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Abstract: In this paper, we study Ding homological dimensions of complexes. Special attention is paid to the dimensions

of homologically bounded complexes that have nice functorial descriptions. These results are applied to give new

characterizations of rings R such that l.Ggldim(R) < ∞ and quasi-Frobenius rings.
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1. Introduction

It is well known that among the commutative local Noetherian rings (R,m, k), the regular rings are characterized

by the condition pdRk <∞ . In [8, Theorem 2.1], Holm proved that the Gorenstein injective dimension GidRR

of R measures Gorensteinness in the following sense:

An associative ring R with GidRR <∞ also has idRR <∞ (and hence R is Gorenstein, provided that

R is commutative and Noetherian).

For any R -module M , the Gorenstein injective dimension GidRM is a refinement of the injective

dimension idRM , and if idRM < ∞ , then there is an equality GidRM = idRM by [9, Proposition 2.27].

Also pursuing the themes described above, Christensen et al. in [3] studied finite Gorenstein homological

dimensions of complexes to identify Gorenstein rings.

Note that Ding et al. and Mao and Ding in [5] and [12] considered 2 special cases of the Gorenstein

projective and Gorenstein injective modules, which they called strongly Gorenstein flat and Gorenstein FP-

injective modules, respectively. Since over a Ding–Chen ring the strongly Gorenstein flat and Gorenstein

FP-injective modules have many nice properties analogous to Gorenstein projective and Gorenstein injective

modules over a Gorenstein ring, Gillespie [7] renamed these modules as Ding projective and Ding injective

modules, respectively.

Now it is only natural to ask: what do the Ding projective and Ding injective dimensions measure? The

aim of this paper is to study the Ding homological dimensions of complexes; as applications, we get some new

characterizations of rings R such that l.Ggldim(R) <∞ and quasi-Frobenius rings.

2. Preliminaries

In this paper, the ring R is assumed to be associative with identity, and modules are, unless otherwise explicitly

stated, left R -modules. We denote the classes of projective, flat, injective, and FP-injective R -modules by

P(R), F(R), I(R), and FI(R), respectively.
∗Correspondence: zhangcx1@nwnu.edu.cn

2010 AMS Mathematics Subject Classification: 13D25, 16E65.
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An R -complex X is a sequence of R -modules Xl and R -linear maps ∂Xl , l ∈ Z ,

X = · · · −→ Xl+1

∂X
l+1−→ Xl

∂X
l−→ Xl−1 −→ · · ·

such that ∂Xl ∂
X
l+1=0 for all l ∈ Z . Xl and ∂Xl are called the module in degree l and l th differential of X ,

respectively. For an R -complex X and any i ∈ Z , let ZX
i = Ker∂Xi , BX

i = Im∂Xi+1 , and CX
i = Coker∂Xi+1 .

The residue class module Hi(X) = ZX
i /B

X
i is called the ith homology module of X . The homology complex

H(X) is defined by setting H(X)i = Hi(X) and ∂
H(X)
i = 0 for all i ∈ Z . Furthermore, we set supX = sup{i ∈

Z | Hi(X) ̸= 0} and infX = inf{i ∈ Z | Hi(X) ̸= 0} .
Let X be an R -complex and let u , v be integers. The hard left-truncation, <uX , of X at u and the

hard right-truncation, Xv= , of X at v are given by:

<uX = 0 −→ Xu
∂X
u−→ Xu−1

∂X
u−1−→ Xu−2

∂X
u−2−→ · · · and

Xv= = · · ·
∂X
v+3−→ Xv+2

∂X
v+2−→ Xv+1

∂X
v+1−→ Xv −→ 0.

The soft left-truncation, ⊂u
X , of X at u and the soft right-truncation, X

v⊃ , of X at v are given by:

⊂u
X = 0 −→ CX

u

∂
X
u−→ Xu−1

∂X
u−1−→ Xu−2

∂X
u−2−→ · · · and

Xv⊃ = · · ·
∂X
v+3−→ Xv+2

∂X
v+2−→ Xv+1

∂X
v+1−→ ZX

v −→ 0.

The differential ∂
X

u is the induced map on residue classes.

Given an R -module M , we denote by M the complex with M in the 0th place and 0 elsewhere, and

identify M with M occasionally if there is no risk of ambiguity. Given an R -complex X and an integer n ,

ΣnX denotes the complex X shifted n degrees to the left, i.e. (ΣnX)i = Xi−n and ∂Σ
nX

i = (−1)n∂Xi−n .

The category of R -complexes is denoted C(R). The full subcategories C<(R), C=(R), and C2(R) of

C(R) consist of complexes X with Xl = 0 for, respectively, l ≫ 0, l ≪ 0, and |l| ≫ 0. The corresponding

complexes are called left-bounded, right-bounded, and bounded complexes in order.

The derived category is written D(R), and we use subscripts < , = , and □ to denote homological bound-

edness conditions. They are named homologically left-bounded, homologically right-bounded, and homologically

bounded complexes, respectively.

A morphism α : X → Y of R -complexes is called a quasi-isomorphism if H(α) is an isomorphism. For

a morphism α : X → Y , we denote by Cone(α) the mapping cone of α . It is given by Cone(α)i = Yi ⊕Xi−1

and ∂
Cone(α)
i (yi, xi−1) = (∂Yi (yi) + αi−1(xi−1),−∂Xi−1(xi−1)).

The right derived functor of the homomorphism functor of R -complexes and the left derived functor of

the tensor product of R -complexes are denoted by RHomR(− , −) and − ⊗L − . The symbol “≃” is used to

designate isomorphisms in D(R) and quasi-isomorphisms in C(R).
An R -complex X ∈ D2(R) is said to be of finite projective (flat) dimension if X ≃ U , where U is a

complex of projective (flat) modules and Ul = 0 for |l| ≫ 0. An R -complex Y ∈ D2(R) is said to be of

finite injective (FP-injective) dimension if Y ≃ V , where V is a complex of injective (FP-injective) modules
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and Vl = 0 for |l| ≫ 0. By P(R), I(R), F(R), and FI(R), we denote the full subcategories of D□(R) whose

objects are complexes of finite projective, injective, flat, and FP-injective dimension, respectively. For the other

notations, we would like to refer to Christensen ([2]).

Definition 2.1 ([10,13]) An R -module N is called FP-injective (or absolutely pure) if Ext1R(M , N) = 0 for

all finitely presented R -modules M . The FP-injective dimension of N, denoted by FP-idRN , is defined to be

the smallest nonnegative integer n such that Extn+1
R (M,N) = 0 for every finitely presented R -module M . If

no such n exists, set FP-idRN = ∞ .

Definition 2.2 ([7]) An R-module M is called Ding projective if there exists a HomR(− , F(R))-exact exact

sequence of projective R -modules

· · · → P1 → P0 → P 0 → P 1 → · · ·

with M = Coker(P1 → P0) . We denote the class of Ding projective modules by DP .

An R -module N is called Ding injective if there exists a HomR(FI(R),−)-exact exact sequence of

injective R-modules

· · · → I1 → I0 → I0 → I1 → · · ·

with N = Coker(I1 → I0) . We denote the class of Ding injective modules by DI .

Next we establish some results on preservation of quasi-isomorphisms. These will play an important part

in the proof of the main Theorem 3.4, and the ideal is inspired by that of [3].

Lemma 2.3 (1) If M is a Ding projective R-module, then Ext≥1
R (M,W ) = 0 for all R-modules W of finite

flat or finite injective dimension.

(2) If N is a Ding injective R -module, then Ext≥1
R (U,N) = 0 for all R -modules U of finite projective

dimension.

(3) Let R be a left coherent ring. If N is a Ding injective R -module, then Ext≥1
R (U,N) = 0 for all

R-modules U of finite FP-injective dimension.

Proof (1) For an R -module W of finite flat dimension, Ext≥1
R (M,W ) = 0 is an immediate consequence of

[5, Lemma 2.4 (1)].

Assume that idRW = m <∞ . Since M is Ding projective, we have an exact sequence

0 →M → P 0 → P 1 → · · · → P 1−m → C → 0,

where all P i are projective R -modules. Breaking this sequence into short exact ones, we see that ExtiR(M,W ) ∼=
Exti+m

R (C,W ) for i > 0, so the Exts vanish as desired since Exti+m
R (C,W ) = 0 for i > 0.

(2) The proof is dual to (1).

(3) Note that [12, Theorem 2.4], the proof is similar to that of (1). 2

Lemma 2.4 ([3, Lemmas 2.4, 2.5]) (1) Assume that X,Y ∈ C(R) with either X ∈ C=(R) or Y ∈ C=(R) . If

H(HomR(Xl, Y )) = 0 for all l ∈ Z , then H(HomR(X,Y )) = 0 .

(2) Assume that X,Y ∈ C(R) with either X ∈ C<(R) or Y ∈ C<(R) . If H(HomR(X, Yl)) = 0 for all

l ∈ Z , then H(HomR(X,Y )) = 0 .
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Proposition 2.5 Let M , N ∈ C<(R) .
(1) Let α : D → D′ be a quasi-isomorphism between right-bounded complexes of modules in DP(R) .

If each Mi has finite flat dimension, then the morphism HomR(α,M) : HomR(D
′,M) → HomR(D,M) is a

quasi-isomorphism.

(2) Let α : D → D′ be a quasi-isomorphism between right-bounded complexes of modules in DP(R) .

If each Ni has finite injective dimension, then HomR(α,N) : HomR(D
′, N) → HomR(D,N) is a quasi-

isomorphism.

Proof (1) From Lemma 2.4 (2) and the next isomorphism,

Cone(HomR(α,M)) ≃ Σ1HomR(Cone(α),M),

it suffices to show that HomR(Cone(α),Ml) is exact for all l ∈ Z . Note that Cone(α) is an exact, right-bounded

complex in DP(R). Set Xj = Ker(∂
Cone(α)
j ) for each integer j , and note Xj−1 ∈ DP(R) for j ≪ 0. Consider

the exact sequences

0 → Xj → Cone(α)j → Xj−1 → 0. (∗j)

From [11, Theorem 2.1] we know that DP(R) is closed under kernels of epimorphisms, so an induction

argument on (∗j) implies Xj ∈ DP(R) for all j . Thus, Lemma 2.3 (1) yields Ext≥1
R (Xj ,Ml) = 0 and

Ext≥1
R (Cone(α)j ,Ml) = 0 for all j and l ∈ Z . The long exact sequence in ExtR(−,Ml) shows that (∗j) is

HomR(−,Ml) exact. It follows that HomR(Cone(α),Ml) is exact.

(2) The proof is similar to that of (1). 2

Corollary 2.6 (1) If X ≃ A ∈ CDP
= (R) and U ≃ V ∈ CF

□ (R) , then RHomR(X,U) is represented by

HomR(A, V ) .

(2) If X ≃ A ∈ CDP
= (R) and U ≃ I ∈ CI

□(R) , then RHomR(X,U) is represented by HomR(A, I) .

Proof We prove part (1), and the proof of part (2) is similar.

Taking a projective resolution P ∈ CP
=(R) of X , then RHomR(X,U) is represented by HomR(P, V ).

Since P ≃ X ≃ A , there is by [2, (A. 3.6)] a quasi-isomorphism α : P → A , and hence the morphism

HomR(α, V ) : HomR(A, V ) → HomR(P, V )

is a quasi-isomorphism by Proposition 2.5 (1). In particular, the 2 complexes HomR(A, V ) and HomR (P, V )

are equivalent, so HomR(A, V ) also represents RHomR (X,U). 2

The next 2 results are parallel to Proposition 2.5 and Corollary 2.6.

Proposition 2.7 Let M , N ∈ C=(R) .
(1) Let R be a left coherent ring and β : H → H ′ be a quasi-isomorphism between left-bounded complexes

of modules in DI(R) . If each Mi has finite FP-injective dimension, then the morphism HomR(M,β) :

HomR(M,H) → HomR(M,H ′) is a quasi-isomorphism.

(2) Let β : H → H ′ be a quasi-isomorphism between left-bounded complexes of modules in DI(R) . If

each Ni has finite projective dimension, then the morphism HomR(N, β) : HomR(N,H) → HomR(N,H
′) is a

quasi-isomorphism.
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Corollary 2.8 (1) Let R be a left coherent ring. If Y ≃ B ∈ CDI
< (R) and U ≃ V ∈ CFI

□ (R) , then

RHomR(U, Y ) is represented by HomR(V,B) .

(2) If Y ≃ B ∈ CDI
< (R) and U ≃ P ∈ CP

□(R) , then RHomR(U, Y ) is represented by HomR(P,B) .

3. Ding homological dimensions of complexes

Obviously, by the definitions of Ding projective and Ding injective modules, we see that projective R -modules

are Ding projective and injective R -modules are Ding injective. Thus, for every homologically right-bounded

complex X , there exists a right-bounded complex A of Ding projective R -modules with A ≃ X in D(R) (as

one could take A to be a projective resolution of X ). Every such A is called a Ding projective resolution of

X .

Ding injective resolution of homologically left-bounded complexes is defined in a similar way, and it always

exists.

Definition 3.1 The Ding projective dimension, DpdRX , of X ∈ D=(R) is defined as

DpdRX = inf{sup{l ∈ Z | Al ̸= 0} | X ≃ A ∈ CDP
= (R)}.

The Ding injective dimension, DidRY , of Y ∈ D<(R) is defined as

DidRY = inf{sup{l ∈ Z | B−l ̸= 0} | Y ≃ B ∈ CDI
< (R)}.

To prove the main results, we need the following 2 lemmas.

Lemma 3.2 Let W be a flat R -module. If X ∈ D□(R) is equivalent to A ∈ CDP
= (R) and n ≥ supX , then

ExtmR (CA
n ,W ) = H−(m+n)(RHomR(X,W ))

for m > 0 . In particular, there is an inequality:

inf(RHomR(C
A
n ,W )) ≥ inf(RHomR(X,W )) + n.

Proof Since n ≥ supX = supA we have An= ≃ ΣnCA
n , cf. [2, (A.1.14.3)], and since W is flat it follows by

Corollary 2.6 (1) that RHomR(C
A
n ,W ) is represented by HomR(Σ

−nAn=,W ). For m > 0 the isomorphism

class ExtmR (CA
n ,W ) is then represented by

H−m(HomR(Σ
−nAn=,W )) = H−m(ΣnHomR(An=,W ))

= H−(m+n)(HomR(An=,W ))

= H−(m+n)(<−nHomR(A,W ))

= H−(m+n)(HomR(A,W )),

cf. [2, (A.2.1.3), (A.1.3.1), (A.1.20.2)]. It also follows from Corollary 2.6 (1) that the complex HomR(A,W )

represents RHomR(X,W ), so

ExtmR (CA
n ,W ) = H−(m+n)(RHomR(X,W ))

and the inequality of infima follows. 2
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Lemma 3.3 Let J be an FP-injective R -module. If Y ∈ D□(R) is equivalent to B ∈ CDI
< (R) and n ≥ −infY ,

then

ExtmR (J, ZB
−n) = H−(m+n)(RHomR(J, Y ))

for m > 0 . In particular, there is an inequality:

inf(RHomR(J, Z
B
−n)) ≥ inf(RHomR(J, Y )) + n.

Proof Since −n ≤ infY = infB , we have <−nB ≃ Σ−nZB
−n , cf. [2, (A.1.14.1)], and since J is FP-injective

it follows by Corollary 2.8 (1) that RHomR(J, Z
B
−n) is represented by HomR(J,Σ

n
<−nB). For m > 0 the

isomorphism class ExtmR (J, ZB
−n) is now represented by

H−m(HomR(J,Σ
n
<−nB)) = H−m(ΣnHomR(J,<−nB))

= H−(m+n)(HomR(J,<−nB))

= H−(m+n)(<−nHomR(J,B))

= H−(m+n)(HomR(J,B)),

cf. [2, (A.2.1.1), (A.1.3.1), (A.1.20.1)]. It also follows from Corollary 2.8 (1) that the complex HomR(J,B)

represents RHomR(J, Y ), so

ExtmR (J, ZB
−n) = H−(m+n)(RHomR(J, Y ))

and the inequality of infima follows. 2

We are now in a position to prove the following:

Theorem 3.4 Let X ∈ D=(R) be a complex of finite Ding projective dimension. For n ∈ Z , the following are

equivalent:

(1) DpdRX ≤ n .

(2) X is equivalent to a complex A ∈ CDP
□ (R) concentrated in degrees of at most n , and A can be chosen

with Al = 0 for l < infX .

(3) n ≥ infU − infRHomR(X,U) for all U ̸≃ 0 with U ∈ CF
□ (R) or U ∈ I(R) .

(4) n ≥ −infRHomR(X,W ) for all flat R -modules W .

(5) n ≥ supX and the module CA
n = Coker(An+1 → An) is Ding projective whenever X ≃ A ∈ CDP

= (R) .

Moreover, the following hold:

DpdRX = sup {infU − infRHomR(X,U) | 0 ̸≃ U ∈ CF
□ (R)}

= sup {−infRHomR(X,W ) | W is flat}.

Proof It is immediate by Definition 3.1 that (2) implies (1), and that (3) implies (4) is obvious.

(1) ⇒ (3) Choose a complex A ∈ CDP
□ (R), such that A ≃ X and Al = 0 for l > n . First, let

0 ̸≃ U ∈ CF
□ (R). Set i = infU and note that i ∈ Z as U ∈ D□(R) with H(U) ̸= 0. By Corollary 2.6 (1)

the complex HomR(A,U) represents RHomR(X,U); in particular, infRHomR(X,U) = infHomR(A,U). For

l < i− n and p ∈ Z , either p > n or p+ l ≤ n+ l < i , so the module

HomR(A,U)l = Πp∈ZHomR(Ap, Up+l)
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vanishes. Hence, Hl(HomR(A,U)) = 0 for l < i− n , and infRHomR(X,U) ≥ i− n = infU − n as desired.

Next, let U ∈ I(R) and choose a complex I ∈ CI
□(R) such that U ≃ I . Set i = infU and consider

the soft truncation V = Ii⊃ . The modules in V have finite injective dimension and U ≃ V , and hence

HomR(A, V ) ≃ RHomR(X,U) by Corollary 2.6 (2) and the proof continues as above.

(4) ⇒ (5) To see that n ≥ supX , it is sufficient to show that

sup {−infRHomR(X,W ) | W is flat} ≥ supX. (∗)

By assumption, g = DpdRX is finite, i.e. X ≃ A for some complex

A = 0 → Ag

∂A
g→ Ag−1 → · · · → Ai → 0,

and it is clear that g ≥ supX since X ≃ A . For any flat R -module W , the complex HomR(A,W ) is

concentrated in degrees −i to −g ,

0 → HomR(Ai,W ) → · · · → HomR(Ag−1,W )
HomR(∂A

g ,W )
→ HomR(Ag,W ) → 0,

and isomorphic to RHomR(X,W ) in D(R), cf. Corollary 2.6 (1). First, consider the case g = supX . The

differential ∂Ag : Ag → Ag−1 is not injective, as A has homology in degree g = supX = supA . By the definition

of Ding projective R -modules, there exists a flat R -module Q and an injective homomorphism φ : Ag → Q .

Because ∂Ag is not injective, φ ∈ HomR(Ag, Q) cannot have the form HomR(∂
A
g , Q)(ψ) = ψ∂Ag for some

ψ ∈ HomR(Ag−1, Q). That is, the differential HomR(∂
A
g , Q) is not surjective; hence, HomR(A,Q) has nonzero

homology in degree −g = −supX , and (∗) follows.

Next, assume that g > supX = s and consider the exact sequence

A = 0 → Ag → · · · → As+1 → As → CA
s → 0. (△)

It shows that DpdRC
A
s ≤ g − s , and it is easy to check that equality must hold, as otherwise we would have

DpdRX < g . A straightforward computation based on Corollary 2.6 (1) and Lemma 3.2 shows that for all

m > 0, all n ≥ supX , and all flat R -modules W one has

ExtmR (CA
n ,W ) = H−(m+n)(RHomR(X,W )). (♯)

By [11, Theorem 2.4] we have Extg−s
R (CA

n , Q) ̸= 0 for some flat R -module Q , from which H−g(RHomR(X,Q)) ̸=
0 by (♯) and (∗) follows. We conclude that n ≥ supX .

It remains to be proven that CA
n is Ding projective for any right-bounded complex A ≃ X of Ding

projective R -modules. By assumption, DpdRX is finite, so a bounded complex Ã ≃ X of Ding projective

R -modules does exist. Consider the cokernel CÃ
n . Since n ≥ supX = supÃ , it fits in an exact sequence

0 → Ãt → · · · → Ãn+1 → Ãn → CÃ
n → 0, where all the Ãl s are Ding projective. By (♯) and [11, Theorem 2.4]

it now also follows that CÃ
n is Ding projective. With this, it is sufficient to prove the following:

If P,A ∈ C=(R) are complexes of, respectively, projective and Ding projective modules, and P ≃ X ≃ A ,

then the cokernel CP
n is Ding projective if and only if CA

n is so.

43



ZHANG and LIU/Turk J Math

Let A and P be 2 such complexes. As P consists of projective modules there is a quasi-isomorphism

π : P
≃→ A , which induces a quasi-isomorphism between the truncated complexes, ⊂nπ : ⊂nP

≃→ ⊂nA . The

mapping cone

Cone(⊂nπ) = 0 → CP
n → Pn−1 ⊕ CA

n → Pn−2 ⊕An−1 → · · ·

is a bounded exact complex, in which all modules but the 2 left-most ones are known to be Ding projective. It

follows by the projectively resolving properties of Ding projective modules, cf. [11, Theorem 2.1], that CP
n is

Ding projective if and only if Pn−1 ⊕ CA
n is so, which implies that CA

n is Ding projective.

(5) ⇒ (2) Choose a projective resolution A ∈ CP
=(R) ⊆ CDP

= (R) of X with Al = 0 for l < infX by [2,

(A.3.2)]. Since n ≥ supX = supA it follows by [2, (A.1.14.2)] that X ≃ ⊂nA , and ⊂nA ∈ CDP
□ (R) as CA

n is

Ding projective.

To show the last claim, we still assume that DpdRX is finite. The 2 equalities are immediate conse-

quences of the equivalence of (1), (3), and (4). 2

In the following, we treat Ding projective dimension for modules. The Ding projective resolution of an

R -module M was defined in the usual way by Ding et al. [5, (3.1)]. All modules have a projective resolution

and, hence, a Ding projective one.

Lemma 3.5 Let M be an R -module. If M ≃ A ∈ CDP
= (R) , then the truncated complex

A0⊃ = · · · → Al → · · · → A2 → A1 → ZA
0 → 0

is a Ding projective resolution of M .

Proof Suppose M ≃ A ∈ CDP
= (R); then infA=0, so A0⊃ ≃ A ≃M by [2, (A. 1.14.4)], and we have an exact

sequence of modules

· · · → Al → · · · → A2 → A1 → ZA
0 →M → 0. (+)

Setting v = inf{l ∈ Z | Al ̸= 0} , then also the sequence

0 → ZA
0 → A0 → · · · → Av+1 → Av → 0

is exact. All the modules A0, · · · , Av are Ding projective, so it follows by the projectively resolving properties

of Ding projective modules, cf. [11, Theorem 2.1], that ZA
0 is Ding projective, and therefore A0⊃ is a Ding

projective resolution of M , cf. (+). 2

Now, we compare our notion of Ding projective dimension for complexes with earlier concepts, which are

restricted to modules. For an R -module M , Ding et al. defined in [5, (3.1)] the Ding projective dimension of

M to be

DpdRM = inf {n|there exists an exact sequence 0 → An → · · · → A1 → A0 → M → 0 of R -modules,

where each Ai is Ding projective}.
The next corollary shows that our definition of Ding projective dimension for complexes coincides with

that of Ding and Mao. Additionally, the following corollary extends a result of Mahdou and Tamekkante [11,

Theorem 2.4].

Corollary 3.6 Let M be an R-module of finite Ding projective dimension and n ∈ N0 . The following are

equivalent:
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(1) M has a Ding projective resolution of length of at most n . That is, there is an exact sequence of

modules 0 → An → An−1 → · · · → A0 →M → 0 , where A0, A1, · · · , An are Ding projective.

(2) DpdRM ≤ n .

(3) ExtiR(M,W ) = 0 for all i > n and all R -modules W with fdRW <∞ .

(4) ExtiR(M,F ) = 0 for all i > n and all flat R -modules F .

(5) In any Ding projective resolution of M

· · · → Al → Al−1 → · · · → A0 →M → 0,

the kernel Kn = Ker(An−1 → An−2) is a Ding projective R-module.

Proof If the sequence · · · → Al → Al−1 → · · · → A0 → M → 0 is exact, then M is equivalent to

A = · · · → Al → Al−1 → · · · → A0 → 0. The complex A belongs to CDP
= (R), and it has CA

0
∼= M ,

CA
1

∼= Ker(A0 → M), and CA
l

∼= ZA
l−1 = Ker(Al−1 → Al−2) for l ≥ 2. In view of the Lemma 3.5, the

equivalence of the 5 conditions now follows from Theorem 3.4. 2

Next, we turn to the Ding injective dimension. The proof of Theorem 3.7 below relies on Corollary 2.8

and Lemma 3.3 instead of Corollary 2.6 and Lemma 3.2 but is otherwise similar to that of Theorem 3.4; hence,

it is omitted.

Theorem 3.7 Let R be a left coherent ring and Y ∈ D<(R) be a complex of finite Ding injective dimension.

For n ∈ Z , the following are equivalent:

(1) DidRY ≤ n .

(2) Y is equivalent to a complex B ∈ CDI
□ (R) concentrated in degrees of at least −n , and B can be

chosen with Bl = 0 for l > supY .

(3) n ≥ −supU − infRHomR(U, Y ) for all U ̸≃ 0 with U ∈ CFI
□ (R) or U ∈ P(R) .

(4) n ≥ −infRHomR(J, Y ) for all FP-injective R-modules J .

(5) n ≥ −infY and for any left-bounded complex B ≃ Y of Ding injective modules, the kernel ZB
−n =

Ker(B−n → B−(n+1)) is Ding injective.

Moreover, the following hold:

DidRY = sup {−supU − infRHomR(U, Y ) | 0 ̸≃ U ∈ CFI
□ (R)}

= sup {−infRHomR(J, Y ) | J is FP -injective}.

Lemma 3.8 Let N be an R -module. If N ≃ B ∈ CDI
< (R) , then the truncated complex

⊂0B = 0 → CB
0 → B−1 → · · · → Bl → · · ·

is a Ding injective coresolution of N .

Proof Suppose N ≃ B ∈ CDI
< (R); then supB=0, so ⊂0B ≃ B ≃ N by [2, (A. 1.14.2)], and we have an exact

sequence of modules

0 → N → CB
0 → B−1 → · · · → Bl → · · · . (+)

Setting u = sup{l ∈ Z | Bl ̸= 0} , then also the sequence

0 → Bu → Bu−1 → · · · → B0 → CB
0 → 0
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is exact. All the modules Bu, · · · , B0 are Ding injective, so it follows by the injectively resolving properties of

Ding injective modules, cf. [15, Theorem 2.8], that CB
0 is Ding injective, and therefore ⊂0B is a Ding injective

coresolution of N , cf. (+). 2

Corollary 3.9 Let R be a left coherent ring and N an R-module of finite Ding injective dimension and

n ∈ N0 . The following are equivalent:

(1) N has a Ding injective coresolution of length of at most n . That is, there is an exact sequence of

modules 0 → N → B0 → B−1 → · · · → B−n → 0 , where B0, B−1, · · · , B−n are Ding injective.

(2) DidRN ≤ n .

(3) ExtiR(L,N) = 0 for all i > n and all R -modules L with FP-idR(L) <∞ .

(4) ExtiR(J,N) = 0 for all i > n and all FP-injective R -modules J .

(5) In any Ding injective coresolution of N

0 → N → B0 → B−1 → · · · → Bl → · · · ,

the cokernel W−n = Coker(B−n+2 → B−n+1) is a Ding injective R-module.

Proof If the sequence 0 → N → B0 → B−1 → · · · → Bl → · · · is exact, then N is equivalent to

B = 0 → B0 → B−1 → · · · → Bl → · · · . The complex B belongs to CDI
< (R), and it has ZB

0
∼= N ,

ZB
−1

∼= Coker(N → B0), and ZB
−l

∼= CB
−l+1 = Coker(B−l+2 → B−l+1) for l ≥ 2. In view of the Lemma 3.8, the

equivalence of the 5 conditions now follows from Theorem 3.7. 2

Recall that an R -module M is called Gorenstein flat if there exists an exact complex F of flat modules

such that M is isomorphic to a cokernel of F , and H(E⊗RF ) = 0 for all injective right R -modules E . Denote

the class of Gorenstein flat modules by GF . By [3], the Gorenstein flat dimension, GfdRX , for a homologically

bounded-below complex X is defined by GfdRX = inf{sup{l ∈ Z | Al ̸= 0} | X ≃ A ∈ CGF
= (R)} .

Next, we give the connection between the Gorenstein flat dimension and Ding injective dimension for a

homologically bounded-below complex X over a left coherent ring. For an R -complex X we use the notation

X+ = RHomZ(X,Q/Z).

Proposition 3.10 Let R be a left coherent ring and X ∈ D=(R) . Then

GfdRX = DidRX
+.

Proof By Theorem 3.7, the adjoint isomorphism, and [6, Proposition 4.15], we have

DidRX
+ = sup {−infRHomR(J,X

+) | J is FP -injective}

= sup {−inf(X ⊗L
R J)

+ | J is FP -injective}

= sup {sup(X ⊗L
R J)

+ | J is FP -injective}

= GfdRX.

2
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4. Applications

In this section, we focus on applying our previous results to new characterizations of some well-known rings. For

a ring R , Mahdou and Tamekkante in [11, Theorem 3.1] proved l.Ggldim(R) = sup{DpdRM |M ∈ R-Mod} ,
where l.Ggldim(R) denotes the left Gorenstein global dimension of R , which was defined in [1]. An immediate

application of Theorem 3.4 is to derive the following characterizations of these rings.

Theorem 4.1 The following conditions are equivalent for a ring R and a nonnegative integer n :

(1) l.Ggldim(R) ≤ n .

(2) For any complex X ∈ D=(R) , DpdRX ≤ n+ supX .

Proof (1)⇒(2) Assume supX = s , and choose a complex A ∈ CDP
= (R) equivalent to X . By Theorem 3.4

(5), it suffices to prove that CA
n+s = Coker(An+s+1 → An+s) is Ding projective.

As supX = s , there is an exact sequence of R -modules

0 → CA
n+s → An+s−1 → · · · → As+1 → As → CA

s → 0.

Since DpdRC
A
s ≤ n by assumption, and the As are Ding projective, CA

n+s is Ding projective as desired.

(2)⇒(1) is obvious. 2

Since a 0-Gorenstein ring is indeed quasi-Frobenius, we have the following:

Corollary 4.2 The following conditions are equivalent:

(1) R is quasi-Frobenius.

(2) For every complex X ∈ D=(R) , DpdRX = supX .

Recall that a ring R is called an n -FC ring [4] if R is a left and right coherent ring with FP-idRR ≤ n

and FP-idRR ≤ n . Yang in [14] proved that sup{DpdRM |M ∈ R-Mod} = sup{DidRM |M ∈ R-Mod} when R

is n-FC or commutative coherent. Using this result and a similar proof of Theorem 4.1, we have the following:

Proposition 4.3 Let R be an n-FC or commutative coherent ring. Then the following conditions are equiva-

lent:

(1) l.Ggldim(R) ≤ n .

(2) For any complex X ∈ D<(R) , DidRX ≤ n− infX .

Corollary 4.4 Let R be an FC or commutative coherent ring. Then the following conditions are equivalent:

(1) R is quasi-Frobenius.

(2) For any complex X ∈ D<(R) , DidRX = infX .
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