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Abstract: In this paper we introduce the class of m-valent Janowski close to convex harmonic functions. Growth and

distortion theorems are obtained for this class.
Our study is based on the harmonic shear methods for harmonic functions.

Key words: Multivalent harmonic functions, distortion theorem, growth theorem

1. Introduction
Let U be a simply connected domain in the complex plane. A harmonic function f has the representation
f = h(2) + g(z), where h(z) and g(z) are analytic in U and are called the analytic and co-analytic part of f,
respectively. Let h(z) = 2™ +ams12™ +ama22™ 2+ and g(2) = bp2™ + b1 2™ +ba22™ 2+ -+ be
analytic functions in the open unit disc ID. The jacobian J¢ of f = h(z) 4 g(z) is defined by J; = |f.|?—|f=]? =
|0 (2)2 =g (2)|2. If Jp(2) = [W(2)]2—]g'(2)]? > 0, then f = h(2) 4 g(z) is called a sense-preserving multivalent
harmonic function in D. The class of all sense-preserving multivalent harmonic functions with |b,,| < 1 is
denoted by Sy (m) and the class of all sense-preserving multivalent harmonic functions with b,, = 0 is denoted
by 8% (m). For convenience, we will investigate sense-preserving harmonic functions, that is functions for which
Jp(2) > 0. If Jp(2) <0, then f is sense-preserving. The second analytic dilatation of a harmonic function is
given by w(z) = ¢'(2)/h/(z). We also note that if f is locally univalent and sense-preserving, then |w(z)| < 1
for every z € D, and f is the solution of the differential equation f,w(z) = fz (see [3], [1] and [4]).

Let Q be the family of functions ¢(z) which are regular and analytic in the open unit disc D and
satisfying the conditions ¢(0) = 0, |¢(2)| < 1 for every z € D. For arbitrary fixed numbers A, B, -1 < A <
1,—1 < B < 1, denote by P(A, B,m) the class of functions p(z) = m + > 7, byz™ analytic in I such that
p(z) € P(A, B,m) if and only if
14+ Ap(z)

Q D. 1.1
1+B()"p€ xS (1.1)

p(2) =

Moreover, let S(A, B,m) denote the class of functions f(z) = 2™+ " .| a,2™ analytic in D and satisfying

e p(z) for some p(z) € P(A,B,m) and all z € D.

the condition that f(z) € S(4, B, m) i e
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Next, denote by P(m) (with m being a positive integer) the family of functions p(z) = m + p1z + paz? + - - -
which are regular in D and satisfying the conditions p(0) = m, Rep(z) > 0 for all z € D, and such that
p(z) € P(m) if and only if for some function ¢(z) € Q and every z € D([2], [6]).

Let C(A, B,m) denote the class of functions f(z) = 2™ 4+ Y > .| ¢,2" regular in D and satisfies the
condition
()
f'(z)

142 = p(z), (1.2)

for some p(z) € P(A, B,m) and every z € D. Finally, a function f(z) = 2™+ > . dn2" is in the class of
K(A, B,m) if there is a function ¢(z) in C(4, B,m) such that

=p(2), (1.3)

where p(z) € P(A, B,m) and every z € D.

Let F(2) = z+ag22+--- and G(z) = 2+be2%+- - be analytic functions in . If there exists a function
#(z) € Q such that F(z) = G(p(z)) for all z € D, then we say that F(z) subordinate to G(z) and we write
F(z) < G(z). We also note that if F(z) < G(z) then F(D) Cc G(D)([5]).

Denote by SgK(A, B, m) the class of all m-valent close to convex harmonic functions in the open unit
disc D.

2. Main results

Lemma 2.1 Let ¢(2) = 2™ + cpr12™ + cina22™ 2 + -+ be analytic m-valent Janowski convex function in

D. Then the inequalities

e S S e, B0
(1 + B/r) WL(BB—A) — — (1 . B/r) WL(BB—A) )
(2.4)
Tm—le—mAr < |¢I(Z)| < Tm—lemAr7 B=0
are realized.
Proof Since ¢(z) € C(A, B,m) and by using the subordination principle, we have
" (2) 1— ABr? m(A — B)r
1 - < B#0
( +Z¢’(z) 1By | 1B 7
(2.5)

(1 + z(i;lll((j))> — m‘ <mAr, B=0

for every |z| =7 < 1. Therefore we have
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(m—1) —m(A — B)r — (mAB — B?)r? < Re (Z(b”(z))

1-— B?r? @' (2)
_ _ _ _ p2),2
< (m—1)+p(A : _B)é“2T2(mAB B)r B£0 (2.6)

m—l—mATSRe(z(Z,,((ZZ))) <m-1+mAr, B=0

for all |z| = r < 1. On the other hand, we know that

¢"(2) 9
Re (z ) ) = "5 log |’ (2)]. (2.7)
Thus, by using equality (2.7) in the inequalities (2.6) we obtain that

(m—1)—m(A - B)r — (mAB — B?)r?

0
< =1 /
< & og |4’ (2)]

r(l — B2T2)
I -

m—l:mAr < %10g|¢l(2)| < m—l—ri-mAr7 B=0

where |z| =7 < 1. Integrating from 0 to r of the above inequalities we can get (2.4). O

Lemma 2.2 Let w(z) be the second analytic dilatation of the class SyK(A, B,m), i.e., w(z) = 9(2)  Then

R ()
|bi| — 7 [bm| + 7
- < < — 2.9
Pnl =t < oo < 22020 2:9)
(L4 |bm|)(1 = 1) (L4 |bm)(L + 1)
AL LA e | < - 7 2.10
T S LTl s T (2.10)
and
(L= bm|)(1 = 1) (L= bm)(L+1)
~ 7 I <L]1- < - 7. 2.11
T T e W 210
Proof Since w(z) = Z;gg = mﬂ?;ﬁf:’{ﬂg’f{%?ﬂ;f,::f we have w(0) = by, . Define the function
b(2) = w(z) —w(0)  w(z) = by

C1-ww(z) 1-bpw(z)
This function satisfies the conditions of Schwarz lemma. Therefore we have

w(z) = I £ 0(2) +_¢(Z)
1+ bnp(2)
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which shows that the second dilatation w(z) is subordinate to (f_:’b—lﬂ;) . On the other hand, the transformation

S 1—? 1—r? : [
(%) maps |z| = r onto the disc with the center C(r) = (la_lfbmﬁr)z, 1@_2|(bmlrzr)2) , and radius p(r) = %-

Using the subordination principle, we can write

b (1 —1?) (1 = [bm|*)r
— ) 2.12
@) = T | S T o (2.12)
After straightforward calculations from the last inequality, we get (2.9), (2.10) and (2.11). O

Theorem 2.3 Let f(z) be a m-valent Janowski close to convexr function and ¢(z) be a m-valent convex

function in D. Thus we obtain those inequalities

_ /
m(1 — Ar) < f'(z) < m(l—i—AT)7 B£0
1- Br @'(2) 1+ Br
(2.13)
f'(z)
m(l — Ar) < <m(l+ Ar), B=0,
(1 4r) < | 55| < 1+ 4r)
where |z| =r < 1.
Proof Since f(z) € K(A, B,m) and ¢(z) € C(A, B,m) then we know that
!
f(z) “m 1+ Az7
@'(2) 1+ Bz

from the last subordination we can write the inequalities

f(z)  m(l-— ABr?) < m(A — B)T7 B£0

@' (2) 1-— B?r? 1 - B?r?

(2.14)
!

fl(z) — m‘ <mAr, B=0.

¢ (2)
By using the triangle inequality in the inequalities (2.14) we get (2.13). O

Theorem 2.4 If f(z) is a m-valent Janowski close to convex function and ¢(z) is a m-valent Janowski convex

function in D, then the following inequalities

m(l — Ar)rm—1 m(l + Ar)rm—1
e <1l < — A B
(1-Br)1+Br)” = (14+Br)(1—Br)” =
(2.15)
mr™LemmAT (1 — Ar) < |f'(2)] < mr™TLe™AT (1 + Ar), B=0

are realized.
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Proof Using lemma 2.1 in theorem 2.4, we obtain the result. O

Theorem 2.5 Let f = h(z)+ g(z) be an element of SyK(A, B,m). Then

m(1 — Ar)rm=1 (14 |bpr) <If
(1—Br)(1+ Br)=5 (L4 w1 +r) =
m(1+ Ar)rm=1 (14 |bm|r)

= s B0 B SR T a0 -1 7 " (2.16)

m—1_,—mAr 1+|bm|r m—1_mAr 14[bm|r —
mrm=le=mA (1—AT).% < | fol < mpm—lemA (1+Ar).%,3—0,

and

m(1 — Ar)rm—! ([bm| =) A+ [bm|r) £
Bt 5% = bl + B4 7) <
m(1+ Ar)rm=1 (|bm| + 1)

T (1+Br)(1—Br)™5F2 (1= [bn))1 —1)’ B#0, (2.17)

m—1_—mAr ([bm|=7)(A+[bm]|T) m—1_mAr (Jbm|+T) _
mr 1@ (1 — AT) A= 1o |7 (L om N (147 S |f7| S mr 16 (1 + AT).W, B=0.

Proof If we take ¢(z) = h(z) — g(z), then we have

W = o g = T )<L
Therefore we have
¥/(2)] ¥/(2)]
T+l < S Tt 215
I ) - eI E)
Tr@ TG (219

Using lemma 2.1 and lemma 2.2 in the inequalities (2.18) and (2.19) we get (2.16) and (2.17), respectively. Since

o) = e
we have
W) == e
and so
e = | %df
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Also, since

) =F= [ YEwE

g(z)_fz— . 1—w(€)d§7
it follows that
_ [T Qu©)
9(2) = T w(© de.
(The solution h(z) and g(z) must be found under the conditions h(0) = g(0) = 0.) Thus
f(z) =h(z) +9(z) = ZMdg_;_ sz§:

o 1—w(() o 1—-w(é)

_ OZ d§+/ W

s~ /w' ) = R(Az%)—w(z>-

Corollary 2.6 If we choose the following values for theorem 2.5, we get the accompanying inequalities:

e A=1DB=—

m(1 —r)rm=1

(1 + |bm]r)

m(1+r)rm=t (14 |by|r)

(472 =r)>m (14 |bm|)

m(l —r)rm=1

(L + [bm[r) ([bm| — 7)

<|fel < (1 =7r)2(L 472" (1= |bml)

<< m(1+r)r™=t (|by] +7)

(472 =72 (1 o) (1 = [bm|r)

e A=1—-2aq,B=-1,0<a<1:

m(1 —r + 2ar)rm=1

(1 + [bm]r)

(L =72 +7r)>m (1= [bm|)

m(1+r—2ar)r™ 1 (14 |bn|r)

(14 7)2(1 = r)2m=e) " (14 |bm|)

<|fl <

(1 =721+ 720 (1 — |bm|)

m(1 —r+ 2ar)r™= 1 (14 |bp|r)(|bm] —7) << m(1+7r—2ar)r™ 1 (|b,| +7)
(T4 7)2(1 = r)2m0=) (14 by ) (1 = [b]r) = 77 7 (1= 1)2(1+7)2m0=) (1 — [by)
e A=1,B=4—-1,M>1:
m(1 —r)rm=1 (14 |bm|r)
r r Am= (14 by |) (1 +7) < If:l
I+r—F)A—r+ )" m
< m(1+r)rm=1 (1 + |bm|r)
T ) = gy (= (b =)
m(1—r)r™ ! A+[bm|r)(Ibm|—T) <|fl < m(14r)r™ " (b |+T)
(r— YA —r o)™ =23 (Hbm D A= [bm[r)(A4r) = (=12 (1= )™ 120 (T—[b,,[) (1)
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hd AZB?‘B:_670<6§1 :

mr””’1(1+|bm|r) mr™ 1(l—i- |bn |T)
(A48r)(1=Br)>™ =1 (1+][bm[) (1+7) <|fl < (A=Br)(1+pr)*™ =1 (1—[bm[)(1-1)

mr™ ! (|by| — ) (1 + [b|r)
(L+Br)( = Br)>m =11 = |byp|r) (L + [bm|)(1 +7)
< mr™=L(|by,] + 1)
(L= Br)(1+ Br)>mH (L = by ) (L= 1)

< |f=

Corollary 2.7 Let f =h(z) + g(z) be an element of SyK(A, B,m). Then

m?(1— Ar)?r20m=0 (1 — b2 (1 — 7)2(1 + |b|7)?

< J
(= B+ B = (L P21+ 2107 = )
m?(1 + Ar)?p2(m=1) (1 — b ) (1 + 7)2(1 + by |r)? B 40,
S 04 B0 = B PG (L= b Pr2)(1 = )21 — )2
(2.20)
2 2 2
5 o(m—1) . —2mar;q g2 (L= [bml?)(1 = 7)1+ |bm|r) <
e A T B A T R+ = )
_ 1-— |bm|2)(1 +7‘)2(1 + |bm|7“)2
< m2p2(m=1) 2mAr 2 ( —0.
G T2 G T S

Proof Since Jf(z) = [W/(2)]2 — |¢'(2)|* = [N (2)]?(1 — |w(2)|?), then using theorem 2.5 and lemma 2.2, we get
(2.20). 0

Corollary 2.8 For the last results, if we take the following values, we get the accompanying inequalities:

e A=1B=-1

e W L e U U D
T+ =0 = TbnPr)(1+ bl =77
m?(L+ )220 (1= b [2)(L+ [br)?
=~ (1 — 7‘)4(1 + T)4m (1 — |bm|2T2)(1 _ |bm|)2

e A=1—-2aq,B=-1,0<a<1:

m?(1 —r 4 2ar)?r2m=D (1 = b)) (1 — 7)2(1 + |byn|7)? J4(2)
(4 o O P+ f? =

m2(1+r — 2ar)2r2 =D (1 — by |2) (1 +7)2(1 + [by|7)?
T (A=)t yrmeel T (1= o [Pr2) (1 [b])?
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m2(1 — r)4r2(m=1) (1= b *) (1 + [bm|r)* Jp(2)
(I tr— 2921 —r+ L) (L= P+ P20+ )2 =

D o i S e 5 (e LS
S0t 22— 2 U o Pr) (1~ b2~ )2
M M

¢« A=B,B=-§ :

mEr D (b )0 bl

(T B2 = B =L = [P (L + b P+ 7 = 1
M2 (1 by )1+ 1P(1 4 [bn1)?

L= AP+ Br) =21 = PP (L = b (L= )2

=1

Corollary 2.9 If f = h(2) + g(2) € Su(A, B,m), then

m/rpm_l (L= Ap)A +[bmlp) (1 + Ap)([bm| + p) )<
0 (1= Bp)(1+Bp)™ 5 (14 Bp)(1—Bp)™ 5 (1= [bu))1=p)]
B 771 A Y A (L+Ap)(1+p)
|fl < <1_|bm|>/0 p (1+Bp)(1_Bp)vn(BB—A) (1_p)dp,B7'50»
(2.21)
" ome1 [ = Ap) A+ [bmlp) (L4 Ap)([bm| +p) | —ap
m/o [ T+ BT +p) (1 b1 —p) =

L+ bm|\ [ 1 (L4 Ap)(14p) 4
f §m<7>/ P ~e®Pdp, B=0.
1 T om]) Jo =)

Proof Since (|f:| — [fz)ldz| < |df] < (If:] + [fz)ldz], it follows that (|P'(z)] — [¢'(2)])|d2| < |df| <
(|0 (2)] + 19’ (2)])|dz|, and using theorem 2.5 we can write the result. O
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