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Abstract: In the present paper, we study hemi-slant submanifolds of a locally product Riemannian manifold. We

prove that the anti-invariant distribution involved in the definition of hemi-slant submanifold is integrable and give some

applications of this result. We get a necessary and sufficient condition for a proper hemi-slant submanifold to be a

hemi-slant product. We also study these types of submanifolds with parallel canonical structures. Moreover, we give two

characterization theorems for the totally umbilical proper hemi-slant submanifolds. Finally, we obtain a basic inequality

involving Ricci curvature and the squared mean curvature of a hemi-slant submanifold of a certain type of locally product

Riemannian manifolds.
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1. Introduction

Study of slant submanifolds was initiated by Chen [8], as a generalization of both holomorphic and totally real

submanifolds of a Kähler manifold. Slant submanifolds have been studied in different kind of structures: almost
contact [13], neutral Kähler [4], Lorentzian Sasakian [2], and Sasakian [6] by several geometers. N. Papaghiuc

[14] introduced semi-slant submanifolds of a Kähler manifold as a natural generalization of slant submanifold.

Carriazo [7], introduced bi-slant submanifolds of an almost Hermitian manifold as a generalization of semi-slant

submanifolds. One of the classes of bi-slant submanifolds is that of anti-slant submanifolds, which are studied

by Carriazo [7]. However, Şahin [18] called these submanifolds hemi-slant submanifolds because the name anti-

slant indicates it has no slant factor. We observe that a hemi-slant submanifold is a special case of generic

submanifold introduced by Ronsse [16]. Since then many geometers have studied hemi-slant submanifolds in

different kinds of structures: Kähler [3, 18], nearly Kähler [21], generalized complex space form [20], and almost

Hermitian [19]. In some cases, we should note that hemi-slant submanifolds are also studied under the name

pseudo-slant submanifolds; see [11] and [21]. Furthermore, the submanifolds of a locally product Riemannian

manifold have been studied by many geometers. For example, Adati [1] defined and studied invariant and

anti-invariant submanifolds, while Bejancu [5] and Pitis [15] studied semi-invariant submanifolds. Slant and

semi-slant submanifolds of a locally product Riemannian manifold are examined by Şahin [17] and Li and Liu

[12]. In this paper, we study the geometry of hemi-slant submanifolds of a locally product Riemannian manifold

in detail.

∗Correspondence: hakmete@istanbul.edu.tr

2010 AMS Mathematics Subject Classification: Primary 53B25; Secondary 53C55.
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TAŞTAN and ÖZDEMİR/Turk J Math

2. Preliminaries

This section is devoted to preliminaries. Actually, in subsection 2.1 we present the basic background needed

for a locally product Riemannian manifold. Theory of submanifolds and distributions related to the study are

given in subsection 2.2.

2.1. Locally product Riemannian manifolds

Let M̄ be an m-dimensional manifold with a tensor field of type (1,1) such that

F 2 = I, (F ̸= ±I) , (2.1)

where I is the identity morphism on the tangent bundle TM̄ of M̄ . Then we say that M̄ is an almost product

manifold with almost product structure F. If an almost product manifold (M̄, F ) admits a Riemannian metric

g such that

g(FŪ, F V̄ ) = g(Ū , V̄ ) (2.2)

for all Ū , V̄ ∈ TM̄, then M̄ is called an almost product Riemannian manifold.

Next, we denote by ∇ the Riemannian connection with respect to g on M̄ . We say that M̄ is a locally

product Riemannian manifold, (briefly, l.p.R. manifold) if we have

(∇Ū F )V̄ = 0 , (2.3)

for all Ū , V̄ ∈ TM̄ [22].

2.2. Submanifolds

Let M be a submanifold of a l.p.R. manifold (M̄, g, F ). Let ∇,∇, and ∇⊥ be the Riemannian, induced

Riemannian, and induced normal connection in M̄,M and the normal bundle T⊥M of M , respectively. Then

for all U, V ∈ TM and ξ ∈ T⊥M the Gauss and Weingarten formulas are given by

∇UV = ∇UV + h(U, V ) (2.4)

and

∇Uξ = −AξU +∇⊥
Uξ (2.5)

where h is the second fundamental form of M and Aξ is the Weingarten endomorphism associated with ξ .

The second fundamental form h and the shape operator A are related by

g(h(U, V ), ξ) = g(AξU, V ) . (2.6)

A submanifold M is said to be totally geodesic if its second fundamental form vanishes identically, that

is, h = 0, or equivalently Aξ = 0. We say that M is totally umbilical submanifold in M if for all U, V ∈ TM

we have

h(U, V ) = g(U, V )H , (2.7)
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where H is the mean curvature vector field of M in M̄ . A normal vector field ξ is said to be parallel, if

∇⊥
Uξ = 0 for each vector field U ∈ TM.

The Riemannian curvature tensor R of M̄ is given by

R(Ū , V̄ ) =
[
∇Ū ,∇V̄

]
−∇[Ū,V̄ ], (2.8)

where Ū , V̄ ∈ TM̄.

Then the Codazzi equation is given by(
R(U, V )W

)⊥
= (∇Uh)(V,W )− (∇V h)(U,W ) (2.9)

for all U V, W ∈ TM . Here, ⊥ denotes the normal component and the covariant derivative of h , denoted by

∇Uh is defined by

(∇Uh)(V,W ) = ∇⊥
Uh(V,W )− h(∇UV,W )− h(V,∇UW ). (2.10)

Now, we write

FU = TU +NU , (2.11)

for any U ∈ TM . Here TU is the tangential part of FU, and NU is the normal part of FU. Similarly, for any

ξ ∈ T⊥M , we put

Fξ = tξ + ωξ , (2.12)

where tξ is the tangential part of Fξ, and ωξ is the normal part of Fξ.

A distribution D on a manifold M̄ is called autoparallel if ∇XY ∈ D for any X,Y ∈ D and called

parallel if ∇UX ∈ D for any X ∈ D and U ∈ TM̄. If a distribution D on M̄ is autoparallel, then it is

clearly integrable, and by Gauss formula D is totally geodesic in M̄ . If D is parallel then the orthogonal

complementary distribution D⊥ is also parallel, which implies that D is parallel if and only if D⊥ is parallel.

In this case M̄ is locally product of the leaves of D and D⊥ . Let M be a submanifold of M̄ . For two

distributions D1 and D2 on M , we say that M is (D1,D2) mixed totally geodesic if for all X ∈ D1 and

Y ∈ D2 we have h(X,Y ) = 0, where h is the second fundamental form of M [20, 22].

3. Hemi-slant submanifolds of a locally product Riemannian manifold

In this section, we define the notion of hemi-slant submanifold and observe its effect on the tangent bundle

of the submanifold and canonical projection operators and start to study hemi-slant submanifolds of a locally

product Riemannian manifold.

Let (M̄, g, F ) be a locally product Riemannian manifold and let M be a submanifold of M̄ . A

distribution D on M is said to be a slant distribution if for X ∈ Dp, the angle θ between FX and Dp

is constant, i.e. independent of p ∈ M and X ∈ Dp. The constant angle θ is called the slant angle of the slant

distribution D . A submanifold M of M̄ is said to be a slant submanifold if the tangent bundle TM of M

is slant [12, 17]. Thus, the F− invariant and F−anti-invariant submanifolds are slant submanifolds with slant

angle θ = 0 and θ = π/2, respectively. A slant submanifold that is neither F− invariant nor F−anti-invariant

is called a proper slant submanifold.
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Definition 3.1 A hemi-slant submanifold M of a locally product Riemannian manifold M̄ is a submanifold

that admits two orthogonal complementary distributions D⊥ and Dθ such that

(a) TM admits the orthogonal direct decomposition TM = D⊥ ⊕Dθ

(b) The distribution D⊥ is F−anti-invariant, i.e. FD⊥ ⊆ T⊥M.

(c) The distribution Dθ is slant with slant angle θ .

In this case, we call θ the slant angle of M . Suppose the dimension of distribution D⊥ (resp. Dθ ) is p

(resp. q ). Then we easily see the following particular cases.

(d) If q = 0, then M is an anti-invariant submanifold [1].

(e) If p = 0 and θ = 0, then M is an invariant submanifold [1].

(f) If p = 0 and θ ̸= 0, π
2 , then M is a proper slant submanifold [17].

(g) If θ = π
2 , then M is an anti-invariant submanifold.

(h) If p ̸= 0 and θ = 0, then M is a semi-invariant submanifold [5].

We say that the hemi-slant submanifold M is proper if p ̸= 0 and θ ̸= 0, π
2 .

Lemma 3.2 Let M be a proper hemi-slant submanifold of a l.p.R. manifold M̄. Then we have,

F (D⊥) ⊥ N(Dθ) . (3.1)

Proof For any X ∈ D⊥ and Z ∈ Dθ , using (2.2) and (2.11), we have

g(FX,NZ) = g(FX,FZ) = g(X,Z) = 0. This completes the proof. 2

In view of Lemma 3.2, for a hemi-slant submanifold M of a l.p.R. manifold M̄, the normal bundle T⊥M

of M is decomposed as

T⊥M = F (D⊥)⊕N(Dθ)⊕ µ , (3.2)

where µ is the orthogonal complementary distribution of F (D⊥) ⊕ N(Dθ) in T⊥M and it is the invariant

subbundle of T⊥M with respect to F.

The following facts follow easily from (2.1), (2.11), and (2.12) and will be used later.

T 2 + tN = I, (3.3a)

ω2 +Nt = I, (3.3b)

NT + ωN = 0, (3.3c)

Tt+ tω = 0. (3.3d)

As in a slant submanifold [17], for a hemi-slant submanifold M of a l.p.R. manifold M , we have

T 2Z = cos2θZ , (3.4)

g(TZ, TW ) = cos2θg(Z,W ) (3.5)
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and
g(NZ,NW ) = sin2θg(Z,W ) , (3.6)

where Z,W ∈ Dθ .

Here, we omit the proofs of equations (3.4)–(3.6), because the proof of (3.4) is the same as the proof of

Theorem 3.1 of [17] and the other proofs are also the same as the proofs of equations (3.3) and (3.4) in Lemma

3.1 of [17].

Lemma 3.3 Let M be a proper hemi-slant submanifold of a l.p.R. manifold M̄. Then we have,

T (D⊥) = {0}, (3.7a)

T (Dθ) = Dθ. (3.7b)

Proof Since D⊥ is anti-invariant with respect to F , (a) follows from (2.11). For any Z ∈ Dθ and X ∈ D⊥ ,

using (2.1), (2.2), and (2.11), we have g(TZ,X) = g(FZ,X) = g(Z,FX) = 0. Hence, we conclude that

T (Dθ) ⊥ D⊥ . Since T (Dθ) ⊆ TM , it follows that T (Dθ) ⊆ Dθ. Let W be in Dθ . Then using (3.4), we have

W = 1
cos2θ (cos

2θW ) = 1
cos2θT

2W = 1
cos2θT (TW ). Therefore, we find W ∈ T (Dθ). It follows that Dθ ⊆ T (Dθ).

Thus, we get the assertion (b). 2

Thanks to Theorem 3.1 [17], we characterize hemi-slant submanifolds of a l.p.R. manifold.

Theorem 3.4 Let M be a submanifold of a l.p.R. manifold M̄ . Then M is a hemi-slant submanifold if and

only if there exist a constant λ ∈ [0, 1] and a distribution D on M such that

(a) D = {U ∈ TM | T 2U = λU} ,
(b) for any X ∈ TM orthogonal to D , TX = 0.

Moreover, in this case λ = cos2θ , where θ is the slant angle of M .

Proof Let M be a hemi-slant submanifold of M̄ with anti-invariant distribution D⊥ and slant distribution

Dθ. Here, θ is the slant angle of M ; in which case, we have TM = D⊥ ⊕Dθ . Then we can choose D as Dθ.

Moreover, we have λ = cos2θ thanks to (3.4). Hence, (a) follows. (b) follows from Lemma 3.3. Conversely, (a)

and (b) imply TM = D⊥ ⊕ D . Since T (D) ⊆ D , we conclude that D⊥ is an anti-invariant distribution from

(b). 2

Example. Consider the Euclidean 6-space R6 with usual metric g . Define the almost product structure F on

(R6, g) by

F (
∂

∂xi
) =

∂

∂yi
, F (

∂

∂yi
) =

∂

∂xi
, i = 1, 2, 3,

where (x1, x2, x3, y1, y2, y3) are natural coordinates of R6 . Then M̄ = (R6, g, F ) is an almost product

Riemannian manifold. Furthermore, it is easy to see that M̄ is a l.p.R. manifold. Let M be a submanifold of

M̄ defined by

f(u, v, w) =
( u√

2
,
u√
2
, u+ v,

w√
2
,
w√
2
, 0
)
, u ̸= 0.
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Then a local frame of TM is given by

X =
∂

∂x3
,

Z =
1√
2

∂

∂x1
+

1√
2

∂

∂x2
+

∂

∂x3
,

W =
1√
2

∂

∂y1
+

1√
2

∂

∂y2
.

By using the almost product structure F above, we see that FX is orthogonal to TM ; thus D⊥ = span{X} .
Moreover, it is not difficult to see that Dθ = span{Z,W} is a slant distribution with slant angle θ = π/4 .

Thus, M is a proper hemi-slant submanifold of M̄ .

4. Integrability

In this section, we give a necessary and sufficient condition for the integrability of the slant distribution of the

hemi- slant submanifold. After that we prove that the anti invariant distribution of the hemi-slant submanifold

is always integrable and give some applications of this result.

Let M be a submanifold of a l.p.R. manifold M̄ . For any U ,V ∈ TM , we have ∇UFV = F∇UV from

(2.3). Then, using (2.4-2.5), (2.11-2.12) and identifying the components from TM and T⊥M , we have the

following.

Lemma 4.1 Let M be a submanifold of a l.p.R. manifold M̄. Then we have

∇UTV −ANV U = T∇UV + t h(U, V ) , (4.1)

h(U, TV ) +∇⊥
UNV = N∇UV + ω h(U, V ) . (4.2)

for all U ,V ∈ TM .

In a similar way, we have:

Lemma 4.2 Let M be a submanifold of a l.p.R. manifold M. Then we have

∇U t ξ −AωξU = −TAξU + t∇⊥
U ξ , (4.3)

h(U, t ξ) +∇⊥
U ω ξ = −NAξU + ω∇⊥

U ξ (4.4)

for any U ∈ TM and ξ ∈ T⊥M .

Theorem 4.3 Let M be a hemi-slant manifold of a l.p.R. manifold M. Then the slant distribution Dθ is

integrable if and only if

ANZW −ANWZ +∇ZTW −∇WTZ ∈ Dθ (4.5)

for any Z ,W ∈ Dθ .
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Proof From (4.1), we have

∇ZTW −ANWZ = T∇ZW + t h(Z,W ) (4.6)

and

∇WTZ −ANZW = T∇WZ + th(W,Z) (4.7)

for any Z , W ∈ Dθ . By (4.6) and (4.7), we get

ANZW −ANWZ +∇ZTW −∇WTZ = T [Z,W ] . (4.8)

Thus, our assertion follows from (3.7b) and (4.8). 2

In the following we give an application of Theorem 4.3.

Theorem 4.4 Let M be a hemi-slant manifold of a l.p.R. manifold M̄ . If M is Dθ -totally geodesic, then the

slant distribution Dθ is integrable.

Proof Suppose that M is Dθ -totally geodesic, that is, for any Z , W ∈ Dθ we have

h(Z,W ) = 0. (4.9)

By (4.1) and (4.9), we have

ANZW −∇WTZ = −T∇WZ (4.10)

and similarly

ANWZ −∇ZTW = −T∇ZW . (4.11)

From (4.10) and (4.11), using Lemma 3.3, we get

g(ANZW −ANWZ +∇ZTW −∇WTZ,X) = g(T [Z,W ], X) = 0 (4.12)

for any X ∈ D⊥ . The last equation (4.12) says that

ANZW −ANWZ +∇ZTW −∇WTZ ∈ Dθ

and by Theorem 4.3, we deduce that Dθ is integrable. 2

Lemma 4.5 Let M be a hemi-slant submanifold of a l.p.R. manifold M̄ . Then

ANXY = −ANY X (4.13)

for any X ,Y ∈ D⊥ .

Proof For any X ∈ D⊥ and U ∈ TM , using (3.7a), we have

−T∇UX = ANXU + t h(U,X) (4.14)

274
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from (4.1). Let Y be in D⊥ . Using (3.7b), we obtain

0 = −g(T∇UX,Y ) = g(ANXU, Y ) + g(th(U,X), Y ) (4.15)

from (4.14). On the other hand, using (2.2), (2.6), (2.11), and (2.12), we find

g(t h(U,X), Y ) = g(ANY U,X). (4.16)

Thus, from (4.15) and (4.16), we deduce that

g(ANXY +ANY X,U) = 0. (4.17)

This equation gives (4.13). 2

Theorem 4.6 Let M be a hemi-slant submanifold of a l.p.R. manifold M̄ . Then the anti-invariant distribution

D⊥ is integrable if and only if

ANXY = ANY X (4.18)

for all X , Y ∈ D⊥ .

Proof From (4.1), using (3.7a), we have

−ANY X = T∇XY + t h(X,Y ) (4.19)

for all X ∈ D⊥ . By interchanging X and Y in (4.19), then subtracting it from (4.19) we obtain

ANXY −ANY X = T [X,Y ] . (4.20)

Because of (3.7a), we know that D⊥ is integrable if and only if T [X,Y ] = 0 for all X ,Y ∈ D⊥ . Thus, our

assertion comes from (4.20). 2

By Lemma 4.5 and Theorem 4.6, we have the following result.

Corollary 4.7 Let M be a hemi-slant submanifold of a l.p.R. manifold M . Then the anti-invariant distribution

D⊥ is integrable if and only if

ANXY = 0 (4.21)

for all X , Y ∈ D⊥ .

Now, we give the main result of this section.

Theorem 4.8 Let M be a hemi-slant submanifold of a l.p.R. manifold M̄ . Then the anti-invariant distribution

D⊥ is always integrable.

Proof Let M̄ be a l.p.R. manifold with Riemannian metric g and almost product structure F . Define the

symmetric (0,2)-type tensor field Ω by Ω(Ū , V̄ ) = g(FŪ, V̄ ) on the tangent bundle TM̄ . It is not difficult to

see that (∇̄ŪΩ)(V̄ , W̄ ) = g((∇̄ŪF )V̄ , W̄ ) on TM̄ . Thus, because of (2.3), we deduce that

3 dΩ(V̄ , W̄ , Ū) = G(∇̄ŪΩ)(V̄ , W̄ ) = 0
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for all Ū , V̄ , W̄ ∈ TM̄ , that is, dΩ ≡ 0 , where G denotes the cyclic sum over Ū , V̄ , W̄ ∈ TM̄ . Next, for any

X , Y ∈ D⊥ and U ∈ TM we have

0 = 3 dΩ(U,X, Y ) = U Ω(X,Y ) +X Ω(Y, U) + Y Ω(U,X)

−Ω([U,X], Y )− Ω([X,Y ], U)− Ω([Y, U ], X)

= g(T [Y,X], U ]) .

It follows that T [X,Y ] = 0 and because of (3.7a), [Y,X] ∈ D⊥ . 2

Corollary 4.9 Let M be a hemi-slant submanifold of a l.p.R. manifold M̄ . Then the following facts hold:

AND⊥D⊥ = 0 (4.22)

ANXZ ∈ Dθ, i.e., AND⊥Dθ ⊆ Dθ (4.23)

and

g(h(TM,D⊥), ND⊥) = 0 , (4.24)

where X ∈ D⊥ and Z ∈ Dθ .

Proof (4.22) follows from Corollary 4.7 and Theorem 4.8. (4.23) follows from (4.22). Finally, using (2.6),

(4.22) gives (4.24). 2

Next, we give another application of Theorem 4.8.

Theorem 4.10 Let M be a proper hemi-slant submanifold of a l.p.R. manifold M̄ . The anti-invariant

distribution D⊥ defines a totally geodesic foliation on M if and only if h(D⊥,D⊥)⊥ NDθ .

Proof For X,Y ∈ D⊥ , we put ∇XY = ⊥∇XY + θ∇XY , where ⊥∇XY (resp. θ∇XY ) denotes the anti-

invariant (resp. slant) part of ∇XY . Then using Lemma 3.3 and (3.5), for any Z ∈ Dθ we have

g(∇XY, Z) = g(θ∇XY, Z) = 1
cos2θ g(T

θ∇XY, TZ) = 1
cos2θ g(T∇XY, TZ) . (4.25)

On the other hand, from (4.1), we have

T∇XY + t h(X,Y ) = −ANY X = 0 , (4.26)

since the distribution D⊥ is integrable. Therefore, using (4.26), from (4.25), we get

g(∇XY,Z) = − 1
cos2θ g(t h(X,Y ), TZ) = − 1

cos2θ g(Fh(X,Y ), TZ) . (4.27)

Here, using (2.2), (2.11), and (3.4), we find

g(F h(X,Y ), TZ) = g(h(X,Y ), NTZ). (4.28)

From (4.27) and (4.28), we get

g(∇XY, Z) = − 1
cos2θ g(h(X,Y ), NTZ) . (4.29)

Since TZ ∈ Dθ , our assertion comes from (4.29). 2
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5. Hemi-slant product

In this section, we give a necessary and sufficient condition for a proper hemi-slant submanifold to be a hemi-slant

product.

Definition 5.1 A proper hemi-slant submanifold M of a l.p.R. manifold M̄ is called a hemi-slant product if it

is locally product Riemannian of an anti-invariant submanifold M⊥ and a proper slant submanifold Mθ of M̄ .

Now, we are going to examine the problem when a proper hemi-slant submanifold of a l.p.R. manifold is

a hemi-slant product.

We first give a result that is equivalent to Theorem 4.10.

Theorem 5.2 Let M be a proper hemi-slant submanifold of a l.p.R. manifold M̄ . Then the anti-invariant D⊥

defines a totally geodesic foliation on M if and only if

g(ANY Z,X) = −g(ANZY,X), (5.1)

where X , Y ∈ D⊥ and Z ∈ Dθ .

Proof For any X , Y ∈ D⊥ and Z ∈ Dθ , using (2.4), (2.2), and (2.3), we have

g(∇XY,Z) = g(∇XY, Z) = g(∇XFY, FZ).

Hence, using (2.11), (2.4), (2.5), and (2.2), we obtain

g(∇XY,Z) = −g(ANY X,TZ) + g(∇XY, FNZ) + g(h(X,Y ), FNZ).

Here, using (3.3c), (3.3a), (2.12), and (3.4), we have

FNZ = tNZ −NTZ and tNZ = Z − T 2Z = sin2θZ . Thus, with the help of (2.6), we get

g(∇XY, Z) = −g(ANY X,TZ) + sin2θg(∇XY,Z)− g(ANTZY,X).

After some calculations, we find

cos2θg(∇XY, Z) = −g(ANY TZ,X)− g(ANTZY,X).

It follows that the distribution D⊥ defines a totally geodesic foliation on M if and only if

g(ANY TZ,X) = −g(ANTZY,X). (5.2)

Putting Z = TZ in (5.2), we obtain (5.1) and vice versa. 2

Theorem 5.3 Let M be a proper hemi-slant submanifold of a l.p.R. manifold M̄ . Then the distribution Dθ

defines a totally geodesic foliation on M if and only if

g(ANXW,Z) = −g(ANWX,Z), (5.3)

where X ∈ D⊥ and Z,W ∈ Dθ .
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Proof Using (2.4), (2.2), and (2.3), we have g(∇ZW,X) = g(∇ZFW,FX) for any Z,W ∈ Dθ and X ∈ D⊥ .

Next, using (2.11) and (3.1), we obtain g(∇ZW,X) = −g(TW,∇ZNX) − g(NW,∇ZFX). Hence, using (2.5)

and (2.1), we get g(∇ZW,X) = g(TW,ANXZ) − g(FNW,∇ZX). With the help of (2.12), (3.3a), (3.3c), and

(2.4), we arrive at

g(∇ZW,X) = g(ANXZ, TW )− sin2θ g(∇ZX,W ) + g(h(X,Z), NTW ).

Upon direct calculation, we find

cos2θ g(∇ZW,X) = g(ANXTW,Z) + g(ANTWX,Z)

Therefore, we deduce that the slant distribution Dθ defines a totally geodesic foliation if and only if

g(ANXTW,Z) = −g(ANTWX,Z), (5.4)

By putting W = TW , we see that the last equation is equivalent to the equation (5.3). 2

Thus, from Theorems 5.2 and 5.3, we obtain the expected result.

Corollary 5.4 Let M be a proper hemi-slant submanifold of a l.p.R. manifold M̄ . Then M is a hemi-slant

product manifold M = M⊥ ×Mθ if and only if

ANXZ = −ANZX, (5.5)

where X ∈ D⊥ and Z ∈ Dθ .

6. Hemi-slant submanifolds with parallel canonical structures

In this section, we get several results for the hemi-slant submanifolds with parallel canonical structures using

the previous results.

Let M be any submanifold of a l.p.R. manifold M̄ with the endomorphism T and the normal bundle

valued 1-form N defined by (2.11). We put

(∇UT )V = ∇UTV − T∇UV (6.1)

and

(∇UN)V = ∇⊥
UNV −N∇UV (6.2)

for any U ,V ∈ TM . Then the endomorphism T (resp.1-form N) is parallel if ∇T ≡ 0 (resp. ∇N ≡ 0) .

From (4.1) and (4.2) we have

(∇UT )V = ANV U + t h(U, V ) (6.3)

and

(∇UN)V = ω h(U, V )− h(U, TV ), (6.4)

respectively.
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Theorem 6.1 Let M be any submanifold of a l.p.R. manifold M̄ . Then T is parallel, i.e. ∇T ≡ 0 if and

only if

ANV U = 0 (6.5)

for all U ,V ∈ TM .

Proof For any U ,V,W ∈ TM from (6.3), we have

g
(
(∇WT )V,U

)
= g(ANV W,U) + g(t h(W,V ), U) .

Hence, using (2.12), (2.2), and (2.11), we obtain

g((∇WT )V,U) = g(ANV W,U) + g(h(W,V ), NU) .

Since A is self-adjoint, with the help of (2.6), we get

g((∇WT )V,U) = g(ANV U,W ) + g(ANUV,W ). (6.6)

Now let T be parallel; then from (6.6) it follows that

ANV U = −ANUV (6.7)

for all U ,V ∈ TM . On the other hand, from (6.3), we have

ANV U = ANUV , (6.8)

since h is a symmetric tensor field. Thus, (6.5) follows from (6.7) and (6.8).

2

From Corollary 5.4 and Theorem 6.1, we have the following result.

Corollary 6.2 Let M be a proper hemi-slant submanifold of a l.p.R. manifold M̄ . If T is parallel, then M

is a hemi-slant product.

Theorem 6.3 Let M be a proper hemi-slant submanifold of M . If N is parallel, then

(a) AµD⊥ = 0 , (b) AND⊥Dθ = 0 ,

(c) M is (D⊥,Dθ)-mixed totally geodesic.

Proof Let N be parallel, it follows from (6.4) that

h(U, TV ) = ωh(U, V ) (6.9)

for any U, V ∈ TM . Then, for any X ∈ D⊥ , we have

ωh(U,X) = 0 (6.10)

from (6.9). For any ξ ∈ µ , using (2.11), (2.2), and (2.6), we have

g(ωh(U,X), ξ) = g(h(U,X), F ξ) = g(AFξX,U) .
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Thus, using (6.10) we get

g(AFξX,U) = 0 . (6.11)

Since µ is invariant with respect to F , the assertion (a) comes from (6.11). On the other hand, for any X ∈ D⊥ ,

using (2.2), (2.11), (2.12), and (6.9), we have

g(h(U, TZ), NX) = g(h(U, TZ), FX) = g(ωh(U,Z), FX)

= g(Fh(U,Z), FX) = g(h(U,Z), X) = 0,

that is, g(h(U, TZ), NX) = 0. Putting Z = TZ in last equation, we obtain

cos2θ g(h(U,Z), NX) = cos2θ g(ANXZ,U) = 0 .

Since θ ̸= π
2 , the assertion (b) follows. Lastly, using (3.4), from (6.9), we have

ω2h(X,Z) = ωh(X,TZ) = h(X,T 2Z) = cos2θh(X,Z).

On the other hand, using (3.7a), we have

ω2h(X,Z) = ω2h(Z,X) = ωh(Z, TX) = 0.

Thus, we get

cos2θ h(X,Z) = 0.

Since θ ̸= π
2 , we deduce that h(X,Z) = 0, which proves the last assertion. 2

7. Totally umbilical hemi-slant submanifolds

In this section we shall give two characterization theorems for the totally umbilical proper hemi-slant subman-

ifolds of a l.p.R. manifold. First we prove

Theorem 7.1 If M is a totally umbilical proper hemi-slant submanifold of a l.p.R. manifold M̄ , then either

the anti-invariant distribution D⊥ is 1-dimensional or the mean curvature vector field H of M is perpendicular

to F (D⊥) . Moreover, if M is a hemi-slant product, then H ∈ µ .

Proof Since M is a totally umbilical proper hemi-slant submanifold either Dim(D⊥) = 1 or Dim(D⊥) > 1 .

If Dim(D⊥) = 1 , it is obvious. If Dim(D⊥) > 1 , then we can choose X,Y ∈ D⊥ such that {X,Y } is

orthonormal. By using (2.11), (2.7), (2.6), and (4.22), we have

g(H,FY ) = g(h(X,X), NY ) = g(ANY X,X) = 0 (7.1)

It means that

H⊥F (D⊥). (7.2)
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Moreover, if M is a hemi-slant product, for any Z ∈ Dθ , using (5.5) and (2.7), we have

g(H,NZ) = g(h(X,X), NZ) = g(ANZX,X) = −g(ANXZ,X)

= −g(h(Z,X), NX) = 0.

Hence, it follows that

H⊥N(Dθ). (7.3)

Thus, using (7.2) and (7.3) from (3.2), we get H ∈ µ . 2

Before giving the second result of this section, recall the following fact about locally product Riemannian

manifolds.

Let M1(c1) (resp. M2(c2)) be a real space form with sectional curvature c1 (resp. c2). Then the

Riemannian curvature tensor R of the locally product Riemannian manifold M = M1(c1) × M2(c2) has the

form

R(Ū ,V̄ )W̄=
(c1+c2)

4

{
g(V̄,W̄ )Ū−g(Ū,W̄ )V̄+g(FV̄,W̄ )FŪ−g(FŪ,W̄ )FV̄

}
(7.4)

+
(c1−c2)

4

{
g(FV̄ ,W̄ )Ū−g(FŪ,W̄ )V̄ +g(V̄,W̄ )FŪ−g(Ū,W̄ )FV̄

}
,

where Ū , V̄ , W̄ ∈ TM̄ [22].

Theorem 7.2 Let M be a totally umbilical hemi-slant submanifold with parallel mean curvature vector field H

of a l.p.R. manifold M̄ = M1(c1)×M2(c2) with c1 ̸= c2 . Then M cannot be proper.

Proof Let X ∈ D⊥ and Z ∈ Dθ be two unit vector fields. Since H is parallel, using (2.10) and (2.7) from

the Codazzi equation (2.9), we have

(R(X,Z)X)⊥ = −∇⊥
ZH = 0. (7.5)

On the other hand, equation (7.4) gives

R(X,Z)X = −1

4

{
(c1 + c2)Z + (c1 − c2)FZ

}
. (7.6)

Taking the normal component of (7.6), we get

(R(X,Z)X)⊥ = −1

4
(c1 − c2)NZ, (7.7)

which contradicts (7.5). 2

We have immediately from Theorem 7.2 that:

Corollary 7.3 There exists no totally geodesic proper hemi-slant submanifold of a l.p.R. manifold M̄ =

M1(c1)×M2(c2) with c1 ̸= c2 .
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8. Ricci curvature of hemi-slant submanifolds

In this section we obtain a Chen-type inequality for hemi-slant submanifolds of a l.p.R. manifold M̄ =

M1(c1)×M2(c2). We first present the following fundamental facts about this topic.

Let M̄ be a n -dimensional Riemannian manifold equipped with a Riemannian metric g and {e1, ..., en}
be an orthonormal basis for TpM̄, p ∈ M̄. Then the Ricci tensor S is defined by

S(U, V ) =
n∑

i=1

R(ei, U, V, ei), (8.1)

where U, V ∈ TpM̄. For a fixed i ∈ {1, ..., n} , the Ricci curvature of ei , denoted by Ric(ei), is given by

Ric(ei) =
n∑

i ̸=j

Kij , (8.2)

where Kij = g(R(ei, ej)ej , ei) is the sectional curvature of the plane spanned by ei and ej at p ∈ M̄. Let

Πk be a k -plane of TpM̄ and {e1, ..., ek} any orthonormal basis of Πk . For a fixed i ∈ {1, ..., k} , the k -Ricci

curvature [9] of Πk at ei , denoted by RicΠk
(ei), is defined by

RicΠk
(ei) =

k∑
i ̸=j

Kij . (8.3)

It is easy to see that Ric(TpM̄)(ei) = Ric(ei) for 1 ≤ i ≤ n, since Πn = TpM̄.

We now recall the following basic inequality [10, Theorem 3.1] involving Ricci curvature and the squared

mean curvature of a submanifold of a Riemannian manifold.

Theorem 8.1 ([10, Theorem 3.1]) Let M be an m-dimensional submanifold of a Riemannian manifold M̄ .

Then, for any unit vector X ∈ TpM , we have

Ric(X) ≤ 1

4
m2∥H∥2 +Ric(TpM)(X) (8.4)

where Ric(X) is the Ricci curvature of X .

Of course, the equality case of (8.4) was also discussed in [10], but we will not deal with the equality case in

this paper.

Now, we are ready to state the main result of this section.

Theorem 8.2 Let M be an m-dimensional hemi-slant submanifold of a l.p.R. manifold M̄ = M1(c1)×M2(c2).

Then, for unit vector V ∈ TpM , we have

4Ric(V ) ≤ m2∥H∥2+ (c1+ c2)

{
(m− 1)+

m∑
i=2

g(Tei, ei)g(TV, V ) (8.5)

−∥TV ∥2+g2(TV, V )

}
+(c1−c2)

{m∑
i=2

g(Tei, ei)+(m−1)g(TV, V )

}
where {V, e2, ..., em} is an orthonormal basis for TpM.
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Proof Since M is an m-dimensional hemi-slant submanifold of a l.p.R. manifold M̄ = M1(c1)×M2(c2), then

for any unit vector V ∈ TpM , using (7.4) and (2.11) from (8.3) we have

4Ric(TpM)(V )=(c1+ c2)

{
(m− 1)+

m∑
i=2

g(Tei, ei)g(TV, V ) (8.6)

−∥TV ∥2+g2(TV, V )

}
+(c1−c2)

{m∑
i=2

g(Tei, ei)+(m−1)g(TV, V )

}

Thus, using (8.6) in (8.4) we get (8.5). 2

Remark 8.3 In general, g(FV , V ) ̸= 0 for any unit vector V ∈ TpM̄ in a l.p.R. manifold M̄ , contrary to

almost Hermitian (g(JV , V ) = 0) and almost contact ((g(φV , V ) = 0) manifolds. However, we can establish

that the almost product structure F in a l.p.R. manifold M̄ such that g(FV , V ) = 0, for all V ∈ TpM̄ . In

fact, if M̄ is an even dimensional l.p.R. manifold with an orthonormal basis {e1, ..., en, en+1, ..., e2n} , then we

can define F by

F (ei) = en+i, F (en+i) = ei, i ∈ {1, 2, ..., n}.

Hence, we observe easily that the almost product structure F satisfies

g(Fei, ei) = 0. (8.7)

For example, the almost product structure F in the example of section 3 satisfies the condition (8.7). On the

other hand, because of Lemma 3.3 and equation (3.5), we have TV = 0, if V ∈ D⊥ and ∥TV ∥2 = cos2θ , if

V ∈ Dθ and ∥V ∥ = 1, respectively. Thus, by Theorem 8.2 we get the following two results.

Corollary 8.4 Let M be an m-dimensional anti-invariant submanifold of a l.p.R. manifold M̄ = M1(c1) ×
M2(c2). If the almost product structure F of M̄ satisfies the condition (8.7), then we have

4Ric(V ) ≤ m2∥H∥2 + (c1 + c2)(m− 1),

where V ∈ TpM is any unit vector.

Corollary 8.5 Let M be an m-dimensional slant submanifold of a l.p.R. manifold M̄ = M1(c1)×M2(c2). If

the almost product structure F of M̄ satisfies the condition (8.7), then we have

4Ric(Z) ≤ m2∥H∥2 + (c1 + c2){(m− 1)− cos2θ},

where Z ∈ TpM is any unit vector.
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TAŞTAN and ÖZDEMİR/Turk J Math

References

[1] Adati T. Submanifolds of an almost product manifold. Kodai Math J 1981; 4: 327–343.

[2] Alegre P. Slant submanifolds of Lorentzian Sasakian and Para-Sasakian manifolds. Taiwanese J Math 2013; 17:

897–910. DOI:10.11650/tjm.17.2013.2427.

[3] Al-Solamy FR, Khan MA, Uddin S. Totally umbilical hemi-slant submanifolds of Kähler manifolds. Abstr Appl

Anal 2011; Art. ID 987157, 9 pp.

[4] Arslan K, Carriazo A, Chen BY, Murathan C. On slant submanifolds of neutral Kaehler manifolds. Taiwanese J

Math 2010; 17: 561–584.

[5] Bejancu A. Semi-invariant submanifolds of locally product Riemannian manifolds. An Univ Timişoara Ser Ştiint
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