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Abstract: In this article we introduce the concept of r -ideals in commutative rings (note: an ideal I of a ring R is

called r -ideal, if ab ∈ I and Ann(a) = (0) imply that b ∈ I for each a, b ∈ R). We study and investigate the behavior

of r -ideals and compare them with other classical ideals, such as prime and maximal ideals. We also show that some

known ideals such as z◦ -ideals are r -ideals. It is observed that if I is an r -ideal, then so too is a minimal prime ideal

of I . We naturally extend the celebrated results such as Cohen’s theorem for prime ideals and the Prime Avoidance

Lemma to r -ideals. Consequently, we obtain interesting new facts related to the Prime Avoidance Lemma. It is also

shown that R satisfies property A (note: a ring R satisfies property A if each finitely generated ideal consisting entirely

of zerodivisors has a nonzero annihilator) if and only if for every r -ideal I of R , I[x] is an r -ideal in R[x] . Using this

concept in the context of C(X) , we show that every r -ideal is a z◦ -ideal if and only if X is a ∂ -space (a space in which

the boundary of any zeroset is contained in a zeroset with empty interior). Finally, we observe that, although the socle

of C(X) is never a prime ideal in C(X) , the socle of any reduced ring is always an r -ideal.

Key words: r -ideal, pr -ideal, annihilator, property A , zerodivisor, uz -ring, z◦ -ideal, r -multiplicatively closed, almost

P -space, ∂ -space, socle

1. Introduction

Throughout this paper all rings are commutative with 1 ̸= 0. Let R be a ring. For a ∈ R we define

AnnR(a) = {r ∈ R : ra = 0} (briefly, Ann(a)) and a is said to be a regular (resp., zerodivisor) element if

Ann(a) = (0) (resp., Ann(a) ̸= (0)). aR denotes the principal ideal generated by a ∈ R . If S is a subset

of R and I is an ideal of R , then we define (I : S) = {a ∈ R : aS ⊆ I} , clearly (0 : S) = Ann(S). By

r(R), zd(R), and u(R) we mean the set of all regular elements, zerodivisor elements, and unit elements of R ,

respectively. An ideal I of R is called a regular ideal if it contains at least a regular element, i.e. I ∩ r(R) ̸= ∅ .
If I is an ideal of R , then Min(I) denotes the set of all minimal prime ideals of I and we use Min(R) instead

of Min((0)). Similarly, Max(R) (resp., Spec(R)) denotes the set of all maximal (resp., prime) ideals of R .

For each a ∈ R , Pa (resp., Ma ) is the intersection of all minimal prime (resp., maximal) ideals containing a .

We use rad(R) (resp., Jac(R)) instead of P0 (resp., M0 ). A proper ideal I of R is called a z◦ -ideal (resp.,

z -ideal) if for each a ∈ I we have Pa ⊆ I (resp., Ma ⊆ I). Equivalently, I is a z◦ -ideal if a ∈ I , b ∈ R ,

and Ann(a) = Ann(b) imply that b ∈ I . For more information about the aforementioned ideals in general

commutative rings we refer the reader to [[2], [8], [26]]. If S is a subset of R , then an element a ∈ S is called a
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von Neumann regular element if there exists b ∈ S such that a = a2b . Whenever we say a ring R or a subset

of R is von Neumann regular, it means that all of their elements are von Neumann regular. An ideal I in

a ring R is called a pure ideal if for each a ∈ I there exists b ∈ I such that a = ab . Let us also recall the

following properties: A ring R satisfies a) property A : if each finitely generated (briefly, f.g.) ideal I ⊆ zd(R)

has nonzero annihilator; b) annihilator condition (briefly, a.c.): if for each f.g. ideal I of R there exists an

element b ∈ R with Ann(I) = Ann(b); c) strong annihilator condition (briefly, s.a.c.): if for each f.g. ideal I

of R there exists an element b ∈ I with Ann(I) = Ann(b). We refer the reader to [[1], [2], [18], [25]] for the

necessary background about the above concepts.

Let C(X) (resp., C∗(X)) be the ring of (resp., bounded) real valued continuous functions on a Tychonoff

space X . If f ∈ C(X), then Z(f) = {x ∈ X : f(x) = 0} is the zeroset of f and by intZ(f) we mean the

interior of Z(f). Recall that an ideal I of C(X) is a z -ideal if f ∈ I , g ∈ C(X), and Z(f) = Z(g) imply

that g ∈ I . It is known that if f, g ∈ C(X), then intZ(f) = intZ(g) if and only if Ann(f) = Ann(g); see [[5]].

Hence, an ideal I in C(X) is a z◦ -ideal if f ∈ I , g ∈ C(X) and intZ(f) = intZ(g) imply that g ∈ I ; see [[7],

[9]]. For more information about the ideals in C(X), see [[7], [10], [12], [16]], and for details about topological

spaces, see [[14], [16]].

In Section 2, we introduce r -ideals and pr -ideals in general commutative rings. It is shown that every

z◦ -ideal is an r -ideal, and if I is an r -ideal of R and P ∈ Min(I), then P is an r -ideal, too. We also show in

this section that the socle of every reduced ring is an r -ideal. In Section 3, we investigate the relations between

r -ideals and prime ideals. We observe that every maximal r -ideal in a ring is a prime ideal. We show that in

order for every prime r -ideal of a ring R to be minimal prime, it is necessary and sufficient that the classical

ring of quotients of R be a von Neumann regular ring. Finally, we naturally extend the celebrated results such

as Cohen’s theorem for prime ideals and the Prime Avoidance Lemma to r -ideals. In Section 4, we observe that

whenever I is an ideal of a ring R and I[x] is an r -ideal, then trivially I is also an r -ideal, but the converse

may not be true. In this section, we prove a ring R satisfies property A if and only if for every r -ideal I of R ,

I[x] is an r -ideal in R[x] . Section 5 is devoted to the investigation of r -ideals in C(X). We show that every

r -ideal is a z◦ -ideal if and only if X is a ∂ -space. It is observed that every ideal in C(X) is an r -ideal if and

only if X is an almost P -space. Using some appropriate facts in C(X), we answer some natural questions in

general. By giving several examples, we compare and contrast r -ideals with some well-known ideals, such as

z -ideals and z◦ -ideals.

2. r -ideals

Our aim in this section is to study the r -ideals in commutative rings. We begin with the following definition.

Definition 2.1 A proper ideal I in a ring R is called an r -ideal (resp., pr -ideal), if ab ∈ I with Ann(a) = (0)

implies that b ∈ I (resp., bn ∈ I , for some n ∈ N), for each a, b ∈ R .

Let I be an ideal of R and S be a multiplicatively closed (briefly, m.c.) subset in R . Clearly,

IS = {x ∈ R : sx ∈ I for some s ∈ S} is an ideal of R containing I . Now we call an ideal I an s -ideal

if I = IS , for some m.c. subset S of R . In case S = r(R), each s -ideal is an r -ideal. Recall that if S = r(R),

then the ring S−1R is called the classical ring of quotients of R , which is denoted by Q(R). Let φ : R → Q(R)

be the natural homomorphism. For each ideal J in Q(R), we put φ−1[J ] = J c . Clearly, J c is an ideal of R

and it is called the contraction of J in R . For the details of the concept of contraction, see [[3]].
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Proposition 2.2 Let R be a ring and I be an ideal of R . Then the following statements are equivalent:

a) I is an r -ideal.

b) rR ∩ I = rI , for each r ∈ r(R) .

c) I = (I : r) , for each r ∈ r(R) \ I .
d) I = J c , where J is an ideal in Q(R) .

Proof It is evident. 2

Recall that part (c) of the previous proposition is similar to this statement about prime ideals, which

says that a proper ideal P of a ring R is prime if and only if P = (P : a), for each a ∈ R \ P . We should

remind the reader that part (b) of the previous proposition may not be true if I is a prime ideal. The reason

that part (b) is valid for an r -ideal I is the fact I ∩ r(R) = ∅ ; this immediately implies that part (b) is trivially

true for prime ideal P with P ∩ r(R) = ∅ .
We observe several elementary properties concerning r -ideals in any ring R as follows:

Remark 2.3 a) If f : R → S is an isomorphism, then f [I] is an r -ideal in S whenever I is an r -ideal in

R , and f−1[J ] is an r -ideal in R whenever J is an r -ideal in S .

b) The zero ideal is an r -ideal.

c) The intersection of any family of r -ideals is an r -ideal.

d) If I is an r -ideal, then I ⊆ zd(R) .

e) Every r -ideal is a pr -ideal.

f) A prime ideal is an r -ideal if and only if it consists entirely of zerodivisors. Consequently, every

minimal prime ideal is an r -ideal.

g) If I is an r -ideal, S ⊆ R and S ⊈ I , then (I : S) is an r -ideal. In particular, Ann(S) is always an

r -ideal.

h) It is well known that if I is a minimal ideal of a reduced ring R , and then I = eR = Ann(1 − e) ,

where e ∈ R is an idempotent element, i.e. e2 = e . Hence, by part (g), every minimal ideal in a reduced ring

is an r -ideal.

i) Every pure ideal and also every von Neumann regular ideal is an r -ideal.

j) If R satisfies the s.a.c., and I is an ideal of R , then I is an r -ideal if and only if for every ideal of

J and K of R , whenever JK ⊆ I and Ann(J) = (0) , then K ⊆ I .

k) The product of two r -ideals is not necessarily an r -ideal; see Example [?].

l) The sum of two r -ideal is not necessarily an r -ideal; see Example [?].

Remark 2.4 It is well known that IcJ c ⊆ (IJ )c and Ic + J c ⊆ (I + J )c , where I and J are ideals of

Q(R) . Now suppose that I and J are r -ideals of R ; hence, by part (d) of Proposition [?], I = Ic and J = J c ,

for some ideals I and J in Q(R) . One can easily show that:

a) IJ is an r -ideal in R if and only if (IJ )c ⊆ IcJ c (in fact, (IJ )c = IcJ c ).

b) I + J is an r -ideal in R if and only if (I + J )c ⊆ Ic + J c (in fact, (I + J )c = Ic + J c ).

We need the following lemma in the sequel.

Lemma 2.5 Let R be a ring and I be an ideal of R . Then:
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a) I is an r -ideal if and only if whenever J and K are ideals of R with J ∩ r(R) ̸= ∅ and JK ⊆ I ,

then K ⊆ I .

b) If I ⊆ zd(R) is not an r -ideal, then there exist ideals J and K such that J ∩ r(R) ̸= ∅ , I ⫋ J,K ,

and JK ⊆ I .

Proof a) It is evident.

b) Suppose that I is not an r -ideal. Then there exist r ∈ r(R), x ∈ R with rx ∈ I but x /∈ I . Now put

J = (I : x) and K = (I : J). Clearly, r ∈ J \ I , J ∩ r(R) ̸= ∅ , x ∈ K \ I , and JK ⊆ I . 2

The proof of the following result is evident by the above lemma.

Proposition 2.6 a) Let R be a ring and I be an ideal of R with I ∩ r(R) ̸= ∅ . If J and K are r -ideals of

R such that IJ = IK or I ∩ J = I ∩K , then J = K .

b) Let R be a ring and I and J be ideals of R with J ∩ r(R) ̸= ∅ . If IJ is an r -ideal of R , then

I = IJ . In particular, I is an r -ideal.

In Remark [?], we observe that an intersection of r -ideals is an r -ideal. In the following proposition we

show that the converse is also true for prime ideals in the finite case. The result may not be true for an infinite

number of primes; take the intersection of nonzero prime ideals in Z .

Proposition 2.7 Suppose that P1, · · · , Pn are prime ideals in a ring R , which are not comparable. If
∩n

i=1 Pi

is an r -ideal, then Pi is an r -ideal, for i = 1, · · · , n .

Proof Let rx ∈ Pi with Ann(r) = (0) and take y ∈ (
∏

j ̸=i Pj) \ Pi . Hence, rxy ∈
∩n

i=1 Pi . Since
∩n

i=1 Pi is

an r -ideal, we infer that xy ∈
∩n

i=1 Pi , and therefore xy ∈ Pi . This implies that x ∈ Pi , i.e., Pi is an r -ideal. 2

It is well known that a ring R is a field if and only if I = (0) is the only maximal ideal of R . However,

we cannot extend this to domains by claiming that R is a domain if and only if I = (0) is its only prime ideal.

By trading off the prime ideals with the r -ideals, we get the next interesting fact.

Proposition 2.8 Let R be a ring. Then the following statements are equivalent:

a) R is a domain.

b) The zero ideal is the only r -ideal of R .

c) Ann(ab) = Ann(a) ∪Ann(b) , for every a, b ∈ R .

Proof (a ⇒ b) Let R be a domain and (0) ̸= I be a proper ideal of R . Hence, there exists 0 ̸= a ∈ I . By

our hypothesis, we have Ann(a) = (0), so I is not an r -ideal (note: otherwise 1 ∈ I , which is absurd).

(b ⇒ c) We know that Ann(x) is an r -ideal, for each 0 ̸= x ∈ R . Hence, by our hypothesis, we have

Ann(x) = (0), for each 0 ̸= x ∈ R . This immediately implies that Ann(ab) = Ann(a) ∪ Ann(b), for each

a, b ∈ R .

(c ⇒ a) Let ab = 0, where a, b ∈ R . Then R = Ann(ab) = Ann(a) ∪ Ann(b) implies that

1 ∈ Ann(a) ∪Ann(b). This means that a = 0 or b = 0, i.e. R is a domain. 2

Remark 2.9 We should remind the reader that part (d) of Proposition [?] is quite natural with regard to some

known facts. For example, if Q is the quotient field of a domain R , the zero ideal of R , which is the only

r -ideal of R , is the contraction of the only proper ideal of Q (i.e. (0)). We also note that whenever P is a
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prime ideal in a ring R and S = R \ P , then each prime ideal of S−1R is contracted to a prime ideal of R .

Finally, if in a ring R , we take S = r(R) , then the contractions of all proper ideals of Q(R) are naturally

r -ideals in R (note: proper ideals of Q(R) are all r -ideals).

In Example [?], we will observe that the sum of two r -ideals need not be an r -ideal. In the following

result we show that the sum of two special annihilator ideals of a ring and also the sum of a minimal prime

ideal and an annihilator ideal in a reduced ring are r -ideal.

Proposition 2.10 a) Let R be a ring and a, b ∈ R with a+ b = 1 . Then I = Ann(a) +Ann(b) is an r -ideal.

b) Let R be a reduced ring, P ∈ Min(R) and e ∈ R be an idempotent element. Then I = P +Ann(e) is

an r -ideal.

Proof a) Suppose that xy ∈ I and Ann(x) = (0). Hence, there exist r ∈ Ann(a) and s ∈ Ann(b) such that

xy = r + s . Clearly, xyab = 0, and since Ann(x) = (0), we infer that yab = 0. Consequently, ya ∈ Ann(b)

and yb ∈ Ann(a). Therefore, y = y(a+ b) = ya+ yb , i.e., y ∈ I .

b) Let rx ∈ I with Ann(r) = (0) and x ∈ R . Hence, rx = a + b , where a ∈ P and be = 0. Clearly,

there exists y /∈ P such that ay = 0. Therefore, eyrx = 0, we have eyx = 0, and hence ex ∈ P . Now

x = ex+ (1− e)x ∈ P +Ann(e) = I , and therefore I is an r -ideal. 2

If in the equality a + b = 1 of part (a) of the previous proposition, we replace 1 by R and a, b by two

subsets A,B in R , then Ann(A) + Ann(B) will be also an r -ideal.

In general, if R is a ring such that every ideal of R is an annihilator ideal (i.e. for every ideal I there

exists S ⊆ R such that I = Ann(S)), then every ideal of R is an r -ideal. Also, if for any two ideals I and

J in the ring R , there exists an ideal K such that Ann(I) + Ann(J) = Ann(K), then Ann(I) + Ann(J) is

an r -ideal. We should remind the reader that the latter case may happen in certain rings. In what follows

we mention some examples. We recall that if X is an extremally disconnected space (i.e. every open subset

of X has an open closure), then C(X) has the above property; see [[6]]. In [[11]], the concepts of SA -ring

and IN -ring are introduced and it is shown that these rings also satisfy the above property. We should also

emphasize that in contrast with the latter fact the sum of two r -ideals is not necessarily an r -ideal in general;

we refer the reader to Example 5.14 in this regard. However, it is worthwhile to remind the reader that any

direct summand of an r -ideal is always an r -ideal (i.e. if I = J ⊕K , and I is an r -ideal, then so too are J

and K ).

Remark 2.11 In contrast to the latter fact the summand of prime ideals may not be prime. To see this, take

a von Neumann regular ring that is not a finite direct product of fields, and then take a prime ideal P that is

not f.g. (note: von Neumann regular rings that are not a finite direct product of fields cannot be Noetherian;

hence, by Cohen’s theorem, it contains a prime ideal that is not f.g.), and notice that all of its f.g. subideals

are direct summands, which are not prime ideal.

Recall that the socle of a ring R , which is denoted by soc(R), is the sum of all minimal ideals of R . We

also recall that the socle of a reduced ring R is of the form soc(R) = ⊕i∈AeiR , where {ei : i ∈ A} is the set of

idempotents of R ; see [[23]]. By the following proposition we observe that the sum of principal ideals generated

by idempotents is an r -ideal, from which the socle of a reduced ring is an r -ideal. We know that the socle

plays an important role in the structure theory of rings, especially in the context of noncommutative rings and
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C(X). For details about the socle in general rings, see [[23]], and for a topological characterization of the socle

of C(X), see [[22]].

Proposition 2.12 Let R be a ring, and {ei : i ∈ A} is a set of idempotents of R . Then I =
∑

i∈A eiR is an

r -ideal.

Proof Let rx ∈ I , where x ∈ R and Ann(r) = (0). We are to show that x ∈ I . Since I =
∑

i∈A eiR , we

infer that rx =
∑n

k=1 eikrik for some i1, · · · , in ∈ A and ri1 , · · · , rik ∈ R . Let us put y =
∏n

k=1(1 − eik).

It is manifest that rxy = 0, and hence xy = 0. On the other hand, there exists s ∈ I such that y = 1 − s .

Therefore, x(1− s) = 0, so x = xs ∈ I . 2

Corollary 2.13 Let R be a reduced ring. Then soc(R) is an r -ideal. In particular, there exists an ideal J of

Q(R) such that soc(R) = J c .

It is interesting that in C(X), where X is an infinite topological space, the socle of C(X) is an r -ideal

that is not prime; see [[4], [15]].

Remark 2.14 Let M be a projective R-module, where R is a von Neumann regular ring. Then M is

isomorphic to a direct sum of countably generated r -ideals. To see this, we note that by a celebrated theorem

of Kaplansky M = ⊕i∈AMi , where each Mi is a countably generated submodule of M . Since M is a regular

module (i.e. each cyclic submodule of M is a direct summand), we infer that each Mi = ⊕∞
n=1xnR is regular

too. Hence, by [[[20]], Lemma 2], we conclude that Mi
∼= ⊕∞

n=1enR , where each en is idempotent. Now by

Proposition [?], each Mi is isomorphic to an r -ideal, and we are done.

We recall that in the ring C(X), the sum of two minimal prime ideals is either a prime ideal or all of

C(X); see [[16]]. In contrast to this fact, the sum of two minimal prime ideals in general is not necessarily an

r -ideal; see also the next example.

Example 2.15 Let R = F [x,y]
xyF [x,y] , where F is a field. Then P = xF [x,y]

xyF [x,y] and Q = yF [x,y]
xyF [x,y] are minimal prime

ideals of R . Clearly, P +Q ̸= R and (x+ y) + xyF [x, y] ∈ P +Q is a regular element. Hence, P +Q is not

an r -ideal.

The following is a counterpart of the well-known fact that Q is a primary ideal of a ring R if and only

if
√
Q is a prime ideal.

Proposition 2.16 Let R be a ring and I be an ideal of R . Then I is a pr -ideal if and only if
√
I is an

r -ideal.

Proof Suppose that I is a pr -ideal and ab ∈
√
I with Ann(a) = (0). Then there exists n ∈ N such that

anbn ∈ I . Clearly, Ann(an) = (0), so there exists m ∈ N such that bnm ∈ I and therefore b ∈
√
I . Conversely,

we assume that ab ∈ I with Ann(a) = (0). Since ab ∈
√
I we infer that b ∈

√
I and so there exists n ∈ N such

that bn ∈ I . 2

As we observed in the previous proposition, whenever
√
I is an r -ideal, then I is an pr -ideal. In the

following example, we show that
√
I may be an r -ideal where I may not be an r -ideal. This example also

shows that a pr -ideal is not necessarily an r -ideal.
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Example 2.17 Let S be a reduced ring with subring Z and P ̸= (0) be a minimal prime ideal in S with

P ∩Z = (0) . By [[[10]], Lemma 3.6], Q = xP [x] ⊆ S[x] is a minimal prime ideal in R = Z+ xS[x] , and hence

it is also an r -ideal. Now we consider Qn = xnP [x] with 1 ̸= n ∈ N . Clearly
√
Qn = Q is an r -ideal and

by Proposition [?] we conclude that Qn is a pr -ideal. We claim that Qn is not an r -ideal. To see this, put

f(x) = xn−1a , where 0 ̸= a ∈ P and g(x) = x . Thus, f(x)g(x) = xna ∈ Qn . Now it is clear that Ann(g) = (0)

and f /∈ Qn . Consequently, Qn is not an r -ideal.

Clearly, if I and J are r -ideals in a ring R , then IJ is a pr -ideal of R , but it may not be an r -ideal;

for instance, in the previous example, the ideal Q is an r -ideal, while Q2 is not an r -ideal (note: for a prime

ideal P , P 2 is prime if and only if P 2 = P ).

Using the previous proposition and Proposition [?], we have the next corollary.

Corollary 2.18 Let R be a ring and I be an ideal of R . Then the following statements are equivalent:

a) I is a pr -ideal.

b) rR ∩
√
I = r

√
I , for any r ∈ r(R) .

c)
√
I =

√
(I : r) , for any r ∈ r(R) \ I .

d) I = J c , where J is a primary ideal in Q(R) .

In the next section we will show that an r -ideal is not necessarily a z◦ -ideal; see part (d) of Remark [?].

In the following theorem, however, we observe that the converse holds.

Theorem 2.19 a) Every z◦ -ideal in a ring R is an r -ideal.

b) Every ideal consisting entirely of zerodivisors in a ring is contained in a prime r -ideal.

Proof a) Let I be a z◦ -ideal, ab ∈ I and Ann(a) = (0). Clearly, Ann(b) = Ann(ab). Since I is a z◦ -ideal,

we conclude that b ∈ I .

b) It is evident. 2

Let S be a m.c. subset of a reduced ring R . Clearly, I =
∑

a∈S Ann(a) is a z◦ -ideal, so by part (a) of

the previous theorem, I is also an r -ideal.

We remind the reader that if I is a z◦ -ideal (resp., z -ideal) and P ∈ Min(I), then P is a z◦ -ideal (resp.,

z -ideal); see [[[8]], Theorem 1.16] (resp., see [[10], [26]]). The following is a similar result.

Theorem 2.20 Let R be a ring and P ∈ Min(I) , where I is an r -ideal of R . Then P is an r -ideal.

Proof Suppose that ab ∈ P and Ann(a) = (0). By [[[18]], Theorem 1.2], there exist x /∈ P and n ∈ N such

that x(ab)n = xanbn ∈ I . Since Ann(an) = (0) and I is an r -ideal, we infer that xbn ∈ I ⊆ P . Since x /∈ P ,

we infer that bn ∈ P and therefore b ∈ P . 2

We conclude this section with the following example and the proposition that follows it.

Example 2.21 For two r -ideals I and J of R , with J ⊇ I , the ideal J
I of R

I may not be an r -ideal in R
I .

To see this, suppose that P ∈ Min(R) and M ∈ Max(R) such that P ⫋ M ⊆ zd(R) ; for maximal ideals of this

kind, see [[8]]. Clearly, P and M are r -ideals of R . However, (0) ̸= M
P and R

P is a domain, so M
P is not an

r -ideal of R
P .
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Proposition 2.22 Let I be an r -ideal in R contained in ideal J . If J
I is an r -ideal in R

I , then J is also an

r -ideal in R .

Proof It is evident. 2

3. r -ideals vs. prime ideals

This section is devoted to the relations between r -ideals and prime ideals and natural extensions of Cohen’s

theorem and the Prime Avoidance Lemma for r -ideals. We start with the following proposition.

Proposition 3.1 Let R be a ring. Then every maximal r -ideal of R is a prime ideal.

Proof Suppose that P is a maximal r -ideal of R , xy ∈ P and x /∈ P , and we are to show that y ∈ P .

Clearly, (P : x) is an r -ideal, P ⊆ (P : x) and y ∈ (P : x). Now by the maximality of P we have P = (P : x).

This implies that y ∈ P . 2

Using [[[8]], Corollary 1.22], every maximal ideal consisting entirely of zerodivisors in a reduced ring with

property A is a z◦ -ideal. In the following proposition we show that maximal r -ideals in reduced rings with

property A are also z◦ -ideals.

Proposition 3.2 Let R be a reduced ring with property A . Then every maximal r -ideal of R is a z◦ -ideal.

Proof Suppose that P is a maximal r -ideal of R . Therefore, P ⊆ zd(R), and so by [[[8]], Proposition 1.21],

there is a z◦ -ideal J such that P ⊆ J . By part (a) of Theorem [?], J is an r -ideal. Now the maximality of P

implies that P = J . Hence, P is a z◦ -ideal. 2

Recall that a nonzero ideal I in a ring R is called essential if for every nonzero ideal J of R we have

I ∩ J ̸= (0).

Proposition 3.3 Let I be a nonzero r -ideal of a reduced ring R , which is not essential. Then there is a

minimal prime ideal P containing I , which is a maximal r -ideal.

Proof Since I is not an essential ideal, there is a nonzero ideal J of R such that I ∩ J = (0). Since R is

reduced and (0) ̸= J , we infer that there exists P ∈ Min(R) such that J ⊈ P and hence there exists x ∈ J \P .

On the other hand, by Zorn’s Lemma, there exists a maximal r -ideal N containing I such that N ∩ J = (0).

Hence, JN = (0); that is to say, xN = (0) ⊆ P . Now we conclude that N ⊆ P and so I ⊆ N = P . (Note

that N is a prime ideal by Proposition [?].) 2

It is well known that every element of Q(R) is either a unit or a zerodivisor. Motivated by this fact, we

call a ring R a uz -ring if every element of R is either a unit or a zerodivisor. In this case, clearly R = Q(R).

For example, every von Neumann regular ring and any Artinian ring is a uz -ring. If R is a domain, then

obviously R is a field if and only if R is a uz -ring. Clearly, a ring R is a field if and only if every ideal in R

is prime. Similarly, R is a uz -ring if and only if every ideal in R is an r -ideal. More generally, we have the

following result.

Proposition 3.4 For any ring R the following statements are equivalent:

a) R is a uz -ring.

b) Every essential ideal of R is an r -ideal.

c) Every principal ideal of R is an r -ideal.
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d) Every prime ideal of R is an r -ideal.

e) Every maximal ideal of R is an r -ideal.

Proof It is evident. 2

The proof of the next result is similar to the proof of [[[8]], Proposition 1.26].

Proposition 3.5 Let R be a reduced ring. Then Q(R) is a von Neumann regular ring if and only if every

prime r -ideal of R is a minimal prime ideal.

Proof Let Q(R) be a von Neumann regular ring and P be a prime r -ideal of R that is not minimal prime,

and seek a contradiction. Therefore, there exists a ∈ P such that AnnR(a) ⊆ P . Hence, a
1 ∈ S−1P and

AnnQ(R)(
a
1 ) ⊆ S−1P . We conclude that S−1P /∈ Min(Q(R)), which is a contradiction. Conversely, since R is

reduced, by a well-known theorem of Kaplansky on characterization of von Neumann regular rings, it suffices

to show that each prime ideal is a minimal prime ideal. To see this, we prove in fact that each maximal ideal

is a minimal prime ideal. Let M ∈ Max(Q(R)); since Q(R) is a uz -ring, we have M ⊆ zd(Q(R)), so M is a

z◦ -ideal of Q(R). Hence, Mc = M∩ R is a prime z◦ -ideal of R and so it is a prime r -ideal of R , too. Now

by our hypothesis we conclude that Mc ∈ Min(R). Therefore, M ∈ Min(Q(R)). This implies that Q(R) is a

von Neumann regular ring. 2

In the following result we characterize the regularity of Q(R) in terms of r -ideals of R . Recall that an

ideal I is semiprime if
√
I = I .

Proposition 3.6 Let R be a ring. Then:

a) Q(R) is a von Neumann regular ring if and only if every r -ideal of R is a semiprime ideal.

b) If IJ = I ∩ J , where I and J are r -ideals of R , then Q(R) is a von Neumann regular ring.

c) If every r -ideal of R is idempotent, then Q(R) is a von Neumann regular ring.

Proof It is evident. 2

The following proposition is a counterpart of the celebrated Prime Avoidance Lemma for r -ideals; see

[[21]] for recent work on this lemma. First we need the next definition.

Definition 3.7 Let B ⊆
∪

i∈I Ai , where B , Ai s are subsets of a ring R . This inclusion is called irreducible

if no Ai can be removed from the union.

Theorem 3.8 Let I ⊆
∪n

i=1 Ji , where I and Ji s are ideals of a ring R , be an irreducible inclusion. If J1 is

an r -ideal and the others have regular elements, then I ⊆ J1 .

Proof Since I ⊈
∪n

i=2 Ji , there exists a ∈ I \
∪n

i=2 Ji . This implies that a ∈ J1 . Let x ∈ I
∩
(
∩n

i=2 Ji);

clearly x+ a /∈
∪n

i=2 Ji . Since x+ a ∈ I ⊆
∪n

i=1 Ji , we infer that x ∈ J1 . This implies that I
∩
(
∩n

i=2 Ji) ⊆ J1

and hence I(
∏n

i=2 Ji) ⊆ J1 . Since (
∏n

i=2 Ji) ∩ r(R) ̸= ∅ , by part (a) of Lemma [?], we conclude that

I ⊆ J1 . 2

The following fact is an interesting variant of the Prime Avoidance Lemma.

Corollary 3.9 Let Q ⊆
∪n

i=1 Pi , where Q and Pi s are ideals of a ring R , be an irreducible inclusion. If

P1 ∈ Min(R) and Pi ∩ r(R) ̸= ∅ , for all i ⩾ 2 , then Q ⊆ P1 . Moreover, if Q is a prime ideal, then Q = P1 ,

i.e. Q ∈ Min(R) .
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Proposition 3.10 Let R be a reduced ring with |Min(R)| < ∞ and Q ⊆
∪n

i=1 Pi , where Q and Pi s are ideals

of the ring R , be an irreducible inclusion. If P1 ∈ Min(R) and Pi is an essential ideal for all i ⩾ 2 , then

Q ⊆ P1 . Moreover, if Q is a prime ideal, then Q = P1 , i.e. Q ∈ Min(R) .

Proof Since R is a Goldie ring (see [[[23]], Theorem 11.43]), we infer that each Pi contains a regular element

for all i ⩾ 2; see [[[23]], Theorem 11.46]. Consequently, by the above corollary we are done. 2

Definition 3.11 Let R be a ring and S be a subset of R . We say that S is an r -multiplicatively closed

(briefly, r -m.c.) set if 0 /∈ S , 1 ∈ S , S contains at least a regular element t ̸= 1 , and rx ∈ S for all regular

elements r ∈ S and all x ∈ S (e.g., S = R \ I , where I is an r -ideal).

We remind the reader that if S is a m.c. subset, then S′ = S ∪ u(R) ∪ {ux : u ∈ u(R), x ∈ S} is a m.c.

subset containing all units. Clearly, if I is an ideal, then I ∩ S = ∅ if and only if I ∩ S′ = ∅ . Hence, for all

practical purposes we may assume that whenever S is a m.c. subset, then u(R) ⊆ S . Note that P is a prime

ideal if and only if S = R \ P is a m.c. set.

Similarly, let S be an r -m.c. subset and A be a m.c. subset containing a regular element (e.g.,

A = {rn : n = 0, 1, 2, ...} , where r ∈ r(R)); then S′ = S ∪ A ∪ {ax : a ∈ A, x ∈ S} is an r -m.c. subset.

In particular, we may take A to be r(R). Hence, from now on we may assume that whenever S is an r -m.c.

subset, then r(R) ⊆ S (note: if I is an r -ideal, then S = R \ I naturally contains r(R)). Therefore, I is an

r -ideal of R if and only if S = R \ I is an r -m.c. subset.

The following theorem is the counterpart of the celebrated theorem of IS Cohen for r -ideals.

Theorem 3.12 Let I be an ideal of a ring R and S be an r -m.c. subset in R with I ∩ S = ∅ . Then there

exists an r -ideal J such that I ⊆ J and J ∩ S = ∅ .

Proof Put A = {K : K is an ideal of R such that I ⊆ K and K ∩ S = ∅} . Clearly, A ≠ ∅ , and by Zorn’s

Lemma, A has a maximal element, namely J , with I ⊆ J and J ∩S = ∅ . We now claim that J is an r -ideal.

Let rx ∈ J , Ann(r) = (0), and x /∈ J . We are to seek a contradiction. Clearly, x ∈ (J : r) and so J ⫋ (J : r).

Now it is sufficient to show that (J : r) ∩ S = ∅ . To see this, let t ∈ (J : r) ∩ S , and then t ∈ S and rt ∈ J .

Since r ∈ r(R) ⊆ S , we infer that rt ∈ S , i.e. rt ∈ J ∩ S , which is a contradiction. 2

Definition 3.13 Let S be a subset of a ring R . We say that S is an r -saturated m.c. subset if S is an r -m.c.

Subset, and moreover, when xy ∈ S , then x, y ∈ S for every x, y ∈ R .

We should bring to the attention of the reader that whenever A is a set of r -ideals, then clearly

S = R \
∪

I∈A I is an r -saturated m.c. subset of R . In the following result we aim to show that every

r -saturated m.c. subset of R is of the latter form, which is the counterpart of its corresponding fact for

saturated m.c. sets.

Proposition 3.14 Let S be an r -saturated m.c. subset of a ring R and

A = {I : I is an r -ideal of R with I ∩ S = ∅}.

Then S = R \
∪

I∈A I .
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Proof Since (0)∩S = ∅ , we infer that (0) ∈ A . This implies that A ≠ ∅ and it is manifest that S ⊆ R\
∪

I∈A I .

Now suppose that x ∈ R \
∪

I∈A I but x /∈ S and seek a contradiction. Since xR ∩ S = ∅ , by the previous

theorem there exists an r -ideal I containing x such that I ∩ S = ∅ . Consequently, I ∈ A . By our assumption

x does not belong to any member of A , whereas x ∈ I ∈ A , which is the desired contradiction. 2

Remark 3.15 Let R ⊆ T be rings. It is possible that J is an r -ideal of T , but J ∩R = I is not an r -ideal of

R . To see this, let A = Z and T = Z×Z . Clearly, φ : Z → Z×Z defined by φ(x) = (x, 0) is a monomorphism.

Then R = φ(Z) is a domain. Also, it is clear that J = Ann((0, 1)) is a nonzero r -ideal in T. On the other

hand, R ⊆ J , and hence I = R = J ∩R is not an r -ideal in R .

Definition 3.16 Let R and T be rings with R ⊆ T . We say that R is essential in T , if R ∩ I ̸= (0) , for

every nonzero ideal of T .

For example, C∗(X) is essential in C(X). To see this, let I be an ideal in C(X) and 0 ̸= f ∈ I , and

clearly 0 ̸= g = f
1+f2 ∈ I ∩ C∗(X). More generally, R is essential in Q(R).

In contrast to the fact in Remark [?], we have the following result.

Proposition 3.17 Let R ⊆ T be rings such that R is essential in T . If I is an r -ideal in T , then I ∩R = J

is an r -ideal in R .

Proof Suppose that r, x ∈ R and rx ∈ J with AnnR(r) = (0). We are to show that x ∈ J . Clearly,

rx ∈ I . We claim that AnnT (r) = (0). To see this, let AnnT (r) ̸= (0), and then by our hypothesis, we have

AnnT (r) ∩ R ̸= (0), so there exists 0 ̸= y ∈ R such that y ∈ AnnT (r), i.e. yr = 0. Consequently, we have

y ∈ AnnR(r), which is a contradiction. Thus, x ∈ I and hence x ∈ J . 2

4. r -ideals in polynomial rings

Let R[x] denote the ring of polynomials with coefficients in R . If f =
∑n

i=0 fix
i ∈ R[x] , then the content of

f , by definition, is the ideal of R generated by the coefficients of f and is denoted by c(f), and the set of

coefficients of f is denoted by C(f), i.e. C(f) = {f0, f1, . . . , fn} . If I is an ideal of R then I[x] is denoted

by the set {f ∈ R[x] : C(f) ⊆ I} . Also let R[[x]] be the ring of formal power series with coefficients in R . If

f =
∑∞

i=0 fix
i ∈ R[[x]] , then C(f) is the sequence {fn}n∈N .

Remark 4.1 a) Let R be a reduced ring and f ∈ R[x] ; then by [[[2]], Theorem 3.3], we have Ann(f) =

Ann(C(f))[x] . Also, if f ∈ R[[x]] , then clearly Ann(f) = Ann(C(f))[[x]] .

b) If I[x] is an r -ideal in R[x] , then I is an r -ideal in R . The converse is true if and only if R satisfies

property A ; see Theorem [?] (note: R[x] and C(X) have property A). We should also remind the reader that

if I = Ann(a) with 0 ̸= a ∈ R , then I[x] is an r -ideal in R[x] .

c) Let I[[x]] be an r -ideal in R[[x]] , and then I is an r -ideal in R . The converse is true if R satisfies

the c.a.c.; see Proposition [?]. It is also clear that if I = Ann(a) where 0 ̸= a ∈ R , then I[[x]] is an r -ideal in

R[[x]] .
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d) Let I be a semiprime ideal of a reduced ring R . Assume that f, g ∈ R[[x]] , where f =
∑∞

i=0 fix
i and

g =
∑∞

i=0 gix
i . Then one can easily show that fg ∈ I[[x]] if and only if fngm ∈ I , for n,m = 0, 1, 2, · · · .

e) If (I, x) is an r -ideal in R[x] , then I is an r -ideal in R . The converse is not true in general. For

example, the ideal I = (0) in R is an r -ideal, but (I, x) = xR[x] is not an r -ideal in R[x] .

f) If M ∈ Max(R[x]) , then by [[[19]], Theorem 150] there exists f ∈ M such that AnnR[x](f) = (0) , so

M is not an r -ideal. This implies that R[x] is never a uz -ring.

g) If R satisfies property A , f ∈ R[x] and AnnR[x](f) = (0) , then by [[[18]], Theorem 2.6], there exists

a ∈ c(f) such that AnnR(a) = (0) , and hence c(f) is not an r -ideal.

h) Let R be a uz -ring and M ∈ Max(R[x]) , and then there is f ∈ M such that AnnR[x](f) = (0) , by

part (f). Whenever I = c(f) ̸= R , then I is an r -ideal, whereas I[x] is not an r -ideal.

In the following proposition we show that if I is an r -ideal in a reduced ring R , then I[x] is an r -ideal

in R[x] if and only if R satisfies property A .

Theorem 4.2 Let R be a ring. Then the following statements are equivalent:

a) R satisfies property A .

b) I is an r -ideal in R if and only if I[x] is an r -ideal in R[x] , for every ideal I of R .

Proof (a ⇒ b) Let I be an r -ideal of R , f, g ∈ R[x] and fg ∈ I[x] with AnnR[x](g) = (0). Hence, by [[[2]],

Proposition 3.5], we conclude that c(g) ⊈ zd(R). Therefore, there exists r ∈ c(g) such that AnnR(r) = (0).

Clearly, C(fg) ⊆ I and so c(fg) ⊆ I . Now by [[[17]], Theorem 28.1], we have c(g)n+1c(f) = c(g)nc(fg), where

n is the degree of f . This implies that c(g)n+1c(f) ⊆ I . Since rn+1 ∈ c(g)n+1 , we infer that rn+1c(f) ⊆ I .

On the other hand, we have AnnR(r
n+1) = (0). Now we conclude that c(f) ⊆ I . Thus, f ∈ I[x] . The converse

is evident.

(b ⇒ a) Suppose, on the contrary, that R does not satisfy property A . We are to seek a contradiction.

By [[[2]], Proposition 3.5], there exists f ∈ R[x] such that AnnR[x](f) = (0) and I = c(f) ⊆ zd(R). Now by

part (b) of Theorem [?], there exists a prime r -ideal P such that I ⊆ P , i.e. c(f) ⊆ P . Hence, f ∈ P [x] ,

while f is a regular element. Thus, P [x] is not an r -ideal, which is the desired contradiction. 2

Corollary 4.3 Let R be a uz -ring. Then R satisfies property A if and only if I[x] is an r -ideal in R[x] , for

every ideal I of R .

A ring R is said to have the finite (resp., countable) annihilator condition or briefly to have the f.a.c.

(resp., the c.a.c.) if for every finite (resp., countable) subset S of R there exists an element a ∈ S with

Ann(S) = Ann(a).

For example, the ring Zpn , where p is a prime number and n ∈ N , satisfies the f.a.c. To see this, let

a ∈ Zpn , and hence there exists 0 ⩽ r ⩽ n , such that a = pra1 , with a1 and p being relatively prime. One can

easily show that AnnZpn
(a) = pn−rZpn . Now if b = psb1 , with r ⩽ s , then Ann(a, b) = Ann(a) ∩ Ann(b) =

pn−rZpn ∩ pn−sZpn = pn−sZpn = Ann(b). More generally, if in a ring R , the set of all Ann(r), where r ∈ R ,

is a chain, then R satisfies the f.a.c. Clearly, if R is a finite ring, which satisfies the f.a.c., then R satisfies the

c.a.c. Also, if F is a field, then R = F [x]
x2F [x] satisfies the c.a.c.
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It is clear that if R satisfies the f.a.c., then it satisfies the s.a.c., and so it satisfies the a.c. A ring R may

satisfy property A , but it may not satisfy a.c. and also f.a.c.; see [[[2]], Example 4.1].

Proposition 4.4 Let R be a ring satisfying the f.a.c. (c.a.c.) and I be a semiprime ideal of R . Then I is

an r -ideal in R if and only if I[x] (I[[x]]) is an r -ideal in R[x] (R[[x]]).

Proof Let f, g ∈ R[x] and fg ∈ I[x] with AnnR[x](f) = (0). Thus, AnnR(C(f)) = (0). By our hypothesis,

there exists a ∈ C(f) such that AnnR(C(f)) = AnnR(a). Therefore, AnnR(a) = (0). It is easy to show that

aC(g) ⊆ I . Since I is an r -ideal in R , we infer that C(g) ⊆ I . This implies that g ∈ I[x] , i.e. I[x] is an

r -ideal in R[x] . The converse is evident. In case (I[[x]]), whenever R satisfies the c.a.c., the proof is similar.

2

5. r -ideals in C(X)

In this section we will investigate the relations between r -ideals, z◦ -ideals, and z -ideals in C(X). We

characterize the topological spaces X for which r -ideals coincide with others. In this section, for the sake

of brevity, r(C(X)), zd(C(X)), and u(C(X)) are replaced by r(X), zd(X), and u(X). It is easy to see that

f ∈ C(X) is a regular element if and only if intZ(f) = ∅ ; see also [[7]]. Let us recall the following definitions.

Definitions 5.1 A topological space X is said to be:

a) P -space if every prime ideal of C(X) is a z -ideal.

b) F -space if finitely generated ideals of C(X) are principal.

c) Almost P -space if every nonempty zeroset has a nonempty interior, or equivalently every z -ideal of

C(X) is a z◦ -ideal.

d) Quasi F -space if finitely generated ideals containing a nondivisor of 0 in C(X) are principal, or

equivalently the sum of two z◦ -ideals of C(X) is a z◦ -ideal.

e) m-space if every prime z◦ -ideal of C(X) is minimal prime ideal, or equivalently if for every zeroset

Z in X there exists a zeroset F in X such that Z ∪ F = X with intZ ∩ intF = ∅ .
f) Quasi m-space if every prime z◦ -ideal of C(X) is either a minimal prime or a maximal ideal.

g) W. almost P -space if for every two zerosets Z and F , with intZ ⊆ intF , there exists a zeroset E in

X such that Z ⊆ F ∪ E and intE = ∅ .
h) ∂ -space if for every zeroset Z in X there exists a zeroset F in X such that ∂(Z) ⊆ F and intF = ∅ ,

where ∂(Z) = Z \ intZ is the boundary of Z .

For more details about P -spaces and F -spaces, see [[16]]. For almost P -spaces, see [[5], [24]]; for quasi

F -spaces, see [[13]]; and for other spaces, see [[9]].

We cite the following facts from [[9]].

Proposition 5.2 a) Every z -ideal I ⊆ zd(X) of C(X) is a z◦ -ideal if and only if X is an almost P -space.

b) Every prime z -ideal P ⊆ zd(X) of C(X) is a z◦ -ideal if and only if X is a w. almost P -space.

c) Every prime ideal P ⊆ zd(X) of C(X) is a z◦ -ideal if and only if X is a ∂ -space.
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Proposition 5.3 For a topological space X the following statements are equivalent:

a) X is an almost P -space.

b) Every ideal I of C(X) is an r -ideal.

c) Every ideal I ⊆ zd(X) of C(X) is an r -ideal.

Proof (a ⇔ b) By [[[5]], Theorem 2.2] we know that X is an almost P -space if and only if C(X) is a uz -ring.

Therefore, every ideal in C(X) is an r -ideal if and only if X is an almost P -space.

(b ⇒ c) It is clear.

(c ⇒ a) Suppose that 0 ̸= f ∈ C(X) and intZ(f) = ∅ , and we are to show that Z(f) = ∅ . Assume that

x /∈ Z(f); therefore, there exist g, h ∈ C(X) such that x ∈ intZ(g), Z(f) ⊆ intZ(h), and Z(g) ∩ Z(h) = ∅ .
Now we put I = fgC(X). Clearly, I is consisting entirely of zerodivisors, for intZ(fg) = intZ(g) ̸= ∅ . Thus,

by our hypothesis, I is an r -ideal. Since fg ∈ I and f is regular, we conclude that g ∈ I and hence g = fgk

for some k ∈ C(X). Now using Z(f) ⊆ Z(g), we have Z(f) = Z(f) ∩ Z(g) ⊆ Z(h) ∩ Z(g) = ∅ . This implies

that Z(f) = ∅ and we are done. 2

Proposition 5.4 Every r -ideal of C(X) is a z◦ -ideal if and only if X is a ∂ -space.

Proof The necessary is clear by part (c) of Proposition [?]. For sufficiency, the proof is similar to that of [[[9]],

Theorem 4.4]. 2

Let us remind the reader that in part (l) of Remark [?], we have noticed that the sum of two r -ideals is

not necessarily an r -ideal. It is interesting to observe, in what follows, that in a ∂ -space quasi F -space, the

sum of r -ideals becomes an r -ideal.

Corollary 5.5 Let X be a ∂ -space. Then the following statements hold:

a) I is an r -ideal in C(X) if and only if it is a z◦ -ideal.

b) I is an r -ideal in C(X) if and only if
√
I is an r -ideal.

c) I is an r -ideal in C(X) if and only if every minimal prime ideal of I is an r -ideal.

d) Every prime ideal in C(X) is an r -ideal in C(X) if and only if every prime ideal is a z◦ -ideal.

e) The sum of two r -ideals of C(X) is an r -ideal if and only if X is a quasi F -space.

Since a ∂ -space almost P -space is a P -space, the following corollary is immediate.

Corollary 5.6 Let X be a ∂ -space. Then the following statements are equivalent:

a) X is a P -space.

b) Every ideal is an r -ideal in C(X) .

c) Every prime ideal is an r -ideal in C(X) .

Proposition 5.7 Every prime r -ideal of C(X) is a z◦ -ideal if and only if X is an m-space.

Proof It is evident. 2

Lemma 5.8 Let X be an m-space. Then every r -ideal of C(X) is a z -ideal.
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Proof Suppose that I is an r -ideal, f, g ∈ C(X), f ∈ I , and Z(f) = Z(g); we are to show that

g ∈ I . By our hypothesis, there exists 0 ≤ h ∈ C(X) such that hf
1
3 = 0 and intZ(h + f

2
3 ) = ∅ . Clearly,

f
1
3 (h + f

2
3 ) = f ∈ I . Since I is an r -ideal, we infer that f

1
3 ∈ I and hence f

2
3 ∈ I . On the other hand,

Z(h) ∪ Z(f
2
3 ) = Z(h) ∪ Z(f) = Z(h) ∪ Z(g) = X implies that gh = 0. Now we have g(h + f

2
3 ) = gf

2
3 ∈ I .

Hence, by our hypothesis, we conclude that g ∈ I . 2

The following corollary is now evident.

Corollary 5.9 Let X be an m-space, f ∈ C(X) and I = fC(X) . Then the following statements are

equivalent:

a) intZ(f) = Z(f) .

b) I is an r -ideal.

c) I is a z -ideal.

d) I is a z◦ -ideal.

Using Proposition [?] and the fact that every almost P -space that is also a ∂ -space is a P -space, the

following corollary is now evident.

Corollary 5.10 Let X be an almost P -space. Then the following statements are equivalent:

a) X is a P -space.

b) Every r -ideal in C(X) is a z -ideal.

c) Every r -ideal in C(X) is a z◦ -ideal.

Theorem 5.11 Every r -ideal in the class of all z -ideals of C(X) is a z◦ -ideal if and only if X is w. almost

P -space.

Proof Let I be an r -ideal that is also a z -ideal. Assume that intZ(f) ⊆ intZ(g) and f ∈ I , and we must

show that g ∈ I . By definition of w. almost P -spaces, there exists h ∈ C(X) such that intZ(h) = ∅ and

Z(f) ⊆ Z(gh). Since I is a z -ideal, we infer that gh ∈ I . Since I is an r -ideal we conclude that g ∈ I .

Conversely, it suffices to show that every prime z -ideal consisting entirely of zerodivisors is a z◦ -ideal, by [[[9]],

Theorem 4.2]. To this end, we just notice that every prime ideal consisting entirely of zerodivisors is an r -ideal.
2

Let us recall that the socle of C(X), denoted by CF (X), is of the form CF (X) = {f ∈ C(X) :

X \ Z(f) is a finite subset of X} ; see [[[22]], Proposition 3.3]. It is also shown that CF (X) is never a prime

ideal in C(X); see [[[4], Proposition 2.5] and [[15]]. One can easily show that CF (X) is a z◦ -ideal. Note that

we have already shown (see Corollary [?]) that the socle of any reduced ring is an r -ideal.

Remark 5.12 We should emphasize that CF (X) is an r -ideal, as we may present in a direct proof, in which

we do not need to use Theorem [?] or Corollary [?]. Let fg ∈ CF (X) , intZ(f) = ∅ , and g ∈ C(X) . Clearly,

cl(X \ Z(f)) = X , and hence

X \ Z(g) ⊆ cl(X \ Z(g)) = cl(X \ Z(fg)) = X \ Z(fg).

Therefore, X \ Z(g) is a finite subset of X , i.e. g ∈ CF (X) .
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One can easily see that other ideals in C(X) of this kind, such as CK(X) = {f ∈ C(X) : cl(X \
Z(f)) is a compact subset of X} , are r -ideals, too.

Remark 5.13 Suppose that X is an almost P -space that is not P -space.

a) C(X) is a uz -ring but it is not a von Neumann regular ring.

b) Any r -ideal is not necessarily a pure ideal. For example, by [[[1]], Corollary 2.4] there exists x ∈ X

such that Mx = {f ∈ C(X) : f(x) = 0} is not a pure ideal, while this ideal is an r -ideal. More generally,

whenever A is regular closed in X , i.e. cl(int(A)) = A (X is not necessarily an almost P -space), then

MA = {f ∈ C(X) : A ⊆ Z(f)} is an r -ideal.

c) Any r -ideal is not necessarily a von Neumann regular ideal. Since X is not a P -space, there exists

f ∈ C(X) such that f is not a von Neumann regular element. Now ideal I = fC(X) is not von Neumann

regular ideal, while this ideal is an r -ideal.

d) Any r -ideal is not necessarily a z -ideal and so is not a z◦ -ideal either. Since X is not a P -space,

there exists an ideal I in C(X) such that it is not a z -ideal, while this ideal is an r -ideal.

It is well known that the sum of two prime ideals (z -ideals) in C(X) is either C(X) or is a prime ideal

(z -ideal); see [[16]]. The next example shows that r -ideals do not have this property.

Example 5.14 The sum of two r -ideals may not be an r -ideal. For example, we consider two ideals in C(R) ,
namely M[0,∞) = {f ∈ C(R) : [0,∞) ⊆ Z(f)} and M(−∞,0] = {f ∈ C(R) : (−∞, 0] ⊆ Z(f)} . Clearly, these

ideals are z◦ -ideals and by part (a) of Theorem [?] are r -ideals. Now we put f(x) = 0 if 0 ≤ x , f(x) = x

if x < 0 , and g(x) = 0 if x ≤ 0 , g(x) = x , if 0 < x . Clearly, f ∈ M[0,∞) , g ∈ M(−∞,0] and f + g = i ,

where i ∈ C(R) is the identity function. Hence, i ∈ M[0,∞) +M(−∞,0] . On the other hand, Z(i) = {0} implies

intZ(i) = ∅ , and so i is a regular element. Therefore, M[0,∞) +M(−∞,0] is not an r -ideal.

The next example shows that every ideal consisting of zerodivisors is not necessarily an r -ideal (even if

it is a semiprime or even a z -ideal). Recall that every z -ideal in C(X) is a semiprime ideal.

Example 5.15 Any z -ideal consisting entirely of zerodivisors is not necessarily an r -ideal. For example,

in C(R) we consider I = {f ∈ C(R) : [0, 1] ∪ {2} ⊆ Z(f)} . Clearly, I is a z -ideal consisting entirely

of zerodivisors. Now suppose that Z(g) = [0, 1] and Z(h) = {2} , where g, h ∈ C(R) . It is obvious that

[0, 1] ∪ {2} = Z(g) ∪ Z(h) = Z(gh) , so gh ∈ I . Since intZ(h) = ∅ and g /∈ I , we conclude that I is not an

r -ideal.
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