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doi:10.3906/mat-1312-10

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

General rotational surfaces in the 4-dimensional Minkowski space

Georgi GANCHEV, Velichka MILOUSHEVA∗

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria

Received: 05.12.2013 • Accepted: 27.03.2014 • Published Online: 01.07.2014 • Printed: 31.07.2014

Abstract: General rotational surfaces as a source of examples of surfaces in the 4-dimensional Euclidean space were

introduced by C. Moore. In this paper we consider the analogue of these surfaces in the Minkowski 4-space. On the basis

of our invariant theory of spacelike surfaces we study general rotational surfaces with special invariants. We describe

analytically the flat general rotational surfaces and the general rotational surfaces with flat normal connection. We

classify completely the minimal general rotational surfaces and the general rotational surfaces consisting of parabolic

points.

Key words: Surfaces in the 4-dimensional Minkowski space, general rotational surfaces, minimal surfaces, flat surfaces,

surfaces with flat normal connection

1. Introduction

The local theory of spacelike surfaces in the 4-dimensional Minkowski space R4
1 was developed by the present

authors in [6]. Our approach to this theory is based on the introduction of an invariant linear map of Weingarten

type in the tangent plane at any point of the surface. This invariant map allowed us to introduce principal lines

and a geometrically determined moving frame field at each point of the surface. Writing derivative formulas of

the Frenet type for this frame field, we obtained 8 invariant functions, γ1, γ2, ν1, ν2, λ, µ, β1, β2 , and proved

a fundamental theorem of the Bonnet type, stating that these 8 invariants under some natural conditions

determine the surface up to a motion in R4
1 .

The basic geometric classes of surfaces in R4
1 are characterized by conditions on these invariant functions.

For example, surfaces with flat normal connection are characterized by the condition ν1 = ν2 , minimal surfaces

are described by ν1 + ν2 = 0, and Chen surfaces are characterized by λ = 0.

Rotational surfaces are a basic source of examples of many geometric classes of surfaces. In [14], Moore

introduced general rotational surfaces in the 4-dimensional Euclidean space R4 and described a special case of

general rotational surfaces with constant Gauss curvature [15].

In the present paper we consider spacelike general rotational surfaces that are analogous to the general

rotational surfaces of Moore. We apply the invariant theory of spacelike surfaces in R4
1 to the class of general

rotational surfaces with plane meridians. Using the invariants of these surfaces, we describe analytically the

flat general rotational surfaces (Theorem 3.2) and the general rotational surfaces with flat normal connection

(Theorem 3.3). In Theorem 3.4 we give the complete classification of general rotational surfaces consisting of

parabolic points. The classification of minimal general rotational surfaces is given in Theorem 3.5.
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2. Preliminaries

Let R4
1 be the 4-dimensional Minkowski space endowed with the metric ⟨, ⟩ of signature (3, 1) and let Oe1e2e3e4

be a fixed orthonormal coordinate system, i.e. e21 = e22 = e23 = 1, e24 = −1, giving the orientation of R4
1 . A

surface M2 : z = z(u, v), (u, v) ∈ D (D ⊂ R2 ) in R4
1 is said to be spacelike if ⟨, ⟩ induces a Riemannian metric

g on M2 . Thus, at each point p of a spacelike surface M2 , we have the following decomposition:

R4
1 = TpM

2 ⊕NpM
2

with the property that the restriction of the metric ⟨, ⟩ onto the tangent space TpM
2 is of signature (2, 0) and

the restriction of the metric ⟨, ⟩ onto the normal space NpM
2 is of signature (1, 1).

Denote by ∇′ and ∇ the Levi-Civita connections on R4
1 and M2 , respectively. Let x and y be

vector fields tangent to M and let ξ be a normal vector field. The formulas of Gauss and Weingarten give a

decomposition of the vector fields ∇′
xy and ∇′

xξ into a tangent and a normal component:

∇′
xy = ∇xy + σ(x, y),

∇′
xξ = −Aξx+Dxξ,

which define the second fundamental tensor σ , the normal connection D , and the shape operator Aξ with

respect to ξ .

The mean curvature vector field H of M2 is defined as H =
1

2
trσ , i.e. given a local orthonormal frame

{x, y} of the tangent bundle, H =
1

2
(σ(x, x) + σ(y, y)).

Let M2 : z = z(u, v), (u, v) ∈ D (D ⊂ R2) be a local parametrization on a spacelike surface in R4
1 .

The tangent space at an arbitrary point p = z(u, v) of M2 is TpM
2 = span{zu, zv} , where ⟨zu, zu⟩ > 0,

⟨zv, zv⟩ > 0. We use the standard denotations E(u, v) = ⟨zu, zu⟩, F (u, v) = ⟨zu, zv⟩, G(u, v) = ⟨zv, zv⟩ for the

coefficients of the first fundamental form

I(λ, µ) = Eλ2 + 2Fλµ+Gµ2, λ, µ ∈ R.

Since I(λ, µ) is positive definite, we set W =
√
EG− F 2 . We choose a normal frame field {n1, n2} such that

⟨n1, n1⟩ = 1, ⟨n2, n2⟩ = −1, and the quadruple {zu, zv, n1, n2} is positively oriented in R4
1 . Then we have the

following derivative formulas:

∇′
zuzu = zuu = Γ1

11 zu + Γ2
11 zv + c111 n1 − c211 n2,

∇′
zuzv = zuv = Γ1

12 zu + Γ2
12 zv + c112 n1 − c212 n2,

∇′
zvzv = zvv = Γ1

22 zu + Γ2
22 zv + c122 n1 − c222 n2,

where Γk
ij are the Christoffel symbols and the functions ckij , i, j, k = 1, 2 are given by

c111 = ⟨zuu, n1⟩; c112 = ⟨zuv, n1⟩; c122 = ⟨zvv, n1⟩;

c211 = ⟨zuu, n2⟩; c212 = ⟨zuv, n2⟩; c222 = ⟨zvv, n2⟩.
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Obviously, the surface M2 lies in a 2-plane if and only if M2 is totally geodesic, i.e. ckij = 0, i, j, k = 1, 2.

Therefore, we assume that at least one of the coefficients ckij is not zero.

The second fundamental form II of the surface M2 at a point p ∈ M2 is introduced by the following

functions:

L =
2

W

∣∣∣∣∣ c111 c112

c211 c212

∣∣∣∣∣ ; M =
1

W

∣∣∣∣∣ c111 c122

c211 c222

∣∣∣∣∣ ; N =
2

W

∣∣∣∣∣ c112 c122

c212 c222

∣∣∣∣∣ .
Let X = λzu + µzv, (λ, µ) ̸= (0, 0) be a tangent vector at a point p ∈ M2 . Then

II(λ, µ) = Lλ2 + 2Mλµ+Nµ2, λ, µ ∈ R.

The second fundamental form II is invariant up to the orientation of the tangent space or the normal space of

the surface.

The condition L = M = N = 0 characterizes points at which the space {σ(x, y) : x, y ∈ TpM
2} is

1-dimensional. We call such points flat points of the surface [6]. These points are analogous to flat points in

the theory of surfaces in R3 and R4 [2, 3]. In [6] we gave a local geometric description of spacelike surfaces

consisting of flat points, proving that any spacelike surface consisting of flat points whose mean curvature vector

at any point is a nonzero spacelike vector or timelike vector either lies in a hyperplane of R4
1 or is part of a

developable ruled surface in R4
1 .

We further consider surfaces free of flat points, i.e. (L,M,N) ̸= (0, 0, 0).

The second fundamental form II determines conjugate, asymptotic, and principal tangents at a point p

of M2 in the standard way. A line c : u = u(q), v = v(q); q ∈ J ⊂ R on M2 is said to be an asymptotic line,

respectively a principal line, if its tangent at any point is asymptotic, respectively principal. The surface M2

is parameterized by principal lines if and only if F = 0, M = 0.

The second fundamental form II generates 2 invariant functions:

k =
LN −M2

EG− F 2
, κ =

EN +GL− 2FM

2(EG− F 2)
.

The functions k and κ are invariant under changes of the parameters of the surface and changes of the

normal frame field. The sign of k is invariant under congruences and the sign of κ is invariant under motions

in R4
1 . However, the sign of κ changes under symmetries with respect to a hyperplane in R4

1 . It turns out that

the invariant κ is the curvature of the normal connection of the surface (see [6]). The number of asymptotic

tangents at a point of M2 is determined by the sign of the invariant k .

As in the theory of surfaces in R3 and R4 , the invariant k divides the points of M2 into the following

types: elliptic (k > 0), parabolic (k = 0), and hyperbolic (k < 0).

Let H be the normal mean curvature vector field. Recall that a surface M2 is said to be minimal if its
mean curvature vector vanishes identically, i.e. H = 0. The minimal surfaces are characterized in terms of the

invariants k and κ by the following equality [6]:

κ2 − k = 0.

It is interesting to note that the “umbilical” points, i.e. points at which the coefficients of the first and

the second fundamental forms are proportional (L = ρE, M = ρF, N = ρG, ρ ̸= 0), are exactly the points at
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which the mean curvature vector H is zero. Thus, the spacelike surfaces consisting of “umbilical” points in R4
1

are exactly the minimal surfaces. If M2 is a spacelike surface free of “umbilical” points (H ̸= 0 at each point),

then there exist exactly 2 principal tangents.

Considering spacelike surfaces in R4
1 whose mean curvature vector at any point is a nonzero spacelike

vector or timelike vector, on the base of the principal lines we introduced a geometrically determined orthonormal

frame field {x, y, b, l} at each point of such a surface [6]. The tangent vector fields x and y are collinear

with the principal directions, and the normal vector field b is collinear with the mean curvature vector field

H . Writing derivative formulas of the Frenet type for this frame field, we obtained 8 invariant functions,

γ1, γ2, ν1, ν2, λ, µ, β1, β2 , which determine the surface up to a rigid motion in R4
1 .

The invariants γ1, γ2, ν1, ν2, λ, µ, β1 , and β2 are determined by the geometric frame field {x, y, b, l} as

follows:

ν1 = ⟨∇′
xx, b⟩, ν2 = ⟨∇′

yy, b⟩, λ = ⟨∇′
xy, b⟩, µ = ⟨∇′

xy, l⟩,

γ1 = −y(ln
√
E), γ2 = −x(ln

√
G), β1 = ⟨∇′

xb, l⟩, β2 = ⟨∇′
yb, l⟩.

The invariants k and κ and the Gauss curvature K of M2 are expressed by the functions ν1, ν2, λ, µ as

follows:

k = −4ν1 ν2 µ
2, κ = (ν1 − ν2)µ, K = ε(ν1 ν2 − λ2 + µ2),

where ε = sign⟨H,H⟩ . The norm ∥H∥ of the mean curvature vector is expressed as

∥H∥ =
|ν1 + ν2|

2
=

√
κ2 − k

2|µ|
.

If M2 is a spacelike surface whose mean curvature vector at any point is a nonzero spacelike vector or timelike

vector, then M2 is minimal if and only if ν1 + ν2 = 0.

The geometric meaning of the invariant λ is connected with the notion of Chen submanifolds. Let M

be an n-dimensional submanifold of (n+m)-dimensional Riemannian manifold M̃ and ξ be a normal vector

field of M . Chen [1] defined the allied vector field a(ξ) of ξ by the formula

a(ξ) =
∥ξ∥
n

m∑
k=2

{tr(A1Ak)}ξk,

where {ξ1 =
ξ

∥ξ∥
, ξ2, . . . , ξm} is an orthonormal base of the normal space of M , and Ai = Aξi , i = 1, . . . ,m

is the shape operator with respect to ξi . The allied vector field a(H) of the mean curvature vector field H

is called the allied mean curvature vector field of M in M̃ . Chen defined the A-submanifolds to be those

submanifolds of M̃ for which a(H) vanishes identically [1]. In [7, 8], the A-submanifolds are called Chen

submanifolds. It is easy to see that minimal submanifolds, pseudoumbilical submanifolds, and hypersurfaces are

Chen submanifolds. These Chen submanifolds are said to be trivial Chen-submanifolds. In [6] we showed that

if M2 is a spacelike surface in R4
1 with spacelike or timelike mean curvature vector field then the allied mean

curvature vector field of M2 is

a(H) =

√
κ2 − k

2
λ l.
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Hence, if M2 is free of minimal points, then a(H) = 0 if and only if λ = 0. This gives the geometric meaning

of the invariant λ : M2 is a nontrivial Chen surface if and only if the invariant λ is zero.

3. Basic classes of general rotational surfaces

General rotational surfaces in the Euclidean 4-space R4 were introduced by Moore [14] as follows. Let

c : x(u) =
(
x1(u), x2(u), x3(u), x4(u)

)
; u ∈ J ⊂ R be a smooth curve in R4 , and let α , β be constants.

A general rotation of the meridian curve c in R4 is defined by

X(u, v) =
(
X1(u, v), X2(u, v), X3(u, v), X4(u, v)

)
,

where

X1(u, v) = x1(u) cosαv − x2(u) sinαv; X3(u, v) = x3(u) cosβv − x4(u) sinβv;

X2(u, v) = x1(u) sinαv + x2(u) cosαv; X4(u, v) = x3(u) sinβv + x4(u) cosβv.

In the case of β = 0, x2(u) = 0, the plane Oe3e4 is fixed and one gets the classical rotation about a fixed

2-dimensional axis.

In [13] we considered a special case of such surfaces, given by

M : z(u, v) = (f(u) cosαv, f(u) sinαv, g(u) cosβv, g(u) sinβv) , (1)

where u ∈ J ⊂ R, v ∈ [0; 2π), f(u) and g(u) are smooth functions, satisfying α2f2(u) + β2g2(u) >

0, f ′ 2(u)+ g′ 2(u) > 0, and α, β are positive constants. In the case of α ̸= β , each parametric curve u = const

is a curve in R4 with constant Frenet curvatures, and in the case of α = β each parametric curve u = const

is a circle. The parametric curves v = const are plane curves with Frenet curvature
|g′f ′′ − f ′g′′|
(
√

f ′ 2 + g′ 2)3
. These

curves are the meridians of M .

The surfaces defined by (1) are general rotational surfaces in the sense of Moore with plane meridian

curves. In [13] we found the invariants of these surfaces and completely classified the minimal superconformal

general rotational surfaces in R4 . The classification of the general rotational surfaces in R4 consisting of

parabolic points is given in [4].

Similarly to the general rotations in R4 , one can consider general rotational surfaces in the Minkowski

4-space R4
1 as follows. Let c : x(u) =

(
x1(u), x2(u), x3(u), x4(u)

)
; u ∈ J ⊂ R be a smooth spacelike or timelike

curve in R4
1 , and let α , β be constants. We consider the surface defined by

X(u, v) =
(
X1(u, v), X2(u, v), X3(u, v), X4(u, v)

)
,

where

X1(u, v) = x1(u) cosαv − x2(u) sinαv; X3(u, v) = x3(u) coshβv + x4(u) sinhβv;

X2(u, v) = x1(u) sinαv + x2(u) cosαv; X4(u, v) = x3(u) sinhβv + x4(u) coshβv.

In the case of β = 0, x2(u) = 0 (or x1(u) = 0) one gets the standard rotational surface of elliptic type

in R4
1 . A local classification of spacelike rotational surfaces of elliptic type, whose mean curvature vector field

is either vanishing or lightlike, was obtained in [10].
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In the case of α = 0, x3(u) = 0 we get the standard hyperbolic rotational surface of the first type, and

in the case of α = 0, x4(u) = 0, we get the standard hyperbolic rotational surface of the second type. A local

classification of spacelike rotational surfaces of hyperbolic type with either vanishing or lightlike mean curvature

vector field is given in [9]. In [11] the timelike and spacelike hyperbolic rotational surfaces with nonzero constant

mean curvature in the 3-dimensional de Sitter space S31 were classified. Similarly, a classification of the spacelike

and timelike Weingarten rotational surfaces in S31 is given in [12]. In [5] we described the class of Chen spacelike

rotational surfaces of hyperbolic or elliptic type in R4
1 .

In the case of α > 0 and β > 0, the surfaces defined above are analogous to the general rotational

surfaces of Moore in R4 .

In [6] we considered spacelike general rotational surfaces with plane meridians in the Minkowski space

R4
1 and found their invariant functions. Here we shall describe and classify some basic geometric classes of such

surfaces.

Let M1 be the surface parameterized by

M1 : z(u, v) = (f(u) cosαv, f(u) sinαv, g(u) coshβv, g(u) sinhβv) , (2)

where u ∈ J ⊂ R , v ∈ [0; 2π), f(u) and g(u) are smooth functions, satisfying α2f2(u) − β2g2(u) > 0,

f ′ 2(u) + g′ 2(u) > 0, and α, β are positive constants.

The coefficients of the first fundamental form of M1 are E = f ′ 2(u) + g′ 2(u); F = 0; G = α2f2(u) −
β2g2(u). M1 is a spacelike surface whose mean curvature vector at any point is a nonzero spacelike vector (see

[6]). Moreover, M1 is parameterized by principal parameters (u, v).

The invariants k , κ , and K of M1 are expressed by the functions f(u), g(u), and their derivatives, as

follows:

k =
4α2β2(gf ′ − fg′)2(g′f ′′ − f ′g′′)(α2fg′ + β2gf ′)

(f ′ 2 + g′ 2)3(α2f2 − β2g2)3
; (3)

κ =
αβ(gf ′ − fg′)[(α2f2 − β2g2)(g′f ′′ − f ′g′′) + (f ′ 2 + g′ 2)(α2fg′ + β2gf ′)]

(f ′ 2 + g′ 2)2(α2f2 − β2g2)2
; (4)

K =
−(α2f2 − β2g2)(α2fg′ + β2gf ′)(g′f ′′ − f ′g′′) + α2β2(f ′ 2 + g′ 2)(gf ′ − fg′)2

(f ′ 2 + g′ 2)2(α2f2 − β2g2)2
. (5)

The geometric invariant functions γ1, γ2, ν1, ν2, λ, µ, β1, β2 of M1 are:

γ1 = 0; γ2 = − α2ff ′ − β2gg′√
f ′ 2 + g′ 2(α2f2 − β2g2)

;

ν1 =
g′f ′′ − f ′g′′

(f ′ 2 + g′ 2)
3
2

; ν2 = − α2fg′ + β2gf ′√
f ′ 2 + g′ 2(α2f2 − β2g2)

;

λ = 0; µ =
αβ(gf ′ − fg′)√

f ′ 2 + g′ 2(α2f2 − β2g2)
;

β1 = 0; β2 =
αβ(ff ′ + gg′)√

f ′ 2 + g′ 2(α2f2 − β2g2)
.

(6)
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In a similar way, we can consider the surface M2 parameterized by

M2 : z(u, v) = (f(u) cosαv, f(u) sinαv, g(u) sinhβv, g(u) coshβv) , (7)

where u ∈ J , v ∈ [0; 2π), f(u) and g(u) are smooth functions, satisfying f ′ 2(u) − g′ 2(u) > 0, α2f2(u) +

β2g2(u) > 0, and α, β are positive constants.

The coefficients of the first fundamental form of M2 are E = f ′ 2(u) − g′ 2(u); F = 0; G = α2f2(u) +

β2g2(u). M2 is a spacelike surface with timelike mean curvature vector field. The parameters (u, v) of M2

are principal.

The invariants k , κ , and K of M2 are expressed similarly to the invariants of M1 [6]:

k =
4α2β2(gf ′ − fg′)2(g′f ′′ − f ′g′′)(α2fg′ + β2gf ′)

(f ′ 2 − g′ 2)3(α2f2 + β2g2)3
; (8)

κ =
αβ(gf ′ − fg′)[(α2f2 + β2g2)(g′f ′′ − f ′g′′) + (f ′ 2 − g′ 2)(α2fg′ + β2gf ′)]

(f ′ 2 − g′ 2)2(α2f2 + β2g2)2
; (9)

K =
(α2f2 + β2g2)(α2fg′ + β2gf ′)(g′f ′′ − f ′g′′)− α2β2(f ′ 2 − g′ 2)(gf ′ − fg′)2

(f ′ 2 − g′ 2)2(α2f2 + β2g2)2
. (10)

The geometric invariant functions of M2 are given below:

γ1 = 0; γ2 = − α2ff ′ + β2gg′√
f ′ 2 − g′ 2(α2f2 + β2g2)

;

ν1 =
g′f ′′ − f ′g′′

(f ′ 2 − g′ 2)
3
2

; ν2 = − α2fg′ + β2gf ′√
f ′ 2 − g′ 2(α2f2 + β2g2)

;

λ = 0; µ =
αβ(fg′ − gf ′)√

f ′ 2 − g′ 2(α2f2 + β2g2)
;

β1 = 0; β2 =
αβ(gg′ − ff ′)√

f ′ 2 − g′ 2(α2f2 + β2g2)
.

(11)

We shall call the general rotational surface M1 , defined by (2), a general rotational surface of first type,

and the general rotational surface M2 , defined by (7), a general rotational surface of second type.

Note that the invariant λ of the general rotational surfaces of first or second type is zero. Hence, the

following statement holds.

Theorem 3.1 The general rotational surfaces of the first or second type, free of minimal points, are nontrivial

Chen surfaces.

In the following subsections we shall describe the classes of flat general rotational surfaces, general

rotational surfaces with flat normal connection, general rotational surfaces consisting of parabolic points, and

minimal general rotational surfaces.
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3.1. Flat general rotational surfaces

Let M1 and M2 be general rotational surfaces of the first and second type, respectively. Recall that a surface

is called flat if the Gauss curvature K is zero. Using equalities (5) and (10), we obtain the following:

Theorem 3.2 (i) The general rotational surface of the first type is flat if and only if

α2β2(f ′ 2 + g′ 2)(gf ′ − fg′)2 = (α2f2 − β2g2)(α2fg′ + β2gf ′)(g′f ′′ − f ′g′′). (12)

(ii) The general rotational surface of the second type is flat if and only if

α2β2(f ′ 2 − g′ 2)(gf ′ − fg′)2 = (α2f2 + β2g2)(α2fg′ + β2gf ′)(g′f ′′ − f ′g′′). (13)

Assume that the meridian curve is parameterized by f = f(u); g = u . Then equation (12) takes the

form of

f ′′

1 + f ′ 2 =
α2β2(uf ′ − f)2

(α2f2 − β2u2)(α2f + β2uf ′)
,

which is equivalent to

(arctan f ′)
′
=

α2β2(uf ′ − f)2

(α2f2 − β2u2)(α2f + β2uf ′)
. (14)

Similarly, equation (13) takes the form of

f ′′

1− f ′ 2 =
−α2β2(uf ′ − f)2

(α2f2 + β2u2)(α2f + β2uf ′)
,

which is equivalent to (
ln

∣∣∣∣1 + f ′

1− f ′

∣∣∣∣)′

=
−2α2β2(uf ′ − f)2

(α2f2 + β2u2)(α2f + β2uf ′)
. (15)

Equations (14) and (15) describe analytically the class of flat general rotational surfaces of the first and

second type.

3.2. General rotational surfaces with flat normal connection

A surface is said to have flat normal connection if the curvature of the normal connection is zero. The curvature

of the normal connection of the general rotational surface M1 (resp. M2 ) is given by formula (4) [resp. (9)].

Using these formulas, we obtain the next theorem.

Theorem 3.3 (i) The general rotational surface of the first type has flat normal connection if and only if

g′f ′′ − f ′g′′

f ′ 2 + g′ 2
= −α2fg′ + β2gf ′

α2f2 − β2g2
. (16)

(ii) The general rotational surface of the second type has flat normal connection if and only if

g′f ′′ − f ′g′′

f ′ 2 − g′ 2
= −α2fg′ + β2gf ′

α2f2 + β2g2
. (17)

890



GANCHEV and MILOUSHEVA/Turk J Math

If we assume that the meridian curve is parameterized by f = f(u); g = u , then equation (16) takes the

form of

(arctan f ′)
′
= −α2f + β2uf ′

α2f2 − β2u2
. (18)

Similarly, equation (17) takes the form of

(
ln

∣∣∣∣1 + f ′

1− f ′

∣∣∣∣)′

=
2(α2f + β2uf ′)

α2f2 + β2u2
. (19)

The class of general rotational surfaces with flat normal connection is described analytically by equations

(18) and (19).

Example 1 Let f(u) = a cosu, g(u) = a sinu , a = const (a ̸= 0). A direct computation shows that equation

(16) is fulfilled. Hence, the surface parameterized by

z(u, v) = (a cosu cosαv, a cosu sinαv, a sinu coshβv, a sinu sinhβv)

is a spacelike general rotational surface of the first type with flat normal connection.

In the special case when a = 1, α = β = 1, we obtain a spacelike surface lying on the de Sitter space

S3
1 = {x ∈ R4

1; ⟨x, x⟩ = 1} .

Example 2 If we choose f(u) = a sinhu, g(u) = a coshu , a = const (a ̸= 0), by a direct computation we

obtain that equation (17) is fulfilled. Hence, the surface parameterized by

z(u, v) = (a sinhu cosαv, a sinhu sinαv, a coshu sinhβv, a coshu coshβv)

is a spacelike general rotational surface of the second type with flat normal connection.

In the special case when a = 1, α = β = 1, we obtain a spacelike surface lying on the unit hyperbolic

sphere H3
1 = {x ∈ R4

1; ⟨x, x⟩ = −1} .

3.3. General rotational surfaces consisting of parabolic points

Recall that surfaces consisting of parabolic points are characterized by the condition k = 0. The next theorem

classifies the general rotational surfaces of the first and second type with k = 0.

Theorem 3.4 A general rotational surface of first or second type consists of parabolic points if and only if it

is one of the following:

(i) a developable ruled surface in R4
1 ;

(ii) a nondevelopable ruled surface in R4
1 ;

(iii) a nonruled surface in R4
1 whose meridian curve is given by g = c f− β2

α2 , where c = const ̸= 0 .

Proof Consider a general rotational surface of first or second type. Equality (3) [or (8)] implies that k = 0 if

and only if

(gf ′ − fg′)(g′f ′′ − f ′g′′)(α2fg′ + β2gf ′) = 0. (20)

It follows from equality (20) that the invariant k is zero in the following 3 cases:
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1. gf ′ − fg′ = 0, i.e. g = af , where a = const ̸= 0. In this case k = κ = K = 0, and by a result in [6]

the corresponding general rotational surface (of first or second type) is a developable ruled surface in R4
1 .

2. g′f ′′ − f ′g′′ = 0, i.e. g = af + b , where a = const ̸= 0, b = const ̸= 0. Hence, the meridians are

straight lines. It can easily be seen that in this case κ ̸= 0. Consequently, the corresponding general rotational

surface is a nondevelopable ruled surface in R4
1 .

3. α2fg′ + β2gf ′ = 0, i.e. α2 g′

g
+ β2 f ′

f
= 0. Integrating the last equality we obtain g = c f− β2

α2 , where

c = const ̸= 0. In this case the meridians are not straight lines. The invariants κ and K are nonzero, and,

hence, the corresponding general rotational surface is a nonruled surface in R4
1 . 2

3.4. Minimal general rotational surfaces

In this subsection we shall find all minimal general rotational surfaces of first and second type. Recall that a

surface is minimal if and only if ν1 + ν2 = 0. Hence, using (6) we get that the general rotational surface of the

first type is minimal if and only if the functions f(u) and g(u) satisfy the following equality:

g′f ′′ − f ′g′′

f ′ 2 + g′ 2
=

α2fg′ + β2gf ′

α2f2 − β2g2
. (21)

Similarly, from (11) it follows that the general rotational surface of the second type is minimal if and only if

g′f ′′ − f ′g′′

f ′ 2 − g′ 2
=

α2fg′ + β2gf ′

α2f2 + β2g2
. (22)

We shall find the solutions of equalities (21) and (22). In such a way we shall describe the class of minimal

general rotational surfaces of first and second type.

Theorem 3.5 (i) The general rotational surface of the first type is minimal if and only if the meridian curve

is given by the formula

g =

√
A

β
sin

(
ε
β

α
ln
∣∣∣αf +

√
α2f2 −A

∣∣∣+ C

)
, C = const, A = const > 0.

(ii) The general rotational surface of the second type is minimal if and only if the meridian curve is given

by the formula

g =

√
A

β
sin

(
ε
β

α
ln
∣∣∣αf +

√
α2f2 +A

∣∣∣+ C

)
, C = const, A = const > 0.

Proof First, we shall simplify equalities (21) and (22). Using that the connection ∇′ of R4
1 is flat, from

R′(x, y, x) = 0 and R′(x, y, y) = 0 we obtain that the invariants of each spacelike surface in R4
1 satisfy the

following equalities (see [6]):

2µγ2 + ν1 β2 − λβ1 = x(µ),

2λ γ1 − µβ2 + (ν1 − ν2) γ2 = −x(ν2) + y(λ).
(23)
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In the case that the surface is a minimal general rotational surface of first or second type, we have λ = 0,

γ1 = 0, β1 = 0, and ν2 = −ν1 . Hence, from (23) it follows that

2µγ2 + ν1 β2 = x(µ),

2ν1 γ2 − µβ2 = x(ν1),

which implies γ2 =
1

4
x
(
ln(µ2 + ν21)

)
. On the other hand, γ2 = −x

(
ln
√
G
)
. Hence, we get

1

4
x
(
ln(µ2 + ν21)

)
+

x
(
ln
√
G
)
) = 0, which implies

x
(
G2(µ2 + ν21)

)
= 0.

Now, using that µ , ν1 , and G are functions depending only on the parameter u , we obtain

G2(µ2 + ν21) = c2, (24)

where c is a constant.

Now let M1 be a minimal general rotational surface of the first type. Then G = α2f2−β2g2 , and using

(6) and (24) we obtain

α2β2(gf ′ − fg′)2 + (α2fg′ + β2gf ′)2

f ′ 2 + g′ 2
= c2,

which is equivalent to

α2f2g′ 2 + β2g2f ′ 2

f ′ 2 + g′ 2
=

c2

α2 + β2
. (25)

Equality (25) can also be obtained from (21) by a direct but very long computation.

Without loss of generality we assume that f ′ 2 + g′ 2 = 1. From (25) we then get

α2f2g′ 2 + β2g2f ′ 2 =
c2

α2 + β2
. (26)

Denote A =
c2

α2 + β2
. Now, using that g′ 2 = 1− f ′ 2 , from (26) it follows that

f ′ 2 =
α2f2 −A

α2f2 − β2g2
; g′ 2 =

A− β2g2

α2f2 − β2g2
. (27)

Note that the constant A satisfies β2g2 < A < α2f2 , since α2f2 − β2g2 > 0.

Equalities (27) imply (A− β2g2)f ′ 2 = (α2f2 −A)g′ 2 , i.e.

f ′√
α2f2 −A

= ε
g′√

A− β2g2
, ε = ±1.

Integrating the last equality, we obtain∫
df√

α2f2 −A
= ε

∫
dg√

A− β2g2
.
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Calculating the integrals, we get

arcsin
βg√
A

= ε
β

α
ln
∣∣∣αf +

√
α2f2 −A

∣∣∣+ C, C = const.

Consequently, in the case of a minimal general rotational surface of the first type, the meridian curve is

given by the following formula:

g =

√
A

β
sin

(
ε
β

α
ln
∣∣∣αf +

√
α2f2 −A

∣∣∣+ C

)
. (28)

Conversely, if the meridian curve is defined by formula (28), by a straightforward computation we obtain

that equality (21) is fulfilled and, hence, the general rotational surface of the first type is minimal.

In the case of a minimal general rotational surface of the second type we have G = α2f2 + β2g2 . Then

(11) and (24) imply

α2f2g′ 2 + β2g2f ′ 2

f ′ 2 − g′ 2
=

c2

α2 + β2
. (29)

Without loss of generality we assume that f ′ 2 − g′ 2 = 1. From (29) we then get

α2f2g′ 2 + β2g2f ′ 2 = A, (30)

where A =
c2

α2 + β2
. Using that g′ 2 = f ′ 2 − 1, from (30) we obtain

f ′ 2 =
A+ α2f2

α2f2 + β2g2
; g′ 2 =

A− β2g2

α2f2 + β2g2
. (31)

Note that in this case A > β2g2 , since g′ 2 > 0.

Equalities (31) imply

f ′√
A+ α2f2

= ε
g′√

A− β2g2
, ε = ±1.

After integration we obtain

arcsin
βg√
A

= ε
β

α
ln
∣∣∣αf +

√
A+ α2f2

∣∣∣+ C, C = const.

Consequently, in the case of a minimal general rotational surface of the second type, the meridian curve

is given by

g =

√
A

β
sin

(
ε
β

α
ln
∣∣∣αf +

√
A+ α2f2

∣∣∣+ C

)
. (32)

A direct computation shows that if the meridian curve is given by formula (32), then equality (22) is

satisfied. Hence, the general rotational surface of the second type is minimal. 2

Finally, it should be mentioned that the classes of minimal general rotational surfaces and general

rotational surfaces consisting of parabolic points are found explicitly. The classes of flat general rotational

surfaces and general rotational surfaces with flat normal connection are described analytically by ordinary

differential equations. An open question is to find them explicitly.
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