
Turkish Journal of Mathematics Turkish Journal of Mathematics 

Volume 39 Number 4 Article 5 

1-1-2015 

A note on m-embedded subgroups of finite groups A note on m-embedded subgroups of finite groups 

JUPING TANG 

LONG MIAO 

Follow this and additional works at: https://journals.tubitak.gov.tr/math 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
TANG, JUPING and MIAO, LONG (2015) "A note on m-embedded subgroups of finite groups," Turkish 
Journal of Mathematics: Vol. 39: No. 4, Article 5. https://doi.org/10.3906/mat-1402-75 
Available at: https://journals.tubitak.gov.tr/math/vol39/iss4/5 

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for 
inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals. For more 
information, please contact academic.publications@tubitak.gov.tr. 

https://journals.tubitak.gov.tr/math
https://journals.tubitak.gov.tr/math/vol39
https://journals.tubitak.gov.tr/math/vol39/iss4
https://journals.tubitak.gov.tr/math/vol39/iss4/5
https://journals.tubitak.gov.tr/math?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol39%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol39%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.3906/mat-1402-75
https://journals.tubitak.gov.tr/math/vol39/iss4/5?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol39%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:academic.publications@tubitak.gov.tr


Turk J Math

(2015) 39: 501 – 506

c⃝ TÜBİTAK
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Abstract: Let A be a subgroup of G . A is m-embedded in G if G has a subnormal subgroup T and a {1 ≤ G} -
embedded subgroup C such that G = AT and T ∩A ≤ C ≤ A . In this paper, we study the structure of finite groups by

using m-embedded subgroups and obtain some new results about p -supersolvability and p -nilpotency of finite groups.
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1. Introduction

Throughout the paper, all groups are finite. Most of the notation is standard and can be found in [3, 6, 10, 11].

Let F be a class of groups. F is said to be a formation provided that (1) if G ∈ F and H ⊴ G , then

G/H ∈ F , and (2) if G/M and G/N are in F , then G/M ∩N is in F . A formation F is said to be saturated

if G ∈ F whenever G/Φ(G) ∈ F . It is well known that the class of all p -supersolvable groups and the class

of all p -nilpotent groups are saturated formations. Let A be a subgroup of G , K ≤ H ≤ G and p a prime.

Then: (1) A covers the pair (K,H) if AH = AK ; (2) A avoids (K,H) if A ∩ H = A ∩ K . Recall that a

subgroup A of G is called a CAP-subgroup [3, A, Definition 10.8] if A either covers or avoids each pair (K,H),

where H/K is a chief factor of G . A subgroup A is called a partial CAP-subgroup [1] or a semicover-avoiding

subgroup [8] of G if A either covers or avoids each pair (K,H), where H/K is a factor of some fixed chief

series of G . By using the CAP-subgroups and the semicover-avoiding subgroups, group theorists have obtained

many interesting results (see, for example, [2, 4, 9]). Furthermore, if E is a quasinormal subgroup of G , then

for every maximal pair of G , that is, a pair (K,H), where K is a maximal subgroup of H , E either covers

or avoids (K,H). Based on the definitions and properties above, Guo and Skiba presented a new concept as

follows:

Definition 1.1 (7) Let A be a subgroup of G and Σ = G0 ≤ G1 ≤ . . . ≤ Gn some subgroup series of G . Then

A is Σ-embedded in G if A either covers or avoids every maximal pair (K,H) such that Gi−1 ≤ K < H ≤ Gi ,

for some i .

Here we improve Theorem 4.1 of [7], and present a result of p -nilpotency of group G with some “extra

hypothesis”, where p is an odd prime divisor of |G| . Meanwhile, we study the structure of G under the
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assumption of G is p-solvable, where p is a prime divisor of |G| .

Theorem 1.2 Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of G . Suppose that every

maximal subgroup P1 of P is m-embedded in G . Then G is p-nilpotent if one of the following conditions holds:

(1) NG(P1) is p-nilpotent for every maximal subgroup P1 of P .

(2) NG(P ) is p-nilpotent.

Theorem 1.3 Let G be a p-solvable group and P a Sylow p-subgroup of G . If every maximal subgroup of P

is m-embedded in G , then G is p-supersolvable.

Theorem 1.4 Let G be a p-solvable group and p a prime divisor of |G| . If every maximal subgroup of Fp(G)

containing Op′ (G) is m-embedded in G , then G is p-supersolvable.

2. Preliminaries

For the sake of convenience, we first list here some known results that will be useful in the sequel.

Lemma 2.1 (7, Lemma 2.13) Let K and H be subgroups of G . Suppose that K is m-embedded in G and

H is normal in G . Then

(1) If H ≤ K , then K/H is m-embedded in G/H .

(2) If K ≤ E ≤ G , then K is m-embedded in E .

(3) If (|H|, |K|) = 1 , then HK/H is m-embedded in G/H .

(4) Suppose that K is a p-subgroup for some prime p , K is m-embedded in G , and K is not {1 ≤ G}-embedded

in G . Then G has a normal subgroup M such that |G : M | = p and G = KM .

Lemma 2.2 (7, Lemma 2.14) Let P be a normal nonidentity p-subgroup of G with |P | = pn and P∩Φ(G) =

1 . Suppose that there is an integer k such that 1 ≤ k < n and the subgroups of P of order pk are m-embedded

in G , then some maximal subgroup of P is normal in G .

Lemma 2.3 (7, Lemma 2.5) Every {1 ≤ G}-embedded subgroup of G is subnormal in G .

3. The proofs

Proof of Theorem 1.1 Assume that the assertion is false and choose G to be a counterexample of minimal

order. We will divide the proof into the following steps.

(1) Op′ (G) = 1.

In fact, if Op′ (G) ̸= 1, then we consider the quotient group G/Op′ (G). If NG(P1) is p -nilpotent, then

NG/O
p
′ (G)(P1Op′ (G)/Op′ (G)) = NG(P1)Op′ (G)/Op′ (G)

is p -nilpotent. By Lemma 2.1(3), G/Op′ (G) satisfies the conditions of the theorem, and the minimal choice

of G implies that G/Op′ (G) is p -nilpotent. Hence G is p -nilpotent, a contradiction. Similarly, if NG(P ) is

p -nilpotent, then we have G/Op′ (G) is p -nilpotent also, a contradiction.

(2) If S is a proper subgroup of G containing P , then S is p -nilpotent.
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If NG(P1) is p -nilpotent, clearly, NS(P1) ≤ NG(P1) and then NS(P1) is p -nilpotent. Applying Lemma

2.1(2), we find that S satisfies the hypothesis of our theorem. Now, the minimal choice of G implies that S is

p -nilpotent. If NG(P ) is p -nilpotent, then we still obtain that S is p -nilpotent since NS(P ) ≤ NG(P ).

(3) Op(G) ̸= 1 and G/N is p -nilpotent, where N = Op(G) is the unique minimal normal subgroup of

G .

Case I . NG(P1) is p-nilpotent.

Since G is not p-nilpotent, NG(Z(J(P ))) is not p -nilpotent by the Glauberman–Thompson Theorem,

where J(P ) is the Thompson subgroup of P . Then P ≤ NG(Z(J(P ))). By (2), we have NG(Z(J(P ))) = G

and hence Op(G) ̸= 1. Let N be a minimal normal subgroup of G contained in Op(G).

If N = P , then G/N is p-nilpotent. If |P : N | = p , then G = NG(N) is p -nilpotent, a contradiction.

Now we may assume that |P : N | > p . For every maximal subgroup P1/N of P/N ,

NG/N (P1/N) = NG(P1N)/N = NG(P1)/N

is p-nilpotent and P1/N is m-embedded in G/N by Lemma 2.1(1). Therefore G/N satisfies the hypothesis

of the theorem, and hence G/N is p-nilpotent. Obviously, N is the unique minimal normal subgroup of G

contained in Op(G) and Φ(G) = 1. Then we obtain that N = Op(G) is an elementary abelian p -group.

Case II . NG(P ) is p -nilpotent.

Since G is not p -nilpotent, by Corollary of [12], there exists a characteristic subgroup H of P such

that NG(H) is not p -nilpotent. Since NG(P ) is p -nilpotent, we may choose a characteristic subgroup H of P

such that NG(H) is not p-nilpotent, but NG(K) is p -nilpotent for any characteristic subgroup K of P with

H < K ≤ P . Since P ≤ NG(H) and NG(H) is not p -nilpotent, we have NG(H) = G by (2). This leads to

Op(G) ̸= 1 and NG(K) is p-nilpotent for any characteristic subgroup K of P such that Op(G) < K ≤ P .

Now by using Corollary of [12] again, we see that G/Op(G) is p -nilpotent and |P : Op(G)| > p . Let N be a

minimal normal subgroup of G contained in Op(G).

Since |P : N | > p , P/N is a Sylow p -subgroup of G/N , and

NG/N (P/N) = NG(PN)/N = NG(P )/N

is p-nilpotent and every maximal subgroup P1/N of P/N is m-embedded in G/N by Lemma 2.1(1). Therefore

G/N satisfies the hypothesis of the theorem, and hence G/N is p -nilpotent. Obviously, N is the unique minimal

normal subgroup of G contained in Op(G) and Φ(G) = 1. Then we obtain that N = Op(G) is an elementary

abelian p -group.

(4) G = PQ , where Q is a Sylow q -subgroup of G and q ̸= p is a prime divisor of |G| .
By (3), immediately we obtain that G is p -solvable, and then by (1) CG(N) = N since N ≤ CG(N) ≤

N . For any q ∈ π(G) with q ̸= p , Theorem 6.3.5 of [5] implies that there exists a Sylow q -subgroup Q

of G such that G1 = PQ is a subgroup of G . If G1 < G , then G1 is p -nilpotent by (2). This leads to

Q ≤ CG(N) ≤ N , a contradiction. Thus G = PQ .

(5) The final contradiction.

Since N ≰ Φ(G), there exists a maximal subgroup M of G such that G = NM and N ∩M = 1. Let

Mp be Sylow p -subgroup of M . Firstly, we may assume that Mp ̸= 1. Otherwise, Mp = 1 and then P = N .

If NG(P ) is p-nilpotent, then G is p -nilpotent, a contradiction. If NG(P1) is p -nilpotent, then there exists a
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maximal subgroup P1 of P such that P1 is normal in G by Lemma 2.2. Therefore G = NG(P1) is p -nilpotent,

a contradiction. Now we may obtain the final contradiction as follows.

Now we pick a maximal subgroup P1 of P such that Mp ≤ P1 . By hypothesis, P1 is m-embedded in

G , that is, G has a subnormal subgroup T and a {1 ≤ G}-embedded subgroup C such that G = P1T and

P1 ∩ T ≤ C ≤ P1 . Applying Lemma 2.3, we obtain that C ≤ Op(G) = N .

Assume that C ̸= 1. If C < N , then for N ∩M = 1, we obtain C neither covers nor avoids maximal

pair (M,G), a contradiction. Hence we may assume that C = N , i.e. N ≤ P1 and then P = NMp ≤ P1 < P ,

a contradiction.

Assume that C = 1. The Sylow p-subgroup of T is cyclic with order p . It follows from N ≤ Op(G) ≤ T

that |N | = p . Therefore M ∼= G/N = NG(N)/CG(N) is isomorphic to a subgroup of Aut(N), and then M is

cyclic with order qα by (4), that is, Mp = 1, a contradiction.

The final contradiction completes our proof.

Proof of Theorem 1.2 Assume that the assertion is false and choose G to be a counterexample of minimal

order. Furthermore, we have that

(1) Op′ (G) = 1.

If L = Op′ (G) ̸= 1, we consider G/L . Clearly, P1L/L is a maximal subgroup of Sylow p -subgroup of

G/L where P1 is a maximal subgroup of P . Since P1 is m-embedded in G , we have P1L/L is also m-embedded

in G/L by Lemma 2.1(3). Therefore G/L satisfies the condition of the theorem. The minimal choice of G

implies that G/L is p -supersolvable, and hence G is p -supersolvable, a contradiction.

(2) Op(G) ̸= 1.

Since G is p-solvable and Op′ (G) = 1, we have that a minimal normal subgroup of G is an abelian

p -group and hence Op(G) ̸= 1.

(3) Final contradiction.

By (2), we may pick a minimal normal subgroup N of G contained in Op(G). If N = P then G/N

is p -supersolvable. If N = P1 , where P1 is a maximal subgroup of P , then G/N is p-supersolvable. Now we

may assume that |P : N | > p . By Lemma 2.1(1), we know that G/N satisfies the condition of the theorem,

and hence the minimality of G implies that G/N is p -supersolvable; on the other hand, since the class of all

p -supersolvable groups is a saturated formation, we have N is the unique minimal normal subgroup of G and

Op(G) = N ≰ Φ(G). If Op(G) = P , then by Lemma 2.2, some maximal subgroup of P is normal in G , a

contradiction. Now we may assume that N < P .

Clearly, there exists a maximal subgroup M of G such that G = NM with N ∩M = 1 and P = NMp

with Mp ̸= 1. Now we choose a maximal subgroup P1 with Mp ≤ P1 . By hypothesis, P1 is m-embedded in

G . Therefore G has a subnormal subgroup T and a {1 ≤ G} -embedded subgroup C such that G = P1T and

P1 ∩ T ≤ C ≤ P1 . On the other hand, we know that C ≤ Op(G). Therefore C ≤ N . If 1 < C < N , then

for N ∩M = 1, we have C neither covers nor avoids maximal pair (M,G). Now we may assume that either

C = N or C = 1. By the choice of P1 , we immediately have P1 ∩ T = 1 and then the Sylow p -subgroup of

T is cyclic with order p . It follows from N ≤ Op(G) ≤ T that |N | = p . Therefore G is p -supersolvable since

G/N p -supersolvable, a contradiction.

The final contradiction completes our proof.
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Proof of Theorem 1.3. Assume that the assertion is false and choose G to be a counterexample of minimal

order. Furthermore, we have that

(1) Op′ (G) = 1.

If T = Op′ (G) ̸= 1, we consider G/T . Firstly, Fp(G/T ) = Fp(G)/T . Let M/T be a maximal subgroup

of Fp(G/T ). Then M is a maximal subgroup of Fp(G) containing Op′ (G). Since M is m-embedded in G ,

then M/T is m-embedded in G/T by Lemma 2.1(3). Thus G/T satisfies the hypothesis of the theorem. The

minimality of G implies that G/T is p -supersolvable and so is G , a contradiction.

(2) Φ(G) = 1 and Fp(G) = F (G) = Op(G).

If not, then L = Φ(G) ̸= 1. We consider G/L . Since Op′ (G) = 1, it is easy to show that Fp(G) =

F (G) = Op(G). This implies that Fp(G/L) = Op(G/L) = Op(G)/L = Fp(G)/L . If P1/L is a maximal

subgroup of Fp(G/L), then P1 is a maximal subgroup of Fp(G). Since P1 is m-embedded in G and hence

P1/L is m-embedded in G/L by Lemma 2.1(1). Thus G/L satisfies the hypothesis of the theorem. The minimal

choice of G implies that G/L is p -supersolvable and so is G , since the class of all p -supersolvable groups is a

saturated formation, a contradiction.

(3) Every minimal normal subgroup of G contained in F (G) is cyclic of order p .

By (2), P = F (G) = R1 × · · · × Rt , where Ri (i = 1, 2, · · · , t) is a minimal normal subgroup of G

contained in F (G). At the same time, Lemma 2.2 implies that t ≥ 2. Since G is p -solvable and Op′ (G) = 1,

we have CG(Op(G)) ≤ Op(G). Thus CG(F (G)) = F (G). Suppose that there exists Ri such that |Ri| > p .

Without loss of generality, let i = 1 and R = R2×· · ·×Rt . Obviously, we may assume that P/R∩Φ(G/R) = 1,

in fact, if P/R ∩ Φ(G/R) ̸= 1, then P/R ≤ Φ(G/R) since R1
∼= P/R is a chief factor of G . Therefore

P ≤ Φ(G)R and then P = P ∩ Φ(G)R = R(P ∩ Φ(G)) = R , a contradiction. Applying Lemma 2.1(1), G/R

satisfies the hypothesis of the theorem and we have that some maximal subgroup of P/R is normal in G/R by

Lemma 2.2, which contradicts the minimality of R1 . Therefore every Ri is of order p .

(4) The final contradiction.

By (3), P = F (G) = R1 × · · · ×Rt , where Ri is a minimal normal subgroup of G of order p . For each

i the quotient G/CG(Ri) is a subgroup of Aut(Ri) and hence is abelian. Since the class of all p -supersolvable

groups is a formation, we have G/
∩t

i=1(CG(Ri)) is p -supersolvable, and thus G/F (G) is p -supersolvable

because
∩t

i=1(CG(Ri)) = CG(F (G)) = F (G). Actually, all chief factors of G below F (G) are cyclic groups of

order p ; therefore G is p -supersolvable.

The final contradiction completes our proof.

4. Applications

Obviously, if H is {1 ≤ G} -embedded in G , then H is m-embedded in G . Therefore we have the following

corollaries.

Corollary 4.1 Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of G . If every maximal

subgroup P1 of P is {1 ≤ G}-embedded in G and NG(P1) is p-nilpotent, then G is p-nilpotent.

Corollary 4.2 Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of G . If every maximal

subgroup P1 of P is {1 ≤ G}-embedded in G and NG(P ) is p-nilpotent, then G is p-nilpotent.
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Corollary 4.3 Let G be a p-solvable group. If every maximal subgroup of a Sylow subgroup of G is {1 ≤ G}-
embedded in G , then G is p-supersolvable.

Corollary 4.4 Let G be a p-solvable group and p a prime divisor of |G| . If every maximal subgroup of Fp(G)

containing Op′ (G) is {1 ≤ G}-embedded in G , then G is p-supersolvable.
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