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Abstract: We give an algorithm to compute the generalized division polynomials for elliptic curves with complex

multiplication. These polynomials can be used to generate the ray class fields of imaginary quadratic fields over the

Hilbert class field with no restriction on the conductor.
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1. Introduction

A fundamental problem in algebraic number theory is to construct a polynomial that generates a given number

field. Inspired by the Kronecker–Weber theorem, Hilbert’s twelfth problem asks us to generate abelian extensions

of number fields using singular values of analytical functions. There are two cases, namely the cyclotomic case

and the elliptic case, for which this problem has an affirmative answer.

The cyclotomic case has been investigated deeply and there is a vast literature. On the other hand, our

information for the elliptic case is limited. Unlike the cyclotomic case there is not even a formula for polynomials

generating the simplest extensions, such as the extensions of prime conductor.

Let K be an imaginary quadratic field with ring of integers OK and let f be an ideal of OK . The

fundamental theorem of complex multiplication states that the ray class field Kf of conductor f can be generated

by the singular values of the j -function and Weber functions [9]. The first step of such a construction is to

generate the Hilbert class field H using the j -function. Instead of the j -function one can use alternative

functions and produce relatively smaller class polynomials, but there is no closed formula or recurrence relation

producing such polynomials.

Generating Kf over H is better understood. If f = (f) for some integer f , then we can find the

corresponding division polynomial recursively using the theory of elliptic curves [8]. Moreover, Satoh succeeded

in generalizing this recursive construction for some elements α ∈ OK − Z . More precisely, if f = (α) for some

unbiased α ∈ OK , then Satoh recursively constructs the corresponding division polynomials generating the ray

class field K(α) over H [7].

In this paper we give an algorithm to compute the generalized division polynomials with no restriction

on the conductor f . We are inspired by our previous results for cyclotomic fields [4] and the analogy between

the cyclotomic and the elliptic cases. Our idea is to use the close connection between the sums of powers of

certain elements and the coefficients of division polynomials via the Newton identities. We also use methods
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of Robert [6] in order to compute the Hurwitz numbers, which are analogous to the Bernoulli numbers of the

cyclotomic case. Our algorithm is easy to implement and performs only a few high-precision computations if

the size of the class number of K is small.

In the first section, we define the generalized division polynomials and give the idea behind our algorithm.

In Section 2, we describe how Hurwitz numbers attached to an elliptic curve E : y2 = x3 + Ax + B can be

computed in terms of A and B . In Section 3, we give our main result, which provides a formula for sums

of powers of roots of the generalized division polynomials. Finally, in the last section, we give the algorithm

described throughout the paper and an example to illustrate it.

2. Division polynomials

The assertions of this section can be found in [8] or [9] unless otherwise stated or proved. Let K be an imaginary

quadratic field with ring of integers OK and let H be the Hilbert class field of K . Let E be an elliptic curve

define over H ∩R admitting complex multiplication by OK . A classical method for constructing such a curve

can be found in the work of Lang [5, p. 18]. Suppose that

E : y2 = x3 +Ax+B

for some A,B in the number field H ∩R . We denote the Weierstrass ℘ -function relative to the lattice Λ by

℘(z,Λ). The uniformization theorem for elliptic curves enables us to find a lattice Λ parameterizing E . More

precisely, we have a complex analytic isomorphism from C/Λ to E given by the map z 7→ (℘(z,Λ), 2℘′(z,Λ)).

The assumption that the coefficients A,B are real enables us to use the PARI command ellinit to produce

a basis of the lattice Λ.

Given a point P on E , denote its x-coordinate by x(P ). If S is a subset of points of E , we set

Sx = {x(P ) : P ∈ A} . Let O be the point at infinity. For any ideal f ⊂ OK , the group of f -torsion points of

E is defined by

E[f] = {P ∈ E : [α]P = O for all α ∈ f}.

Notice that the definition of E[f] depends on the isomorphism OK
∼= End(E). We always use the isomorphism

[·] : OK → End(E) such that for any invariant differential ωE of E , [α]∗ωE = αωE for all α ∈ OK .

Since there is no infinite prime, we can consider any modulus of K as an ideal of OK . Given an ideal

f ⊂ OK , the ray class field Kf of conductor f can be generated over H by the division points E[f] . More

precisely, we have the following fundamental theorem of complex multiplication:

Kf = H(E[f]x).

Definition 2.1 The generalized division polynomial attached to the ideal f ⊂ OK is defined by the following

product, which is taken over all f-division points except the point at infinity:

Pf(t) :=
∏′

P∈E[f]

(t− x(P )).

The polynomial Pf(t) is of degree N(f)− 1 and its coefficients are elements of the Hilbert class field H .

In this paper we give an algorithm to compute Pf(t) with no restriction on the conductor f .
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Our strategy is to reduce the problem of determining the polynomial Pf(t) to the problem of computing

the sum of mth power of x-coordinates of division points

pm(E, f) :=
∑′

P∈E[f]

x(P )m.

The sums pm(E, f) are closely related with the division polynomials. To see this, suppose that Pf(t) =∑n
j=0(−1)jsj(E, f)tn−j where s0(E, f) = 1. The Newton identities play an important role in the theory of

symmetric functions by providing a recursive method to switch between two fundamental bases [2]. More

precisely, for each m ∈ {1, . . . n} , we have

msm(E, f) =
m∑
j=1

(−1)j+1pj(E, f)sm−j(E, f). (2.1)

3. Hurwitz numbers

In order to provide a formula for pm(E, f), we will use Hurwitz numbers and an invariant depending on f ; see

Theorem 4.4. In this section, we describe how Hurwitz numbers can be computed in terms of A and B .

Recall that the Weierstrass ℘ -function (relative to Λ) is defined by the series

℘(z,Λ) =
1

z2
+

∑′

λ∈Λ

(
1

(z − λ)2
− 1

λ2

)
,

where the sum is taken over all nonzero elements of Λ. The Eisenstein series of index 2k is given as

G2k(Λ) =
∑
λ∈Λ

′ 1

λ2k
,

where the sum is taken over all nonzero elements. The series above converges absolutely for k ≥ 2. The numbers

G2k(Λ) are also called Hurwitz numbers in an analogous fashion to Bernoulli numbers [6] and appear in the

Laurent series expansion of ℘(z,Λ). Indeed, we have

℘(z,Λ) =
1

z2
+

∞∑
k=1

(2k + 1)G2k+2(Λ)z
2k.

A classical corollary of this formula is the following well-known equation:

Dz(℘(z,Λ))
2 = 4℘(z,Λ)3 − 60G4(Λ)℘− 140G6(Λ). (3.1)

The coefficients G2k(Λ) can be written in terms of G4(Λ) and G6(Λ) by using the recurrence relation

Gk(Λ) =
6

(k − 6)(k2 − 1)

k−4∑
j=4

j even

(j − 1)(k − j − 1)Gj(Λ)Gk−j(Λ).

For example, G8(Λ) = 3G4(Λ)
2/7, G10(Λ) = 5G6(Λ)G4(Λ)/11. One can prove this recurrence relation by

comparing the coefficients in the equation

D2
z(℘(z,Λ)) = 6℘(z,Λ)2 − 30G4(Λ).
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See the work of Robert [6].

Recall that we have a complex analytic isomorphism from C/Λ to E : y2 = x3 + Ax + B given by

the map z 7→ (℘(z,Λ), 2℘′(z,Λ)). Combining this with equation (3.1), we see that G4(Λ) = −A/15 and

G6(Λ) = −B/35. It follows by the above recurrence relation that G2k(Λ) is a polynomial in variables A and

B with coefficients from rational numbers for all integers k ≥ 2.

4. Sums of powers

Now we start computing pm(E, f). Recall that pm(E, f) is defined by a sum over f -division points. Alternatively

we can write this sum as follows:

pm(E, f) =
∑

ω∈f−1Λ

℘(ω,Λ)m.

Note that this sum is weight-2m invariant under the action of SL2(Z).

For simplicity let us focus on the case m = 1. The basic quasi-period η2 attached to the Weierstrass

℘-function is very close to being a modular function of weight 2 [1]. Given a complex number τ in the upper

half plane, set q = exp(2πiτ). We have

η2(τ) = (2πi)2

[
1

12
− 2

∞∑
n=1

nqn

1− qn

]
.

See the work of Lang [5, Chap. 18]. Since η2(τ) has a q -expansion, it is true that η2(τ + 1) = η2(τ). On the

other hand, one can think of η2(τ) as the Eisenstein series of weight 2 and write

η2(τ) =
∑
c∈Z

∑
d∈Z′

c

1

(cτ + d)2

where Z′
c = Z−{0} if c = 0 and Z′

c = Z otherwise [3]. This double sum is not absolutely convergent and as a

result we have

η2(−1/τ) = τ2η2(τ)− 2πiτ.

See the work of Apostol [1].

In order to understand p1(E, f) in terms of the Eisenstein series, a normalization must be done. Suppose

that Λ has a basis [w1, w2] with w1 real and τ = w2/w1 in the upper half plane. Given a complex number

z = a + bi , we set Im(z) = b . The reader is cautioned that the notation G2 is used for η2 in [1] and [3]. We

follow Robert’s notation [6] and define

G2(Λ) =
η2(τ)− π/Im(τ)

w2
1

.

The normalized function G2(Λ) is no longer meromorphic; however, it is a weight-2 function invariant under

the action of SL2(Z) [3]. Moreover, Robert [6] showed that

p1(E, f) = G2

(
f−1Λ

)
−N(f)G2(Λ). (4.1)

Now we start computing pm(E, f) for m ≥ 2 with the following lemma. Recall that E : y2 = x3+Ax+B

is an elliptic curve with A = −15G4(Λ) and B = −35G6(Λ). For simplicity we use ℘ instead of ℘(z,Λ).
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Lemma 4.1 For any integer m ≥ 1 ,

℘m+1 =
D2

z(℘
m)

(2m)(2m+ 1)
−A

2m− 1

2m+ 1
℘m−1 −B

2m− 2

2m+ 1
℘m−2.

Proof The chain and product rules of the derivative give

D2
z(℘

m) = Dz(m℘m−1Dz(℘))

= m(m− 1)℘m−2Dz(℘)
2 +m℘m−1D2

z(℘).

Recall that Dz(℘)
2 = 4℘3 + 4A℘ + 4B and D2

z(℘) = 6℘2 + 2A . Taking these polynomial expressions into

account and solving for ℘m+1 , we obtain the above identity. 2

We denote the nth derivative of ℘(z,Λ) with respect to z by ℘(n) . If n = 0, then ℘(0) is the function

℘ itself. We omit the use of Λ below and write G2k instead of G2k(Λ). Using Lemma 4.1, we find that

℘0 = 1,

℘1 = ℘(0)/1! + 0,

℘2 = ℘(2)/3! + 5G4,

℘3 = ℘(4)/5! + 9G4℘
(0)/1! + 14G6,

℘4 = ℘(6)/7! + 12G4℘
(2)/3! + 20G6℘

(0)/1! + (375/7)G2
4,

℘5 = ℘(8)/9! + 15G4℘
(4)/5! + 25G6℘

(2)/3! + 105G2
4℘

(0)/1! + 280G4G6.

Let us denote the constant term appearing in the above expressions by am , which depends on Λ. For

example, a0 = 1, a1 = 0, a2 = 5G4 and so forth. A consequence of Lemma 4.1 is the fact that am satisfies the

following recurrence relation for all m ≥ 2:

am+1 = −A
2m− 1

2m+ 1
am−1 −B

2m− 2

2m+ 1
am−2. (4.2)

Now our purpose is to give a formula expressing ℘m as a sum of its derivatives. Inspired by the

construction in our previous paper [4], let us define cm2j as follows:

(z2℘(z,Λ))m =

∞∑
j=0

cm2jz
2j .

This definition is possible thanks to fact that ℘(z,Λ) is an even function with a pole of order 2 at z = 0. For

example c10 = 1, c12 = 0 and c12j = (2j − 1)G2j for j ≥ 2. In general, for m ≥ 1, we have

cm+1
2j =

(2j − 2m)(2j − 2m− 1)

(2m)(2m− 1)
cm2j −A

2m− 1

2m+ 1
cm−1
2j−4B

2m− 2

2m+ 1
cm−2
2j−6, (4.3)

which is another consequence of Lemma 4.1. Using the coefficients cm2j , we can express ℘m as follows.
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Lemma 4.2 For all m ≥ 1 , we have

℘m = am +
m∑

k=1

cm2m−2k℘
(2k−2)

(2k + 1)!
.

Proof If we subtract the sum above from the function ℘m , we obtain a doubly periodic function with no poles

at all. Therefore, it must be a constant by Liouville’s theorem. This constant is precisely am by definition. 2

This lemma reduces the problem of computing pm(E, f), to the problem of computing the sum of singular

values of derivatives. Indeed we have

∑
ω∈f−1Λ

℘(2k−2)(ω,Λ)

(2k + 1)!
=

∑′

ω∈f−1Λ

∑
λ∈Λ

1

(ω − λ)2k

for k ≥ 2. It is easy to see that the latter sum is equal to G2k(f
−1Λ)−G2k(Λ). Combining this with (4.1), we

obtain the following.

Lemma 4.3 ∑
ω∈f−1Λ

℘(2k−2)(ω,Λ)

(2k + 1)!
=

{
G2(f

−1Λ)−N(f)G2(Λ) if k = 1
G2k(f

−1Λ)−G2k(Λ) if k ≥ 2
.

The computation of G2k(f
−1Λ) is easy if f is principal. Indeed, we have

G2k(α
−1Λ) = α2kG2k(Λ)

for every integer k ≥ 1. Moreover, Robert showed in general that

G2k(f
−1Λ) = ϑ(f,Λ)2k ·G2k(Λ)

σf

for some ϑ(f,Λ) ∈ H [6]. Here σf is the automorphism in Gal(H/K) corresponding to the ideal class of f . If f

is a principal ideal generated by α ∈ OK , then we trivially have ϑ(f,Λ)2 = α2 . For some nontrivial examples,

see Robert’s computations focusing on imaginary quadratic fields of class number two [6].

Theorem 4.4 Let E : y2 = x3 +Ax+B be an elliptic curve admitting complex multiplication by OK and let

f be an ideal of OK . Then for each integer m ≥ 1 , we have

pm(E, f) = (am − cm2m−2G2)(N(f)− 1) +
m∑

k=1

cm2m−2k

(
G

σf

2kϑ
2k −G2k

)
where G2k = G2k(Λ) and ϑ2 = ϑ(f,Λ)2 .

For example, if we list the first few values of pm for m ∈ {1, 2, 3} restricted to the case f = (α) for some

α ∈ OK , we see that

p1(E, (α)) = G2(α
2 −N(α)),

p2(E, (α)) = G4(α
4 + 5N(α)− 6),

p3(E, (α)) = G6(α
6 + 14N(α)− 15) + 9G4G2(α

2 −N(α)).
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In general, for integers m ≥ 1 we have

pm(E, (α)) = (am − cm2m−2G2)(N(α)− 1) +

m∑
k=1

cm2m−2k(α
2k − 1)G2k.

Using the Newton identities (2.1) we can find si(E, (α)), the coefficients of the generalized division polynomial

P(α)(t), in terms of A,B,G2 , and α . Moreover if f = (f) for some integer f , then the G2 terms vanish and

coefficients of P(f)(t) can be written in terms of A,B over Q .

If f is not principal, we can express each si(E, f) algebraically in terms of a basis of H over Q . For this

purpose we compute the numerical value of ϑ(f, L)2 by the equality

ϑ(f,Λ)2 =
G2(f

−1Λ)

G2(Λ)σf

with high precision. Once we choose a basis for H over Q , we can use the PARI command lindep in order

find a linear dependence between ϑ(f,Λ)2 and the basis elements.

5. An example and the algorithm

In this section, we provide an example to illustrate the algorithm described throughout the paper. We give the

algorithm at the end.

Example 5.1 Let K be the quadratic field with discriminant dK = −139. The class number of K is 3. Set

w = (
√
−139 − 1)/2. Note that OK = Z[w] . In order to generate the Hilbert class field over K , one can use

the j -invariant of OK . However, this invariant turns out to be very big. Instead, one can use other functions

to generate the same extension. For example, using the PARI command quadhilbert we find a root of the

polynomial x3 − 4x2 +6x− 1 = 0 that generates H over K . Let γ be the unique real root of this polynomial.

We have
γ ≈ 0.18946428623386322598.

Moreover, H = K(γ) = Q(w, γ). There are several ways to obtain a Weierstrass model defined over H ∩R =

Q(γ), which admits complex multiplication by OK . For example, see [5, p. 18]. We choose E : y2 = x3+Ax+B

with

A = −580464γ2 + 2211768γ − 3063560,

B = 364736000γ2 − 1389839872γ + 1925091898.

Comparing j(w) and j(E), one can verify that this elliptic curve E admits complex multiplication by OK =

Z[w] . Suppose that a basis for the corresponding lattice Λ is given by [w1, w2] with w1 real τ = w2/w1 in

the upper half plane. Such a lattice can be found by the PARI command ellinit since A,B are both real.

Moreover, we find that

G2(Λ) = −172γ2 + 656γ − 908

by using the command lindep. One can obtain Gσ
2k in terms of γ and w for i ∈ {1, 2, 3} and σ ∈ Gal(H/K).

All we need to to is to determine σ(γ) for σ ∈ Gal(H/K). This finishes the computations for the ground field.
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KÜÇÜKSAKALLI/Turk J Math

Now we start computing a generalized division polynomial attached to a conductor f . Suppose that

f = (13, w − 5), a prime ideal that is not principal. Consider the basis {1, γ, γ2, w, wγ,wγ2} for H over Q .

One can show that

σf(γ) =
−2γ2 − 54γ + 260− w(4γ2 − 31γ + 36)

139

where σf is the automorphism in Gal(H/K) corresponding to the ideal class of f . Note that Q(γ) is not a

Galois extension. Thus, it is reasonable to expect that conjugates of γ cannot be written in terms of γ only.

We compute ϑ(f,Λ)2 with high precision and using the command lindep we find that

ϑ(f,Λ) = ±397γ2 − 1652γ + 2600 + w(−40γ2 + 171γ − 221)

139
.

Now we consider the part of our algorithm that takes the most time if the norm of the conductor N(f) is

large. Using the recurrence relations (4.2) and (4.3), we find the values of all necessary ai and cm2i respectively

in terms of G2, G4 , and G6 . Using Theorem 4.4, we find pi(E, f) for 0 ≤ i ≤ N(f). Afterwards we apply the

Newton identities (2.1) and obtain si(E, f) for 0 ≤ i ≤ N(f) as well. Therefore, we obtain Pf(t) by providing

its coefficients in terms of γ and w . Since this polynomial is too big to exhibit here, we only give the first two

terms and the last term. We have

Pf(t) = t12 +
(
−16wγ2 + 2296γ2 + 76wγ − 8644γ − 88w + 11796

)
t11 + . . .

+
1

ϑ(f,Λ)2


−1645737703472454466228315079764819968wγ2

−4278537598369154481759433510513987584γ2

+6271142294573252030352877661764128768wγ
+16303520321276858703501503860336459776γ
−8686268722122414359160362090222346240w
−22582290749444922390830898249523351552

 .

The algebraic expression of the constant term of Pf(t) would have been very difficult to obtain if we had tried

to use the PARI command lindep with its numerical value from the beginning. Observe also that if the class

number of K gets bigger, it will be harder to obtain G2(Λ) and ϑ(Λ, f) in terms of γ and w .

We finish our paper by giving the algorithm described throughout the paper.

Algorithm I: Computation of generalized division polynomials

Input: An ideal f of an imaginary quadratic field K .

Output: A polynomial Pf(t) ∈ H[t] generating the ray class field Kf over H .

• First part (Computations that are independent from the conductor.)

1. Find a real element γ ∈ H such that H = K(γ).

2. Find an elliptic curve E : y2 = x3 +Ax+B defined over Q(γ) admitting complex multiplication by

OK = Z[w] .

3. Compute Gσ
2i in terms of γ,w for 1 ≤ i ≤ 3 and σ ∈ Gal(H/K).
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• Second part (Computations that depend on the conductor.)

1. Compute am and cm2j for 0 ≤ m ≤ N(f) and 0 ≤ j ≤ m .

2. Compute ϑ(f,Λ)2 in terms of γ and w .

3. Compute the values pi(E, f) using Theorem 4.4 for 1 ≤ i ≤ N(f).

4. Compute si(E, f) using the Newton identities (2.1) for 1 ≤ i ≤ N(f).

5. Return Pf(t) =
∑n

j=0(−1)jsj(E, f)tn−j .
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