(V )(t ◦ f)(P )

= (t ◦ f)|f−1(V )(P )

= t|V ◦ f(P ) by equation 2.1

= ρUV (t) ◦ f(P )

= f�(V )ρUV (t)(P ),

for each t ∈ OSpec(M)(U), the diagram (A) is commutative, and it follows that

f� : OSpec(M) −→ f∗OSpec(N)

is a morphism of sheaves. By Proposition 2.3, the map on stalks

f�
P : OSpec(M),f(P) −→ OSpec(N),P

is clearly the map of local rings
R(f(P):M) −→ R(P :N).

This implies that

(Spec(N),OSpec(N))
(f,f�)−−−−→ (Spec(M),OSpec(M))

is a morphism of locally ringed spaces. �

Proposition 2.6 Let Φ : R → S be a ring homomorphism, N a S -module and M a primeful R -module such
that Spec(M) is a T0 -space and AnnR(M) ⊆ AnnR(N) (here, we consider N as an R -module by means of

Φ). Then Φ induces a morphism of locally ringed spaces

(Spec(N),OSpec(N))
(h,h�)−−−−→ (Spec(M),OSpec(M)).

Proof Since AnnR(M) ⊆ AnnR(N), Φ induces the map Θ : R/AnnR(M) → S/AnnS(N). It is well known

that the maps f : Spec(S) → Spec(R) by p 
→ Φ−1(p) and d : Spec(S/AnnS(N)) → Spec(R/AnnR(M)) by

p 
→ Θ−1(p) and ψN : Spec(N) → Spec(S/AnnS(N)) with ψ(P ) = (P :S N)/AnnS(N) for each P ∈ Spec(N)

are continuous maps. Also ψM : Spec(M) → Spec(R/AnnR(M)) is homeomorphism by [4, Theorem 6.5].
Therefore the map

h : Spec(N) −→ Spec(M)

P 
→ ψ−1
M d ψN(P )

205



ABBASI and HASSANZADEH LELEKAMI/Turk J Math

is continuous. For each P ∈ Spec(N), we get a local homomorphism

Φ(P :S N) : Rf(P :S N) −→ S(P :S N).

Let U be an open subset of Spec(M) and let t ∈ OSpec(M)(U). Suppose that P ∈ h−1(U). Then h(P ) ∈ U

and there exists a neighborhood W of h(P ) with W ⊆ U and elements r, g ∈ R such that for each

Q ∈ W , g �∈ (Q :R M), and t(Q) = r
g ∈ R(Q:R M) . Hence g �∈ (h(P ) :R M). By definition of h ,

(h(P ) :R M) = Φ−1(P :S N). So, Φ(g) �∈ (P :S N). Thus Φ(P :SN)( r
g
) define a section on OSpec(N)(h−1(W )).

Since

Rg ��

��

SΦ(g)

��
RΦ−1(P :SN) �� S(P :SN)

is commutative, we can define

h�(U) : OSpec(M)(U) −→ h∗OSpec(N)(U) = OSpec(N)(h−1(U))

by h�(U)(t)(P ) = Φ(P :S N)(t(h(P ))) for each t ∈ OSpec(M)(U) and P ∈ h−1(U). Assume that V ⊆ U and

P ∈ h−1(V ).

According to the commutative diagram

h−1(U) h �� U

t

������������

h−1(V ) h ��
��

��

Φ(P :SN)t|V ◦h

��

V
��

��

t|V�� RΦ−1(P :SN)

Φ(P :SN)

��
S(P :SN),

we have

Φ(P :S N)t|V ◦ h(P ) = (Φ(P :S N)t ◦ h)|h−1(V )(P ). (2.2)

Considering the diagram

OSpec(M)(U)
h�(U)��

ρUV

��

OSpec(N)(h−1(U))

ρ′
h−1(U)h−1(V )

��
OSpec(M)(V )

h�(V )�� OSpec(N)(h−1(V )), (B)
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it is easy to see that

ρ′h−1(U)h−1(V )h
�(U)(t)(P ) = ρ′h−1(U)h−1(V )Φ(P :S N)t ◦ h(P )

= (Φ(P :S N)t ◦ h)|h−1(V )(P )

= Φ(P :SN)t|V ◦ h(P ) by equation 2.2

= h�(V )(t|V )(P )

= h�(V )ρUV (t)(P ).

So, the diagram (B) is commutative, and it follows that

h� : OSpec(M) −→ h∗OSpec(N)

is a morphism of sheaves. By Proposition 2.3, the map on stalks

h�
P : OSpec(M),h(P) −→ OSpec(N),P

is clearly
Rf(P :S N) −→ S(P :S N).

This implies that

(Spec(N),OSpec(N))
(h,h�)−−−−→ (Spec(M),OSpec(M))

is a morphism of locally ringed spaces. �

Example 2.7 Let Ω be the set of all prime integers p , M =
∏

p
Z

pZ
and N =

⊕
p

Z

pZ
where p runs through Ω .

By [6, p.136, Example 1], N is a faithful Z-module and M is a faithful primeful Z-module. It is also shown
that

Spec(M) = {S(0)(0)} ∪ {pM |p ∈ Ω}.

Therefore by Remark 1.1, Spec(M) is a T0 -space. Hence by Proposition 2.6, there exists a morphism of locally
ringed spaces

(Spec(
⊕

p

Z
pZ

),OSpec(
�

p
Z

pZ
)) → (Spec(

∏

p

Z
pZ

),OSpec(
�

p
Z

pZ
)).

Proposition 2.8 Let M be a faithful and primeful R -module. For any element f ∈ R , the ring OX(Xf ) is
isomorphic to the localized ring Rf .

Proof We define the map Θ : Rf → OX(Xf ) by

a

fm

→ (s : Q 
→ a

fm
∈ R(Q:M)).

Indeed Θ sends that a
fm to the section s ∈ OX(Xf ) which assigns to each Q the image of a

fm ∈ R(Q:M) . It is

easy to see Θ is a well-defined homomorphism. We are going to show that Θ is an isomorphism.
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We first show that Θ is injective. If Θ( a
fn ) = Θ( b

fm ), then for every P ∈ Xf , a
fn and b

fm have the

same image in Rp , where p = (P : M). Thus there exists h ∈ R \ p such that h(fma − fnb) = 0 in R . Let

I = (0 :R fma − fnb). Then h ∈ I and h �∈ p , so I � p . This happens for any P ∈ Xf , so we conclude that

V (I) ∩ Supp(Xf ) = ∅

hence
Supp(Xf ) ⊆ D(I) := Spec(R) \ V (I).

Since M is faithful primeful,
Df = Supp(Xf ) ⊆ D(I).

Therefore f ∈
√

I and so f l ∈ I for some positive integer l . Now we have f l(fma − fnb) = 0 which shows

that a
fn = b

fm in Rp . Hence Θ is injective.

Let s ∈ OX(Xf ). Then we can cover Xf with open subset Vi , on which s is represented by ai

gi
, with

gi �∈ (P : M) for all P ∈ Vi , in other words Vi ⊆ Xgi . By [4, Proposition 4.3], the open sets of the form Xh

form a base for the topology. So, we may assume that Vi = Xhi for some hi ∈ R . Since Xhi ⊆ Xgi , by [4,

Proposition 4.1], hi ∈
√

(gi). Thus hn
i ∈ (gi) for some n ∈ N . So, hn

i = cgi and

ai

gi
=

cai

cgi
=

cai

hn
i

.

We see that s is represented by bi

ki
, (bi = cai, ki = hn

i ) on Xki and (since Xhi = Xhn
i

) the Xki cover Xf .

The open cover Xf =
⋃

Xki has a finite subcover by [4, Proposition 4.4]. Suppose, Xf ⊆ Xk1 ∪ · · · ∪Xkn . For

1 ≤ i, j ≤ n , bi

ki
and bj

kj
both represent s on Xki ∩Xkj . By Remark 1.2, Xki ∩Xkj = Xkikj and by injectivity

of Θ, we get bi

ki
= bj

kj
in Rkikj . Hence for some nij ,

(kikj)nij(kjbi − kibj) = 0.

Let m = max{nij|1 ≤ i, j ≤ n} . Then

km+1
j (km

i bi) − km+1
i (km

j bj) = 0.

By replacing each ki by km+1
i , and bi by km

i bi , we still see that s is represented on Xki by bi

ki
, and furthermore,

we have kjbi = kibj for all i, j . Since Xf ⊆ Xk1 ∪ · · · ∪ Xkn , by [4, Proposition 4.1], we have

Df = ψ(Xf ) ⊆
n⋃

i=1

ψ(Xki ) =
n⋃

i=1

Dki ,

where ψ is the natural map ψ : Spec(M) → Spec(R). So, there are c1, · · · , cn in R and t ∈ N , such that

ft =
∑

i ciki . Let a =
∑

i cibi . Then for each j we have

kja =
∑

i

cibikj =
∑

i

cikibj = bjf
t.

This implies that a
ft = bj

kj
on Xkj . So Θ( a

ft ) = s everywhere, which shows that Θ is surjective. �
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Corollary 2.9 Let M be a faithful and primeful R -module. Then O(Spec(M)) is isomorphic to R .

We recall that a scheme X is locally Noetherian if it can be covered by open affine subsets Spec(Ai),

where each Ai is a Noetherian ring. X is Noetherian if it is locally Noetherian and quasi-compact [1].

Theorem 2.10 Let M be a faithful and primeful R -module such that X is a T0 -space. Then (X,OX) is a

scheme. Moreover, if R is Noetherian, then (X,OX) is a Noetherian scheme.

Proof Let g ∈ R . Since the natural map ψ : Spec(M) → Spec(R) is continuous by [4, Proposition 3.1], the

map ψ|Xg : Xg → ψ(Xg) is also continuous. By assumption and Remark 1.1, ψ|Xg is a bijection. Let E be a

closed subset of Xg . Then E = Xg ∩ V (N) for some submodule N of M . Hence ψ(E) = ψ(Xg ∩ V (N)) =

ψ(Xg) ∩ V (N : M) is a closed subset of ψ(Xg). Therefore, ψ|Xg is a homeomorphism.

Suppose X =
⋃

i∈I Xgi . Since M is faithful primeful and X is a T0 -space, for each i ∈ I

Xgi
∼= ψ(Xgi ) = Supp(Xgi ) = Dgi

∼= Spec(Rgi).

Thus by Proposition 2.8, Xgi is an affine scheme and this implies that (X,OX) is a scheme. For the last

statement, we note that since R is Noetherian, so is Rgi for each i ∈ I . Hence (X,OX) is a locally Noetherian

scheme. By [4, Theorem 4.4], X is quasi-compact. Therefore, (X,OX) is a Noetherian scheme. �
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