Prediction of central lymph node metastasis in patients with thyroid papillary microcarcinoma

ŞAFAK AKIN
DUYGU YAZGAN AKSOY
SERKAN AKIN
MEHMET KILIÇ
FAHRİ YETİŞİR

See next page for additional authors

Follow this and additional works at: https://journals.tubitak.gov.tr/medical

Part of the Medical Sciences Commons

Recommended Citation
AKIN, ŞAFAK; AKSOY, DUYGU YAZGAN; AKIN, SERKAN; KILIÇ, MEHMET; YETİŞİR, FAHRİ; and BAYRAKTAR, MİYASE (2017) "Prediction of central lymph node metastasis in patients with thyroid papillary microcarcinoma," Turkish Journal of Medical Sciences: Vol. 47: No. 6, Article 9. https://doi.org/10.3906/sag.1702.99
Available at: https://journals.tubitak.gov.tr/medical/vol47/iss6/9

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Medical Sciences by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.
Prediction of central lymph node metastasis in patients with thyroid papillary microcarcinoma

Authors
ŞAFAK AKIN, DUYGU YAZGAN AKSOY, SERKAN AKIN, MEHMET KILIÇ, FAHİR YETİŞİR, and MİYASE BAYRAKTAR

This article is available in Turkish Journal of Medical Sciences: https://journals.tubitak.gov.tr/medical/vol47/iss6/9
Prediction of central lymph node metastasis in patients with thyroid papillary microcarcinoma

Şafak AKIN¹*, Duygu YAZGAN AKSOY², Serkan AKIN³, Mehmet KILIÇ⁴, Fahri YETİŞİR⁵, Miyase BAYRAKTAR¹

¹Department of Endocrinology and Metabolism, Faculty of Medicine, Hacettepe University, Ankara, Turkey
²Department of Internal Medicine, Faculty of Medicine, Acibadem University, Istanbul, Turkey
³Department of Medical Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
⁴Department of General Surgery, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, Turkey
⁵Medicana Hospital, Clinic of General Surgery, Ankara, Turkey

* Correspondence: safakcavus@gmail.com

1. Introduction

Papillary thyroid carcinoma (PTC) is the most common malignancy of the thyroid gland. Papillary thyroid microcarcinoma (PTMC) is a subtype of PTC defined as PTC with a maximum tumor diameter of 10 mm or less (1). Several studies have reported that PTMC is determined in up to 35.6% of autopsy materials, and up to 37.3% of PTMCs are associated with cervical lymph node metastasis (1–3). In recent years, the number of patients with PTMC has been increasing because of the use of high-resolution ultrasonography (USG) and fine-needle aspiration biopsy. Despite the fact that PTMC is usually associated with good prognosis, regional lymph node metastasis is not uncommon (4). Moreover, several studies have demonstrated lymph node metastases at presentation, locoregional recurrence during follow-up, and rarely distant metastases and even cancer-related deaths (5–8). Central lymph node metastasis (CLNM) is frequently diagnosed with microscopic lymph node metastasis in surgical specimens. In PTMC, the prevalence of subclinical CLNM has been detected as 30%–65% (4,9,10). Previous studies suggested the use of prophylactic central lymph node dissection (CLND) in patients with PTMC (11,12); however, this approach remains a controversial matter. Therefore, determination of predictive factors for CLNM is important to avoid unnecessary CLND in patients with PTC or PTMC. To improve the diagnostic accuracy in PTMC, many authors used a combination of clinicopathologic and USG characteristics. Therefore, the purpose of this study was to investigate the predictive factors for CLNM among a group of patients with surgically proven PTMC or PTC.
2. Materials and methods

2.1. Study population

We conducted a retrospective study involving 223 patients with PTC who underwent definitive primary surgical therapy between January 2010 and December 2014. All patients had no history of thyroid or neck surgery for nonthyroidal cancer, as well as no neck irradiation. Medical records and radiologic and pathologic reports were analyzed. Papillary thyroid carcinoma measuring 10 mm or less in diameter was classified as PTMC. Data collected included age, sex, preoperative clinical suspicion of cancer based on USG findings, tumor size, multifocality, bilateral disease, chronic lymphocytic thyroiditis, extrathyroidal extension, central or lateral lymph nodes with metastatic carcinoma, and type of surgery (thyroidectomy with or without central lymph node dissection). Tumor size was defined as the largest dimension. Multifocality was defined as more than 1 focus of tumor within the thyroid. Bilateral tumors were defined as tumors existing in both thyroid lobes.

2.2. Statistical analysis

The statistical analyses were performed using SPSS 18.0 (SPSS Inc., Chicago, IL, USA). Normally distributed data are expressed as mean ± SD and were compared using the t-test. Categorical variables are expressed as percentage and were compared using the chi-square test or Fisher’s exact test as appropriate. Nonparametric variables were analyzed using the Mann-Whitney U test. In the statistical analyses, P < 0.05 was considered significant.

3. Results

The study population included 223 patients, the majority of whom were female (173, 77.6%). The mean age at diagnosis was 47.3 ± 11.9 years (range: 17–77 years) and 124 (55.6%) patients were aged more than 45 years. Table 1 lists the clinical and pathologic characteristics between the PTC and PTMC groups.

A total of 208 (93.3%) patients underwent total or near total thyroidectomy, and 15 (6.7%) had a lobectomy followed by a complete thyroidectomy at a later date.

Ninety-one (40.8%) of the 223 patients had lymph nodes removed, 86 had central lymph nodes only removed, 3 had lateral lymph nodes only removed, and 2 had both central and lateral lymph nodes removed. Of these 91 patients, 29 had lymph node metastasis and 24 had only central lymph node metastasis (CLNM).

Of the 88 patients who had central lymph nodes removed, 26 (29.5%) had CLNM. Univariate analysis revealed that central lymph node metastasis was associated with male sex, presence of bilaterality, presence of extrathyroidal extension, and tumor size (P = 0.033, P = 0.027, P < 0.001, P < 0.001, respectively). However, the multivariate logistic regression analysis showed that sex, age, tumor size, multifocality, bilaterality, extrathyroidal extension, clinical suspicion, and chronic lymphocytic thyroiditis were not significantly correlated with an increased risk for CLNM (Table 2).

Among the 141 patients with PTMC, 47 had only CLND, 7 (14.9%) of whom had CLNM. Twenty-six patients had CLNM, 19 had PTC, and 7 had PTMC. There was a significant difference in CLNM between patients with PTC and PTMC (P < 0.001).

4. Discussion

Differentiated thyroid carcinoma is the most common endocrine malignancy. We investigated clinical and pathologic features in patients with PTC and PTMC. PTMC is considered an indolent disease that has excellent prognosis with a mortality of about 1% and recurrence or persistence of only 1.4%–10.5% (4,5,13–15). On the other hand, the potential aggressiveness of PTMC has been reported in some studies (5–7,16).

The treatment for PTMC continues to be a topic of debate in the literature. Some authors choose complete thyroidectomy plus lymph node dissection, whereas others choose observation in the event of a solitary PTMC found incidentally on lobectomy/thyroidectomy (17). Central lymph node metastasis is still a risk in patients with PTC or PTMC; we found that 29.5% of all patients had CLND. Despite the fact that many studies have shown that lymph node metastasis in PTMC is one of the main predictors of recurrence (18–20), there is no consensus as to whether prophylactic neck dissection should be routinely included in the surgical treatment. The American Thyroid Association guidelines recommend inclusion of neck dissection for PTC only in the setting of clinically evident lymph node metastasis (21). However, the reported incidence of lymph node metastasis in PTMC has ranged widely from 20% to 90% (22). Routine prophylactic CLND might be associated with significantly higher morbidities, such as recurrent laryngeal nerve injury and hypoparathyroidism (23,24). CLND can be achieved with low morbidity by experienced thyroid surgeons (25,26).

In our study, male sex, tumor size, age, multifocality, extrathyroidal extension, clinical suspicion, and chronic lymphocytic thyroiditis were not predictive of CLNM. Vorasubin et al. (27) recently demonstrated that large, multifocal, and capsularly or lymphovascularly invasive PTMC was significantly associated with at least a 1.93 times greater risk of metastasizing than were smaller, solitary, and noninvasive tumors. Another study by Siddiqui et al. (28) showed that younger age (age < 45 years), multifocality,
and extrathyroidal extension were predictors of CLNM. Our data showed that male sex and tumor size were not predictive for CLNM, in contrast to findings by others (18,29,30). In addition, Siddiqui et al. reported that the risk of lymph node metastasis in incidental PTMC was not significantly different compared with known/suspected PTC (28). Therefore, physicians must be aware of central or lateral lymph node metastasis when planning treatment for PTMC.

The limitation to our study is the small number of overall patients and the small number of patients with resected lymph nodes. In addition, we did not analyze data from the long-term follow-up period such as disease recurrence and disease-free survival.
In conclusion, PTMC can metastasize to central or lateral lymph nodes. Lymph node metastasis is known as a significant predictor of locoregional recurrence. Further prospective studies are needed to identify the extent of surgery such as CLND in patients with PTC or PTMC.

Table 2. Multivariate logistic regression analysis for clinical and pathologic features predictive of CLNM.

<table>
<thead>
<tr>
<th>Risk predictor</th>
<th>OR</th>
<th>95% CI</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.912</td>
<td>0.772–1.078</td>
<td>0.280</td>
</tr>
<tr>
<td>Sex</td>
<td>0.949</td>
<td>0.093–9.703</td>
<td>0.964</td>
</tr>
<tr>
<td>Tumor size</td>
<td>1.841</td>
<td>0.673–5.039</td>
<td>0.235</td>
</tr>
<tr>
<td>Multifocality</td>
<td>0.581</td>
<td>0.046–7.404</td>
<td>0.676</td>
</tr>
<tr>
<td>Bilaterality</td>
<td>0.220</td>
<td>0.014–3.538</td>
<td>0.286</td>
</tr>
<tr>
<td>Chronic lymphocytic thyroiditis</td>
<td>3.233</td>
<td>0.338–30.92</td>
<td>0.308</td>
</tr>
<tr>
<td>Extrathyroidal extension</td>
<td>0.331</td>
<td>0.017–6.372</td>
<td>0.464</td>
</tr>
<tr>
<td>Clinical suspicion</td>
<td>0.194</td>
<td>0.016–2.390</td>
<td>0.201</td>
</tr>
</tbody>
</table>

References


