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Abstract: A subgroup H of G is said to be weakly s -supplementally embedded in G if there exist a subgroup T of

G and an s -permutably embedded subgroup Hse of G contained in H such that G = HT and H ∩ T ≤ Hse . In this

paper, we investigate the influence of some weakly s -supplementally embedded subgroups on the structure of a finite

group G . Some earlier results are unified and generalized.
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1. Introduction

All groups considered in this paper will be finite. We use conventional notions and notation, as in Huppert

[11]. F stands for a formation, Np and N denote the classes of all p -nilpotent groups and nilpotent groups,

respectively. GF denotes the F -residual, ZF (G) denotes the F -hypercenter of G . For formation N , we use

the notation ZN (G) = Z∞(G), the hypercenter of G . Fix a finite group G . How primary subgroups can be

embedded in G is a question of particular interest in studying the structure of G . In fact, many results have

been obtained. For example, Buckley [5] proved that if G is a group of odd order and all minimal subgroups

of G are normal in G , then G is supersoluble. Itô proved that if G is a group of odd order and all minimal

subgroups of G lie in the center of G , then G is nilpotent (see [11], III, 5.3). If all elements of G of order 2

and 4 lie in the center of G , then G is 2-nilpotent (see [11], IV, 5.5). Since then, a series of papers have dealt

with generalizations of the results of Itô and Buckley by using the theory of formations and some generalized

normal subgroups (see, for example, [1], [3], [6], [10], [13]).

Recall that a subgroup H of a group G is said to be s-permutable [12] (or s -quasinormal) in G , if

HP = PH for every Sylow subgroup P of G . Following Ballester-Bolinches and Pedraza-Aguilera [2], we

say that a subgroup H of G is s -permutably embedded in G if for each prime p dividing the order of H ,

a Sylow p -subgroup of H is also a Sylow p -subgroup of some s-permutable subgroup of G . Recently, many

other concepts were introduced successively, such as c-normal subgroup [20], c-supplemented subgroup [4],

Q-supplemented subgroup [16], c∗ -normal subgroup [21] etc. By assuming that some subgroups of G satisfying

a certain kind of property, the authors have got many results about the structure of G . Furthermore, Skiba

in [19] introduced weakly s-supplemented subgroup in which a subgroup H of a group G is said to be weakly

s-supplemented in G if there exists a subgroup T of G such that G = HT and H ∩ T ≤ HsG , where HsG is
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the maximal s -permutable subgroup of G contained in H . Following Li, Qiao and Wang in [15], we say that a

subgroup H of a group G is weakly s -permutably embedded in G if there exists a subnormal subgroup T of

G such that G = HT and H ∩T ≤ Hse , where Hse is an s-permutably embedded subgroup of G contained in

H . In [23], the authors introduced the concept of weakly s-supplementally embedded subgroup, which extends

all the generalized normal subgroups mentioned above properly. Motivated by [10], in this article, by assuming

that (|G|, (p− 1)(p2 − 1) · · · (pn − 1)) = 1 for some integer n ≥ 1 and some subgroups of G with order pn are

weakly s-supplementally embedded in G , we give some criteria for (p -)nilpotency of G .

2. Preliminaries

In this section we list some basic definitions and known results which will be used below.

Definition 2.1 A subgroup H of a group G is said to be weakly s-supplementally embedded in G if there

exists a subgroup T of G such that G = HT and H ∩ T ≤ Hse , where Hse is an s-permutably embedded

subgroup of G contained in H .

Remark Obviously, weakly s -supplemented subgroups and weakly s-permutably embedded subgroups are

all weakly s -supplementally embedded subgroups. But the converse does not hold in general.

Example 1. Suppose that G = A5 is the alternating group of degree 5. Then each Sylow 2-subgroup P of

G is weakly s -supplementally embedded in G , since it is s -permutably embedded in G . But P is not weakly

s-supplemented in G , as the only non-trivial s-permutable subgroup of G is itself.

Example 2. (See [9]) Put H = ⟨a, b|a5 = b5 = 1, a ̸= b and ab = ba⟩ and let α be an automorphism of H of

order 3 satisfying that aα = b , bα = a−1b−1 . Let H1 = H , H2 = ⟨c, d⟩ be a copy of H1 and G = [H1×H2]⟨α⟩ .
Then H1,H2 are minimal normal subgroups of G of order 25. Let A = ⟨ad, bc⟩ be a subgroup of G of order

25. Then it is not difficult to see that H1 ∩ A = 1. This shows that T = [H1]⟨α⟩ is a complement of A in G

and thereby A is weakly s -supplementally embedded in G . Now we prove that A is not weakly s -permutably

embedded in G . First, we show that ⟨α⟩G = G , hence there exists no non-trivial normal subgroup of G

containing ⟨α⟩ . In fact, since |α| = 3, α2 = α−1 . We have aα
−1

= aα
2

= bα = a−1b−1 and bα
−1

= a , so

αai

= a−iαai = a−i(aα
−1

)iα = a−2ib−iα and αbi = b−iαbi = b−i(bα
−1

)iα = aib−iα . Then (αai

)−1 = α−1a2ibi

and thereby αbi(αaj

)−1 = aib−iαα−1a2jbj = a2j+ibj−i. Let i = j = 1, we get that a3 ∈ ⟨α⟩G and so a ∈ ⟨α⟩G .

Let j = 2 and i = 1, we obtain that b ∈ ⟨α⟩G . Similarly, we can obtain that c, d ∈ ⟨α⟩G . Hence G = ⟨α⟩G .

Suppose that there exists some subnormal subgroup T of G such that G = AT and A ∩ T ≤ Ase . Then we

can easily deduce that ⟨α⟩ ≤ T , which implies that T = G . Therefore, A = Ase is s -permutably embedded

in G , then A is a Sylow 5-subgroup of some s-permutable subgroup K of G . Since K cannot contain ⟨α⟩ ,
K = A is s-permutable in G . Hence A = A⟨α⟩ ∩ (H1 ×H2)�A⟨α⟩ , which is a contradiction.

Lemma 2.2 ([18, Lemma A]) If H is an s-permutable p-subgroup of G for some prime p , then NG(H) ≥
Op(G) .

Lemma 2.3 ([14, Lemma 2.4]) Suppose that P is a p-subgroup of G contained in Op(G) . If P is s-

permutably embedded in G , then P is s-permutable in G .
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Lemma 2.4 ([10, Lemma 2.5]) Let G be a group and p a prime such that pn+1 ∤ |G| for some integer n ≥ 1 .

If (|G|, (p− 1)(p2 − 1) · · · (pn − 1)) = 1 , then G is p-nilpotent.

Lemma 2.5 ([23, Lemma 2.6]) Let U be a weakly s-supplementally embedded subgroup and N a normal

subgroup of G . Then we have the following:

(1) If U ≤ H ≤ G , then U is weakly s-supplementally embedded in H .

(2) If N ≤ U , then U/N is weakly s-supplementally embedded in G/N .

(3) If (|U |, |N |) = 1 , then UN/N is weakly s-supplementally embedded in G/N .

Lemma 2.6 ([22, Lemma 2.3]) Let the p
′
-group H act on the p-group P . If H acts trivially on Ω1(P ) and

P is quaternion-free if p = 2 , then H acts trivially on P .

Lemma 2.7 ([22, Lemma 2.2]) Let G be a group and let p be a prime number dividing |G| , with (|G|, p−1) =

1 . Then

(1) If N is normal in G of order p , then N lies in Z(G) .

(2) If G has cyclic Sylow p-subgroups, then G is p-nilpotent.

(3) If M is a subgroup of G with index p , then M is normal in G .

Lemma 2.8 ([11, X. 13]) Let G be a group and M a subgroup of G .

(1) If M is normal in G , then F ∗(M) ≤ F ∗(G) .

(2) F ∗(G) ̸= 1 , if G ̸= 1 ; in fact, F ∗(G)/F (G) = Soc(F (G)CG(F (G))/F (G)) .

(3) F ∗(F ∗(G)) = F ∗(G) ≥ F (G) ; if F ∗(G) is soluble, then F ∗(G) = F (G) .

(4) If K ≤ Z(G) , then F ∗(G/K) = F ∗(G)/K .

3. Main results

Theorem 3.1 Let P be a Sylow p-subgroup of a group G , where p is a prime divisor of |G| with (|G|, p−1) =

1 . Suppose that every minimal subgroup of P ∩ GNp not having a p-nilpotent supplement in G is weakly s-

supplementally embedded in G . If p = 2 , assume, in addition, that P is quaternion-free or every cyclic subgroup

of P ∩GNp with order 4 not having a p-nilpotent supplement in G is weakly s-supplementally embedded in G .

Then G is p-nilpotent.

Proof Suppose that the result is false and let G be a counterexample of minimal order. Pick a proper

subgroup M of G . Since M/(M ∩ GNp) ∼= MGNp/GNp ≤ G/GNp is p-nilpotent, MNp ≤ M ∩ GNp . Now

let Mp be a Sylow p -subgroup of M . Without loss of generality, we may assume that Mp ≤ P . Then

Mp ∩ MNp ≤ P ∩ GNp . Hence, every minimal subgroup of Mp ∩ MNp not having a p-nilpotent supplement

in M is weakly s -supplementally embedded in M by hypothesis and Lemma 2.5. Moreover, when p = 2 we

have that every cyclic subgroup of order 4 of Mp ∩MNp not having a p -nilpotent supplement in M is weakly
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s-supplementally embedded in M or Mp is quaternion-free. Thus M satisfies the hypothesis of the theorem.

The minimal choice of G implies that M is p -nilpotent and G is a minimal non-p -nilpotent group. By [11,

IV, Theorem 5.4], G has a normal Sylow p -subgroup P and a non-normal cyclic Sylow q -subgroup Q such

that G = PQ and P/Φ(P ) is a minimal normal subgroup of G/Φ(P ). Moreover, P is of exponent p if p > 2

and of exponent at most 4 if p = 2. On the other hand, the minimal choice of G implies that GNp = P .

Let H be a minimal subgroup of P and T a supplement of H in G . If T < G , then T is a subgroup of

G with index p . Lemma 2.7(3) shows that T is normal in G . From the nilpotency of T , it follows that Q is

normal in G , a contradiction. Therefore, we may suppose that G is the unique supplement of H in G . Since

G is not p -nilpotent, by hypothesis we know that H = Hse is s-permutably embedded in G for every minimal

subgroup H of P . Lemma 2.3 shows that every minimal subgroup of P is s -permutable in G . Then for any

minimal subgroup ⟨x⟩ of P , ⟨x⟩Q is a proper subgroup of G . Thus ⟨x⟩Q is p -nilpotent and ⟨x⟩ ≤ CG(Q). If

P has exponent p , then P = Ω1(P ) and G = P ×Q , a contradiction. Hence we may assume that p = 2 and

expP = 4.

If P is quaternion-free, by Lemma 2.6 we can get that P ≤ CG(Q) and so Q�G , a contradiction. Now

assume that every cyclic subgroup of P ∩GNp = P with order 4 not having a p -nilpotent supplement in G is

weakly s -supplementally embedded in G . Let P1 = ⟨x⟩ be a cyclic subgroup of P with order 4 and let K be

a supplement of P1 in G . Then P = P ∩ P1K = P1(P ∩K). Since P/Φ(P ) is a minimal normal subgroup of

G/Φ(P ) and (P ∩K)Φ(P )/Φ(P )�G/Φ(P ), we have P ∩K = P or P ∩K ≤ Φ(P ). If the latter case happens,

then P = P1(P∩K) = P1 is a cyclic Sylow 2-subgroup of G , which implies that G is 2-nilpotent. If P∩K = P ,

then K = G and P1 = (P1)se is s-permutably embedded in G . Lemma 2.3 implies that P1 is s -permutable

in G . If P1Q = G , then G is p -nilpotent by Lemma 2.7(2). If P1Q < G , then P1Q is p -nilpotent by the

former discussion. Therefore, P1 ≤ CG(Q) for any cyclic subgroup P1 of P with order 4. Since P has ex-

ponent 4, P ≤ CG(Q) and so Q�G , a contradiction. This contradiction completes the proof of the theorem. 2

Next, we prove that:

Theorem 3.2 Let p be a prime and G a group with (|G|, (p − 1)(p2 − 1) · · · (pn − 1)) = 1 for some integer

n > 1 . Suppose that all the subgroups H of G with order pn not having a p-nilpotent supplement in G are

weakly s-supplementally embedded in G . Then G is p-nilpotent.

Proof Suppose that the result is false and let G be a counterexample of minimal order. We break the proof

into the following steps:

(1) pn+1||G| and every proper subgroup of G is p -nilpotent.

The fact that pn+1||G| follows from Lemma 2.4. Let L be a proper subgroup of G , then (|L|, (p−1)(p2−
1) · · · (pn − 1)) = 1. If pn+1 ∤ |L| , then by Lemma 2.4 we know L is p -nilpotent. Now assume that pn+1||L| .
Let H be a subgroup of L with order pn . Then by hypothesis, H either has a p -nilpotent supplement T in

G or is weakly s-supplementally embedded in G . In the former case, L = L∩HT = H(L∩ T ) and L∩ T is a

p -nilpotent supplement of H in L . In the latter case, by Lemma 2.5, H is weakly s-supplementally embedded

in L . This shows that L satisfies the hypothesis of the theorem. The minimal choice of G implies that L is

p -nilpotent. Thus, by [11, IV, Theorem 5.4] we have: G = PQ , where P is a normal Sylow p -subgroup and Q

a non-normal cyclic Sylow q -subgroup of G for some prime q ̸= p ; P/Φ(P ) is a minimal normal subgroup of

G/Φ(P ); expP = p when p > 2, while expP is at most 4 when p = 2.

(2) Every subgroup H of P with order pn is s -permutable in G .
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Let T be any supplement of H in G , then HT = G and so P = P ∩HT = H(P ∩ T ). Since P/Φ(P )

is a chief factor of G , P/Φ(P ) is an elementary abelian p -group and hence (P ∩ T )Φ(P )/Φ(P ) is normal in

G/Φ(P ). It follows that P ∩ T ≤ Φ(P ) or P ∩ T = P . If P ∩ T ≤ Φ(P ), then H = P is of order pn , which

contradicts (1). If P ∩ T = P , then T = G is not p -nilpotent. Thus, H is weakly s -supplementally embedded

in G by the hypothesis. Therefore, H = H∩T = Hse is s -permutably embedded in G . Since H ≤ P ≤ Op(G),

by Lemma 2.3 we know that H is s -permutable in G .

(3) Final contradiction.

By our hypothesis and (2), we know that all subgroups H of P with order pn are s -permutable in G .

Then HQ is a proper subgroup of G for any such subgroup H . Hence HQ is p -nilpotent by (1), which implies

that H ≤ NG(Q). By the facts that expP = p or expP = 4, and every subgroup of P with order p or 4 is

contained in some subgroup H of P with order pn , we know Q is normalized by P and so Q�G . This final

contradiction completes the proof of the theorem. 2

By Theorem 3.1 and Theorem 3.2, we have the following theorem.

Theorem 3.3 Let p be a prime and G a group with (|G|, (p − 1)(p2 − 1) · · · (pn − 1)) = 1 for some integer

n ≥ 1 . Suppose that every subgroup H of P ∈ Sylp(G) with order pn or cyclic of order 4 (if P is a non-abelian

2-group and n = 1) not having a p-nilpotent supplement in G is weakly s-supplementally embedded in G , then

G is p-nilpotent.

Now we can prove that:

Theorem 3.4 Let p be a prime and F a saturated formation containing the class Np of all p-nilpotent groups.

Suppose that G is a group with (|G|, (p− 1)(p2 − 1) · · · (pn − 1)) = 1 , for some integer n ≥ 1 . Then G ∈ F if

and only if G has a normal subgroup E such that G/E ∈ F and for a Sylow p-subgroup P of E , there exists a

subgroup D of P such that 1 < |D| < pn+1 and all subgroups H of P with order |D| or cyclic of order 4 (if P

is a non-abelian 2-group and |D| = 2) not having a p-nilpotent supplement in G are weakly s-supplementally

embedded in G .

Proof Only the sufficiency needs to be verified. Suppose that the result is false and let G be a counterexample

of minimal order. Then obviously, (|E|, (p−1)(p2−1) · · · (pn− 1)) = 1. By Lemma 2.5, we know that for every

subgroup H of P ∈ Sylp(E) with order |D| or cyclic of order 2|D| = 4, either H has a p -nilpotent supplement

in E or H is weakly s-supplementally embedded in E . Now, Theorem 3.3 implies that E is p -nilpotent. Let

P be a Sylow p -subgroup and T a normal p-complement of E , then T is normal in G . Next, we break the

proof into the following steps:

(1) T = 1.

If T ̸= 1, we claim that G/T (with respect to E/T ) satisfies the hypothesis of the theorem. In fact,

(G/T )/(E/T ) ∼= G/E ∈ F . Let H/T be an arbitrary subgroup of E/T with |H/T | = |DT/T | or cyclic

with |H/T | = 2|DT/T | = 4. Then H = LT , where L is a Sylow p -subgroup of H . Thus, |L| = |D|
or |L| = 2|D| = 4. By the hypothesis, either L has a p -nilpotent supplement K in G or L is weakly s -

supplementally embedded in G . This means that either H/T = LT/T has a p -nilpotent supplement KT/T in

G/T or H/T is weakly s-supplementally embedded in G/T by Lemma 2.5. Hence, G/T satisfies the hypothesis

of the theorem. Then the minimal choice of G implies that G/T ∈ F . Let f and F be the canonical definitions

of N p and F , respectively. Since T is a normal p
′
-subgroup of G , G/CG(Ti+1/Ti) ∈ f(q) for every chief
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factor Ti+1/Ti of G with Ti ≤ T and every prime q dividing |Ti+1/Ti| . Since N p ⊆ F , f(q) ⊆ F (q) by [7,

IV, Proposition 3.11]. It follows that G/CG(Ti+1/Ti) ∈ F (q). Therefore, G ∈ F because G/T ∈ F . This

contradiction shows that T = 1.

(2) CG(P ) ≥ Op(G).

Since T = 1, P = E � G . Let Q be a Sylow q -subgroup of G , where q ̸= p . Then PQ is a subgroup

of G . Obviously, D is a subgroup of PQ and every subgroup H of PQ with order |D| or 2|D| (when P is

a non-abelian 2-group and |D| = 2) not having a p -nilpotent supplement in PQ is weakly s -supplementally

embedded in PQ by Lemma 2.5. Hence by Theorem 3.3, PQ is p -nilpotent. It follows that PQ = P ×Q and

so Q ≤ CG(P ).

(3) Final contradiction.

Let M be an arbitrary non-trivial normal subgroup of G contained in P ≤ Gp ∈ Sylp(G). By (2), we

know Op(G) ≤ CG(M) and so [M,G] = [M,GpO
p(G)] = [M,Gp] � G . Since [M,Gp] < M , there exists a

normal subgroup N of G contained in M such that M/N is a chief factor of G and [M,G] ≤ N . This implies

that M/N ≤ Z(G/N). Thus G/CG(M/N) = 1 ∈ F (p). The arbitrary choice of M implies that there exists

a normal chain of G contained in P such that every G -chief factor M/N is F -central. Since G/P ∈ F , it

follows that G ∈ F . This final contradiction completes the proof of the theorem. 2

Remarks: (1) Theorem 3.4 cannot be improved by taking a smaller number of subgroups of order pn ,

say with the subgroups of the generalized Fitting subgroup F ∗(E). For example, we can consider the following

special case (p = 2 and n = 1):

Suppose that G = [(C3 × C3 × C3)A4] × (C2 × C2) , where A4 acts on C3 × C3 × C3 as an irreducible

and faithful module over the field of 3 elements. Then F ∗(G) = (C3 × C3 × C3) × (C2 × C2) and Z(G) =

C2 × C2 ∈ Syl2(F
∗(G)) . Therefore, there exists a subgroup D of P = Z(G) ∈ Syl2(F

∗(G)) of order 2 such

that 1 < |D| < p2 = |P | and all subgroups H of P with order 2 are normal in G , but G is not 2-nilpotent.

(2) From Theorem 3.4, we know that [17, Theorem 3.1], [9, Theorem C] and [10, Theorem 3.3] are true.

In [23], the authors prove that:

Lemma 3.5 ([23, Theorem 3.4]) Let F be a saturated formation containing the class Np of all p-nilpotent

groups. If every cyclic subgroup of GF with order 4 is weakly s-supplementally embedded in G , then G ∈ F if

and only if every cyclic subgroup of GF of prime order lies in the F -hypercenter ZF (G) of G .

With this result, now we can prove this next theorem.

Theorem 3.6 A group G is nilpotent if and only if every minimal subgroup of F ∗(GN ) lies in Z∞(G) and

every cyclic subgroup of F ∗(GN ) with order 4 is weakly s-supplementally embedded in G .

Proof Only the sufficiency needs to be verified. Suppose that the result is false and let G be a counterexample

of minimal order. Then we have:

(1) Every proper normal subgroup of G is nilpotent.

Let M be a proper normal subgroup of G . Since M/(M ∩ GN ) ∼= MGN /GN ≤ G/GN is nilpotent

and MN � M ∩ GN � GN , by Lemma 2.8, we have F ∗(MN ) ≤ F ∗(M ∩ GN ) ≤ F ∗(GN ). Moreover,

M ∩ Z∞(G) ≤ Z∞(M). Now we can see easily that M satisfies the hypothesis of the theorem. The minimal

choice of G implies that M is nilpotent.
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(2) F (G) is the unique maximal normal subgroup of G .

Pick a maximal normal subgroup M of G . Then M is nilpotent by (1). Since the class of all nilpotent

groups is a Fitting class, the nilpotency of M implies that M = F (G) is the unique maximal normal subgroup

of G .

(3) GN = G = G
′
and F ∗(G) = F (G) < G .

Suppose that GN < G . Then GN is nilpotent by (1). Thus, we have F ∗(GN ) = GN . Now Lemma 3.5

implies immediately that G is nilpotent, a contradiction. Hence, we must have GN = G . Since GN ≤ G′ , it

follows that G′ = G . Hence G/F (G) cannot be cyclic of prime order. Thus G/F (G) is a non-abelian simple

group. If F (G) < F ∗(G), then F ∗(GN ) = F ∗(G) = G by (2). Again by Lemma 3.5, we have G is nilpotent,

which is a contradiction.

(4) Final contradiction.

Since F (G) = F ∗(G) ̸= 1, we may choose the smallest prime divisor p of |F (G)| such that Op(G) ̸= 1.

For any Sylow q -subgroup Q of G , where q ̸= p , we consider G0 = Op(G)Q . It is clear that GN
0 ≤ Op(G)

and G0 ∩ Z∞(G) ≤ Z∞(G0). Hence, every minimal subgroup of GN
0 lies in Z∞(G0) and every cyclic sub-

group of GN
0 with order 4 is weakly s-supplementally embedded in G0 . By Lemma 3.5, G0 is nilpotent.

Hence, G0 = Op(G) × Q and Q ≤ CG(Op(G)). Consequently, G/CG(Op(G)) is a p -group. Thus we have

CG(Op(G)) = G by (3), namely Op(G) ≤ Z(G). Now we consider the factor group G = G/Op(G). First we

have F ∗(G) = F ∗(G)/Op(G) by Lemma 2.8(4). For any element x of odd prime order in F ∗(G), since Op(G)

is the Sylow p -subgroup of F ∗(G), x can be viewed as the image of an element x of odd prime order in F ∗(G).

It follows that x lies in Z∞(G) and x lies in Z∞(G), for Z∞(G/Op(G)) = Z∞(G)/Op(G). This shows that G

satisfies the hypothesis of the theorem. By the minimal choice of G , we conclude that G is nilpotent and so G

is nilpotent, as required. 2

Theorem 3.7 Let F be a saturated formation containing the class N of all nilpotent groups. Then G ∈ F if

and only if every minimal subgroup of F ∗(GF ) lies in the F -hypercenter ZF (G) of G and every cyclic subgroup

of F ∗(GF ) with order 4 is weakly s-supplementally embedded in G .

Proof Only the sufficiency needs to be verified. By [7, IV, 6.10], GF ∩ ZF (G) ≤ Z(GF ) ≤ Z∞(GF ). Conse-

quently, every minimal subgroup of F ∗(GF ) is contained in Z∞(GF ). By the hypothesis and Lemma 2.5, every

cyclic subgroup of F ∗(GF ) with order 4 is weakly s -supplementally embedded in GF . By applying Theorem

3.6, we see that GF is nilpotent and so F ∗(GF ) = GF . Now by Lemma 3.5, we deduce that G ∈ F . This

completes the proof of the theorem. 2

Remark From our Theorem 3.7, we can deduce that [13, Theorem 4.2], [4, Theorem 4.3] and [3, Theorem

3.1] are true.
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