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Abstract: Let W ⊂ P3 be a smooth quadric surface defined over a perfect field K and with no line defined over K

(e.g., an elliptic quadric surface over a finite field). In this note we study the gonality over K of smooth curves with a

singular model contained in W and with mild singularities.

Key words: Gonality, curve over a perfect field, K -gonality, elliptic quadric surface

1. Introduction

Let K be a perfect field such that there is a degree 2 extension L of K . Let f(x0, x1) ∈ K[x0, x1] denote

any degree 2 homogeneous polynomial such that L = K(α) with α a root of f(1, t), i.e. take as f any degree

2 homogeneous polynomial that is irreducible over K but reducible over L . The main examples are the case

K = R , L = C and the case K = Fq and L = Fq2 . Take homogeneous coordinates x0, x1, x2, x3 of P3 (over

K and hence over K ). Let W ⊂ P3 denote the smooth quadric surface with x2x3 + f(x0, x1) as its equation.

If K = R , then these types of surfaces are just ellipsoids. If K = Fq , then W is an elliptic quadric surface [4].

In this paper we study the K -gonality of smooth curves C either contained in W or with a singular model

Y ⊂W , but with a small number of singularities. We prove the following result.

Corollary 1 Let Y ⊂ W be a geometrically integral curve defined over K and let u : C → Y be the

normalization of Y . Let a > 0 be the positive integer such that Y ∈ |OW (a)| . Assume that Y (K) has only

ordinary nodes and ordinary cusps as singularities and set J := Sing(Y (K)) . Assume ♯(J) ≤ a − 5 and that

no line of W (K) contains at least 2 points of J . Let R ∈ Picy(C)(K) be a spanned line bundle on C defined

over K and with minimal positive degree. Then 2a− 4 ≤ y ≤ 2a and R is induced by a subseries of |OW (1)| .
We have y = 2a− 4 if and only if there is a degree 2 extension K ′ of K such that ♯(J(K ′)) ≥ 2 .

We have y = 2a if and only if Y (K ′) = ∅ for each degree 2 extension K ′ of K .

See Theorem 1 for spelling out the possible cases of y . For the foundational results on the gonality of

curves over algebraically closed fields, see [8], [5], [9].

Since we work in arbitrary characteristic we cannot use some of the strongest tools in the literature. In

our opinion in characteristic zero the best results are still obtained using [7] or the case e = 0 of [10] and [6],
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Remark 2 on page 351. To get Corollary 1 and related results we need first to work over an algebraically closed

field K and study low degree linear series on smooth models of singular curves on a smooth quadric surface Q

(see section 2). As stressed above, in characteristic zero stronger tools are available.

We discuss our method and possible improvements in Subsection 2.1.

Many thanks are due to a referee who improved the exposition.

2. Over an algebraically closed field K

Let Q ⊂ P3 be a smooth quadric surface defined over an algebraically closed field K . For any coherent sheaf F
on Q and any integer i ≥ 0 set Hi(F) := Hi(Q,F) and hi(F) := dim(Hi(F)). For all (a, b) ∈ Z2 let OQ(a, b)

denote the line bundle on Q with bidegree (a, b). We have h0(OQ(a, b)) = (a+1)(b+1) and h1(OQ(a, b)) = 0 if

a ≥ 0 and b ≥ 0, while h0(OQ(a, b)) = 0 if either a < 0 or b < 0. If a ≥ 0, b ≥ 0 and T ∈ |OQ(a, b)| , then we

say that T has type (a, b). The lines contained in Q are the curves D ⊂ Q with either type (1, 0) or type (0, 1).

For any zero-dimensional scheme Z ⊂ Q and any T ∈ |OQ(u, v)| , let ResT (Z) denote the residual scheme of

Z with respect to T , i.e. the closed subscheme of Q with IZ : IT as its ideal sheaf. We have ResT (Z) ⊆ Z ,

deg(Z) = deg(ResT (Z))+deg(Z∩T ) and for all (a, b) ∈ Z2 we have an exact sequence (often called the residual

exact sequence)

0 → IResT (Z)(a− u, b− v) → IZ(a, b) → IZ∩T,T (a, b) → 0 (1)

2.1. Outline of the proof and of possible improvements

Take an integral curve Y ⊂ Q with bidegree (a, a). Let u : C → Y be the normalization map and w : C → Q

the composition of u with the inclusion Y ↪→ Q . Let J ⊆ OQ be the conductor of w and J ⊂ Q the zero-

dimensional subscheme of Q with J as its ideal sheaf. Let Jred be the support of J . We assume for instance

deg(J) ≤ a− 5. Let F be the set of all irreducible E ∈ |OQ(1, 1)| such that 1 ≤ ♯(E ∩ Jred) ≤ 2. Let G be the

set of all irreducible E ∈ |OQ(1, 1)| such that ♯(E ∩ Jred) ≥ 3. Let H be the set of all reducible E ∈ |OQ(1, 1)|
such that each component of E meets Jred . Take B as in the proof of Lemma 5. Since G∪H is finite, while B is

general, we have E∩B = ∅ for all E ∈ (G∪H). To apply Lemmas 1 and 2 to the scheme Z = J∪B it is sufficient

to assume deg(J ∩E)+y ≤ 2a−5 for all E ∈ |OQ(1, 1)| . With this assumption steps (ii), (iii), (iv) of the proof

of Lemma 5 carry over, because deg(J ∩E) ≤ 2a− 5− y for all E ∈ F and deg(D ∩B) ≤ 2 if D ∈ |OQ(1, 1)|
is reducible and b1 = b2 = 1. Step (i) of the proof of Lemma 5 requires the following modifications for arbitrary

singularities. For each P ∈ Jred let uP be the degree of the effective divisor w−1(P ) ⊂ C . For each connected

degree 2 zero-dimensional scheme Z ⊂ Q whose support is a point P ∈ Jred let uZ,P be the degree of the

effective divisor w−1(Z) ⊂ C . We say that Y has either an ordinary node or an ordinary cusp at P if uP = 2

and for each connected degree 2 scheme Z ⊂ Q with P as its support either uZ,P = 3 (if and only if in the

plane TPQ the line through Z is in the tangent cone of Y at P ) or uZ,P = 2. In the description of step (i) of

the proof of Lemma 5 we use the integers uP (with uP = 2 for double points) and uZ,P (which are 2 or 3 for

ordinary nodes and cusps with 3 if and only if Z corresponds to a branch of Y at P . See for instance [1], [2],

[3] for the formal theory of plane and space curves.

Now assume Y ⊂W and that Y is defined over K . To extend Theorem 1 one needs to know the integers

uP , P ∈ Jred(K
′) for any degree 2 extension K ′ of K and the integers uZ,P with P ∈ Jred(K) and Z defined
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over K . The tools work for all spanned R ∈ Picy(C)(K) with deg(J) + y ≤ 3a− 5, without assuming that y

is the K -gonality of C .

2.2. Proofs over K
Lemma 1 Fix an integer c ≥ 2 and a zero-dimensional scheme Z ⊂ Q . Assume deg(Z ∩ L) ≤ 1 for each

line L ⊂ Q , h1(IZ(c, c)) > 0 and deg(Z) ≤ 3c + 1 . Then there is an integral D ∈ |OQ(1, 1)| such that

deg(D ∩ Z) ≥ 2c+ 2 .

Proof Set Z0 := Z . Let T1 ⊂ Q be any element of |OQ(1, 1)| such that e1 := deg(T1 ∩ Z) is maximal. Set

Z1 := ResT1(Z0). For each integer i ≥ 2 define recursively the integer ei , the curve Ti ∈ |OQ(1, 1)| , and the

scheme Zi ⊆ Zi−1 in the following way. Let Ti ⊂ Q be any element of |OQ(1, 1)| such that ei := deg(Ti∩Zi−1)

is maximal. Set Zi := ResT1(Zi−1). The sequence {ei}i≥1 is nonincreasing. Since h0(OQ(1, 1)) = 4, we have

ei+1 = 0 and Zi = ∅ if ei ≤ 2. Since deg(Z ∩ L) ≤ 1 for each line L ⊂ Q , we may take Ti as above and with

the additional restriction that each Ti is irreducible. Since deg(Z) ≤ 3c + 1, we get ec+1 ≤ 1 and Zc+1 = ∅ .
From (1) for each i ∈ {1, . . . , c} we get the exact sequences

0 → IZi(c− i, c− i) → IZi−1(c− i+ 1, c− i+ 1) → IZi−1,Ti(c− i+ 1, c− i+ 1) → 0 (2)

Since deg(Zc) ≤ 1, we have h1(IZc) = 0. Since h1(IZ(c, c)) > 0, we get the existence of an integer i ∈ {1, . . . , c}
such that h1(Ti, IZi−1,Ti(c− i+1, c− i+1)) > 0. Let f be the minimal such integer. Since Tf is irreducible, we

have Tf ∼= P1 . Since deg(OTf
(c−f+1, c−f+1)) = 2c−2f+2, we have h1(Tf , IZf−1,Tf

(c−f+1, c−f+1)) > 0

if and only if ef ≥ 2c − 2f + 4. If f = 1, then we may take D := T1 . Now assume f ≥ 2. Since ei ≥ ef

for all i < f , we get deg(Z) ≥ 2f(c − f + 2). The function ψ(t) := 2t(c + 2 − t) is increasing in the interval

[2, (c+2)/2] and decreasing for t > (c+2)/2. Since ψ(2) = ψ(c) = 4c , we get deg(Z) ≥ 4c , a contradiction. 2

Lemma 2 Fix integers k ≥ c ≥ 0 and a zero-dimensional scheme Z ⊂ Q such that deg(Z) ≤ k + c + 1 and

deg(Z ∩ L) ≤ 1 for each line L ⊂ Q . Then h1(IZ(k, c)) = 0 .

Proof If c = 0, then one may use k−c residual exact sequences, each time with respect to some L ∈ |OQ(1, 0)| .
If k = c = 1, then the lemma is obvious. If k = c ≥ 2, then we may apply Lemma 1. Now assume

k > c > 0. By the case c = 0 we may assume deg(Z) ≥ k − c . Since h0(Q,OQ(k − c, 0)) = k − c + 1,

there is F ∈ |OQ(k−c, 0)| such that deg(F ∩Z) ≥ k−c . Since deg(L∩Z) ≤ 1 for each L ∈ |OQ(1, 0)| , we have
deg(F ∩ Z) = k − c . Hence deg(ResF (Z)) = deg(Z) − k + c ≤ 2c + 1. Lemma 1 gives h1(IResF (Z)(c, c)) = 0.

We saw that h1(IF∩Z(k, 0)) = 0 and hence h1(IF∩Z(k, c)) = 0. Therefore h1(F, IF∩Z,F (k, c)) = 0. A residual

exact sequence gives h1(IZ(k, c)) = 0. 2

Lemma 3 Let T ⊂ Q be an integral element of |OQ(a, a)| and u : C → T its normalization. Let J ⊂ OQ be

the conductor of u and J ⊂ Q the closed subscheme with J as its ideal sheaf. Fix integers x ∈ {0, . . . , a−2} and

y ∈ {0, . . . , a− 2} . We have h0(C, u∗(OT (x, y))) = (x+1)(y+1) if and only if h1(IJ(a− 2−x, b− 2− y)) = 0 .

Proof Since a > x , a > y and T has type (a, a), we have h0(IT (x, y)) = 0. Since h1(Q,OQ(a −
x, b − y)) = 0, the exact sequence (1) for Z = ∅ gives h0(T,OT (x, y)) = (x + 1)(y + 1). Hence we have
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h0(C, u∗(OT (x, y))) = (x + 1)(y + 1) if and only if h1(C, u∗(OT (x, y))) = h1(T,OT (x, y)) − deg(J). Since

ωQ
∼= OQ(−2,−2), we have ωT

∼= OT (a − 2, a − 2). Since hi(OQ(−2,−2)) = 0, i = 0, 1, the restriction map

H0(Q, IJ(a− 2, a− 2)) → H0(T, ωT ) is bijective. Hence h1(C, u∗(OT (x, y))) = h1(T,OT (x, y))− deg(J) if and

only if h1(IJ(a− 2− x, b− 2− y)) = 0. 2

Corollary 2 Let T ⊂ Q be an integral element of |OQ(a, a)| with only ordinary nodes or ordinary cusps as

its singularities. Let u : C → T be the normalization map. Set J := Sing(T ) and assume deg(J ∩ L) ≤ 1

for every line L ⊂ Q . If ♯(J) ≤ 3(a − 3) + 1 , then h0(C, u∗(OT (0, 1))) = h0(C, u∗(OT (1, 0))) = 2 and

h0(C, u∗(OT (1, 1))) = 4 .

Proof Since T has only ordinary nodes and ordinary cusps as singularities, the set J is the conductor scheme

used in Lemma 3. Apply Lemmas 1 and 3. 2

Lemma 4 Fix positive integers c, b1, b2 such that max{b1, b2} ≤ c+ 1 . Fix a zero-dimensional scheme J ⊂ Q

and a finite set B ⊂ Q such that B ∩ J = ∅ , deg(J ∩ I) ≤ 1 for every line I ⊂ Q , no line of Q intersects both

J and B , either I ∩B = ∅ or I ∩B = b1 for each I ∈ |OQ(1, 0)| and either I ∩B = ∅ or I ∩B = b2 for each

I ∈ |OQ(0, 1)| . Assume h1(IJ∪B(c, c)) > 0 .

(a) If b1 = b2 = 1 and deg(J ∪ B) ≤ 3c + 1 , then there is an integral D ∈ |OQ(1, 1)| such that

♯(D ∩ (J ∪B)) ≥ 2c+ 2 .

(b) If δ := max{b1, b2} ≥ 2 , then deg(J) ≥ 2c+ 2− ♯(B)/δ .

Proof Set Z = J ∪ B . The case b1 = b2 = 1 is true by Lemma 1. Hence we may assume b1 ≥ 2. We

have ♯(B) = xb1 = yb2 for some positive integers x, y . Without losing generality we may assume b1 ≥ b2 . Let

F ∈ |OQ(x, 0)| be the union of all lines containing at least one point of B . By assumption F ∩ J = ∅ . Since
♯(B ∩ I) = b1 ≤ c+ 1 for each component I of F , we have h1(F, IZ∩F (c, c)) = 0. Hence the exact sequence

0 → IJ (c− x, c) → IZ(c, c) → IF∩Z,F (c, c) → 0

gives h1(IJ(c− x, c)) > 0. Lemma 2 gives deg(J) ≥ 2c− x+ 2. 2

Remark 1 In the next lemma the integers b1 and b2 are positive integers dividing y (they may be 1). In the

applications to W (Corollary 1 and Theorem 1) b1 = b2 and b1 divides a . Hence when one needs to apply

Lemma 5 to curves in W there is a very small number of possible pairs (b1, b2) ̸= (1, 1) .

Lemma 5 Let T ⊂ Q be an integral element of |OQ(a, a
′)| , a′ ≥ a ≥ 2 , and u : C → T its normalization.

Let w : C → Q be the composition of u with the inclusion T ↪→ Q . Assume that T has only ordinary nodes

and ordinary cusps as singularities and set J := Sing(T ) . Assume deg(J ∩ L) ≤ 1 for each line L ⊂ Q .

Fix R ∈ Picy(C) , y > 0 , such that R has no base points and R is neither u∗(OC(1, 0)) nor u∗(OC(0, 1)) .

Let h : C → P1 be the morphism associated to a general 2-dimensional linear subspace of H0(C,R) . Let

u1 : C → P1 and u2 : C → P1 be the morphisms associated to the 2 projections Q → P1 . Let bi be the degree

of the morphism (h, ui) .
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(a) Assume b1 = b2 = 1 and y + ♯(J) ≤ 2a + a′ − 5 . There is a zero-dimensional scheme Γ ⊂ Q with

0 ≤ deg(Γ) ≤ 2 such that h0(R) = 4 − deg(Γ) and R is induced by the linear system |IΓ(1, 1)| . We have

deg(R) = a+ a′ − deg(Γ′) , where Γ′ := w−1(Γ) .

(b) Assume (b1, b2) ̸= (1, 1) and set δ := max{b1, b2} . We have ♯(J) ≥ a′ + a− 2− y/δ .

Proof Set R′ := u∗(OQ(1, 1)). Lemma 3 gives h0(C,R′) = 4. Hence |R′| is induced by |OQ(1, 1)| .

(i) Assume for the moment that |R| is induced by a linear subseries M of |OQ(1, 1)| , after deleting a

base locus. Let Γ ⊂ Q be the base locus of M . Since R is neither u∗(OC(1, 0)) nor u∗(OC(0, 1)), Γ is not a

line. Hence Γ is a zero-dimensional scheme (it may be empty). Set Γ′ := w−1(Γ). Since OQ(1, 1) is very ample,

we have h0(IE(1, 1)) = 4 − deg(E) for all zero-dimensional schemes E ⊂ Q with deg(E) ≤ 2. Notice that

h0(IE(1, 1)) = 1 for each degree 3 scheme E ⊂ Q not contained in a line of Q . Since every line L ⊂ P3 with

deg(L ∩Q) ≥ 3 is contained in Q , we get deg(Γ) ≤ 2 and h0(R) = 4− deg(Γ). Moreover, IΓ(1, 1) is spanned,

unless deg(Γ) = 2 and Γ is contained in a line of Q . The latter case does not occur for R , because the line

would be in the base locus Γ, while dim(Γ) = 0. Hence IΓ(1, 1) is spanned. Since IΓ(1, 1) and R are spanned,

we have R ∼= R′(−Γ′).

(ii) Fix a general A ∈ |R| and set B := u(A). Let f : C → P1 be the degree y morphism induced by

|R| . Since f is induced by a general pencil of the complete linear system |R| , it cannot factor through the

Frobenius of order p . Since K is perfect, we get that f is separable. Since A is general, A is a reduced set of

y points. Since |R| is spanned, we may also assume A ∩ u−1(Sing(T )) = ∅ . Hence B ∩ J = ∅ and ♯(B) = y .

Claim: We have h1(IJ∪B(a− 2, a′ − 2)) > 0.

Proof of the Claim: Fix O ∈ A . Since R is spanned, we have h0(R(−O)) = h0(R)−1, i.e. h0(ωC(−(A\{O}))) =
h0(ωC(−A)) (Riemann–Roch and Serre duality). Hence h1(ωC(−A)) > 0. We have ωQ

∼= OQ(−2,−2). Hence

the adjunction formula gives ωT
∼= OT (a − 2, a′ − 2). Since hi(OQ(−2,−2)) = 0, i = 0, 1, the restriction

map H0(OQ(a − 2, a′ − 2)) → H0(T, ωT ) is bijective. Since T has only ordinary nodes and ordinary cusps as

singularities, we have H0(C,ωC) ∼= H0(IJ(a− 2, a′ − 2)). Hence h1(IJ∪B(a− 2, a′ − 2)) > 0.

(iii) In this step we assume a′ = a and h0(R) = 2. We first prove that R is a subsheaf of u∗(OT (1, 1)).

(a) Assume b1 = b2 = 1. Since y+ ♯(J) ≤ 3a− 5 and h1(IJ∪B(a− 2, a− 2)) > 0 by the Claim, Lemma 4

gives the existence of a divisor D ∈ |OQ(1, 1)| such that deg(D∩ (J ∪B)) ≥ 2a−2. Since R has no base points

and h0(R) = 2, we get B = B ∩D . Moving A ∈ |R| the set B moves and hence D moves, but Y and the set

J ∩D are the same for all general A . Hence |R| is induced by a subseries M of the linear system |OQ(1, 1)| .
Let Γ ⊂ Q be the base locus of M . Since h0(R) = 2, step (i) gives deg(Γ) = 2. Step (i) gives y = 2a−deg(Γ′).

(b) Assume δ ≥ 2 and say b1 ≥ b2 . Since B is general, either I ∩ B = ∅ or ♯(I ∩ B) = b1 for each

I ∈ |OQ(1, 0)| and either I ∩B = ∅ or ♯(I ∩B) = b2 for each I ∈ |OQ(0, 1)| . Since R ̸= u∗(OT (1, 0)), we have

δ < a . Lemma 4 gives ♯(J) ≥ 2a− 2− y/δ .

(iv) Assume a′ > a and h0(R) = 2. Let F ⊂ Q be a union of a′ − a lines of type (0, 1), each of them

meeting B . Notice that F ∩ J = ∅ and ♯(L ∩B) = b1 for each component L of F . Since b1 ≤ a+ 1, we have

h1(F, IF∩(B∪J),F (a, a
′)) = 0. Hence h1(IJ∪B(a, a

′)) ≤ h1(IJ∪(B\B∩F )(a, a)) by a residual exact sequence like

(1). Apply step (iii).
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(v) Assume h0(R) > 2. By steps (iii) and (iv) a general pencil of R is induced by a 2-dimensional linear

subspace of |OQ(1, 1)| . Hence R is induced by a subseries of |OQ(1, 1)| after deleting the base points. Use step

(i). 2

Corollary 3 In the set-up of Lemma 5 assume a = a′ . Then y ≥ 2a − 2 − min{2, deg(J)} and for each y

with 2a− 2−min{2, ♯(J)} ≤ y ≤ 2a there is a spanned R ∈ Picy(C) with |R| induced by a linear subspace of

|OQ(1, 1)| .

3. The quadric surface W

Let K be a perfect field having a quadratic extension. Fix homogeneous coordinates x0, x1, x2, x3 on P3 . Fix

f ∈ K[x0, x1] with f homogeneous of degree 2 and with no nontrivial zero in K . Set W := {x2x3+f(x0, x1) =
0} ⊂ P3 . W is a geometrically smooth quadric surface containing no line defined over K . Hence Pic(W )(K)

is freely generated by OW (1). Let Y ⊂W be a geometrically irreducible curve defined over K and u : C → Y

the normalization map. C is a geometrically connected smooth curve and C and u are defined over K . Let a

be the only integer such that Y ∈ |OW (a, a)| . Set Q :=W (K).

In the set-up of Remark 1 and Corollary 3 the curve Y (K) has b1 = b2 . For any field K ′ ⊇ K let J(K ′)

denote the set of all P ∈ J defined over K ′ .

The following statement implies Corollary 1.

Theorem 1 Take the set-up of Corollary 1.

(a) If ♯(J(K ′)) ≥ 2 for some quadratic extension K ′ of K , then y = 2a− 4 .

(b) If ♯(J(K)) = 1 , J(K) = J(K ′) for every quadratic extension K ′ of K and Y (K) \ J(K) ̸= ∅ , then
y = 2a− 3 .

(c) Assume ♯(J(K)) = 1 , J(K) = J(K ′) for every quadratic extension K ′ of K and Y (K) = J(K) .

Set {P} := J(K) . If Y has an ordinary node at P and the formal branches of Y at P are not defined over

K , then y = 2a− 2 ; otherwise, y = 2a− 3 .

(d) If J(K ′′) = ∅ for every quadratic extension K ′′ of K and there is a quadratic extension K ′ of K

with ♯(Y (K ′)) ≥ 2 , then y = 2a− 2 .

(e) If Y (K) has a unique point P , P /∈ J and Y (K ′) = {P} for every quadratic extension K ′ of K ,

then y = 2a− 1 .

(f) If J(K ′) = Y (K ′) = ∅ for every quadratic extension K ′ of K , then y = 2a .

In case (e) the only line bundle evincing y is the pull-back of OY (1)(−P ) and we have h0(R) = 3 .

In case (f) the only line bundle R evincing y is the one induced by the pull-back of OW (1) and we have

h0(R) = 4 .

Proof Since OW (1) is spanned, we have y ≤ 2a . Part (b) of Lemma 5 shows that b1 = b2 = 1. Theorem 1

follows from Corollary 3 and step (i) of the proof of Lemma 5. 2

Notice that if J(K ′) ⊋ J(K) for some quadratic extension K ′ of K , then J(K ′) \ J(K) contains at

least 2 elements and hence we are in case (a) with y = 2a− 4.
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