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Abstract: Let (X,2, ) and (X,X,7) be measure spaces. Assume that L1 0) (X 1) and LP2()20) (X 1) are two

variable exponent Lorentz spaces where p,q € Py ([0,]). In this paper we investigated the existence of the inclusion

POl (x ) ¢ Lr2(%20) (X, 1) under what conditions for two measures p and v on (X,X).
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1. Introduction

Let (X,X, 1) be a measure space. The distribution function of f is defined by

Ar()=pn({re X :|f(x) >y}) = / dp () [4,6].
{zeX:|f(2)>y}

The rearrangement function of f is defined by

fr@t)=inf{y >0: Af(y) <t} =sup{y >0: s (y) >t},t>0 [4,6].

Moreover, the average function of f* is given by

Let 0 <l < oco. We put

p— = inf p(x), pT = sup p(z).
z€[0,1] z€[0,1]

In this paper, we shall also use the notation

Pa:{p:a<p,§p+<oo}, a €R.

*Correspondence: oznur.kulak@giresun.edu.tr
2010 AMS Mathematics Subject Classification: 43A15.
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The set IP ([0,00]) is the family of p € L* ([0,00]) such that there exist the limits p(0) = limp (z),

z—0

p(o0) = lim p(z) and we have

T—r00

p@) - pO) <, lel<y (©>0)
||
and
(@) —ploo)| < —C . Ja|>2 (C>0). (L1)
e+’

We also denote IP, ([0,1]) = IP([0,1]) N P, ([0,]). If | = oo, it is enough that the inequality (1.1) is satisfied
[4].
Let € X. We denote | = p (). Assume that p,q € Py ([0,{]). The variable exponent Lorentz

spaces LP():40)(Q, 1) are defined as the set of all (equivalence classes) measurable functions f on X such that

JIp,q(f) < o0, where

l

cmm:ﬁ%*wmww. (1.2)

0

We use the notation

. /
15010000 =08 {2 > 0: h) < 1) 2.

Let p € IP,([0,1]) and ¢ € IP; ([0,1]). If | = oo, then the equality (1.2) is equivalent to the following sum:

1 oo
/ﬁ%*www@ﬁ+/ﬁ%*wwmwwﬂﬂ
0 1

IO
If I < 0o, then the equality (1.2) is equivalent to the integral ft%_l (f* ()" at [4] . The space LP()40)(Q, p)
0

is a normed vector space with norm

i f
||fHLp(.),q<.)(Q’H) = inf {/\ >0: prq(x) <1

such that J, o(f ft:»iii (f= ()@ dt [4].

For 0 < p < g < o0, the inclusion ? (X) C 17 (X) is known. In [13], the inclusion L? (u) C L9 (u) was
characterized by all positive measures whenever 0 < p < ¢ < co. Then Romero [10] improved some results
of [13]. Lastly, the more general inclusion LP (1) C L7 (v) was considered by [8], where p and v are two
measures on (X, Y). Moreover, in [5], Giirkanli considered inclusion theorems of Lorentz spaces. Embeddings
for discrete weighted Lebesgue spaces with variable exponents were studied by Nekvinda [9]. In [1], the inclusion

LPO) (p) € LI (v) was considered by Aydin and Giirkanli. In [2], Bandaliev considered embeddings between
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variable exponent Lebesgue spaces with different measures. Also in this area, Diening et al. studied Lebesgue

and Sobolev spaces with variable exponent [3]. Now, in the present paper, we investigate the existence of the

inclusion LP1()a1() (X, 1) ¢ LP2():920) (X, ) under what conditions.

2. Main results
Let (X,X, 1) be a measure space. If two measures p and v are absolutely continuous with respect to each other

(n << v and v << ) then we denote this by u~v [11].

Lemma 1 The inclusion LP1()a1() (X, p) C Lp2()-a2() (X,v) holds in the sense of equivalence classes if and

only if p~v and LP*)a0) (X 1) ¢ LP>0)-20) (X v) in the sense of individual functions.

Proof  Assume that LP10)a() (X ) < Lr2()2() (X 1) holds in the sense of equivalence classes. Let
f e LPOal) (X 1) be any individual function. That means f € LP1()4() (X, 1) in the sense of equivalence
classes. Therefore, we have f e LP2().a2() (X,v) in the sense of equivalence classes from the assumption.
Thus we obtain f € LP2():a2() (X,v) in the sense of individual functions. Therefore, we find the inclusion
L Oa() (X ) ¢ LP2()20) (X, 1) in the sense of individual functions. Let E € S with p(E) = 0. Then

since xg = 0 p-almost everywhere (a.e), we have

l

) ()
L (¢ (1) dt = / £ (o iy (6) "
0

t
t

1(
1(

l
JPMh (XE) = /tp
0

w(E)
‘117(")_1
= /tm(t) dt =0

0

and we write ygp € LP1()01() (X ). Therefore, xg is in the equivalence classes of 0 € LP1()a() (X 1),
Moreover, the equivalence classes of 0 (with respect to ) are also an element of LP2()%2() (X v). Thus xg

is in the equivalence classes of 0 € LP2():92() (X v) with respect to v. This implies v (E) = 0. Therefore,
v << . Similarly, u << v is proved. The proof of the other side is clear.
Throughout, we assume that p,q € Py ([0,1]) unless the contrary is stated. O

Lemma 2 a) Let 1 (X) = oo, p,q € IPy([0,00]), q(o0) > p(o0) and q(0) < p(0). If (fn),cn convergences
to f in LPO9O) (X 1) then (fn)pen convergences to f in measure.
b) Let u(X) < oo and p,q € IPy([0,00]). If (fnu),en convergences to f in LPO9C) (X ) then

(fn)pen convergences to f in measure.

Proof a) Assume that (f,), .y convergences to f in LP()40) (X, u). Then we write

1 o]
a(0) 1

Ip.q (fn—f)%/twm (fa— )" @) dt+/t%*1(fn—f)*(t)q<f> dt — 0

0 1
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for n — oo. Since g (00) > p(c0) and ¢ (0) < p(0) , we have

/ (o= 1) 07 dt < Jypg (fu — ) = 0.
0

for n — co. Then (f, — f)* convergences to 0 in L) ([0,00]). Thus we find that (f,, — f)* convergences to

0 in measure (with respect to measure on [0,00]) by [7]. Furthermore, since

AMpumpy @ =p({t:(fa = 1)) >e}) =p({z: (fu = f) (@) > e}) = Ag—p) () (6]
for all € > 0, f, converges to f in measure.
b) Assume that (fy),cy convergences to f in LP:90) (X, ). Then since [ = p (X) < oo,

l
a(0)

Jpg (fn— ) = /tfgrl (Fo— ) O dt -0

0

holds for n — oco. In addition, LP()9() (X, 1) is a Banach function space [4] and we have

[ = D) @) < Cx 0 = Flinratr o

X

(2.2)

Therefore by using (2.1) and (2.2), we obtain (fy), oy convergences to f in L'(X). Thus f, converges to f

in measure.

Theorem 1 a) Let p;,q; € IP, ([0,0]), (i=1,2), pu(X)
(1 =1,2). Then the inclusion

Lpl(-)7Q1(-) (X) u) C LP2(-)#12(-) (X’ V)

holds in the sense of equivalence classes if and only if p~ v and there exists C > 0 such that

1 1
||f||LP2(~)~<I2(-)(X,y) < C Hf||LP1(4>,41(-)(X7#)

for all f e LPrOa() (X ).
b) Let p;,q; € IP1([0,1]), (i=1,2) and | = u(X) < 0o. Then the inclusion

() (X, p) C Lp2():a20) (x| V)
holds in the sense of equivalence classes if and only if u ~ v and there exists C > 0 such that
1 1
[ zr20020(x,0) < C Ul Lrrioar0 (x

for all f € LPOa0) (X ).
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Proof a) Suppose that LP1()a() (X, ) ¢ LP2():92() (X, 1) holds in the sense of equivalence classes. We define
the unit operator I(f) = f from LP1()a1() (X ) into LP2()%2() (X, v). Now we show that I is closed. Let
(fn)nen be a sequence such that f, — f in L OaC) (X ) and T(f,) = fn — g in LP2()@20) (X ). Thus,
by Lemma 2, (fy),cy convergences to f in measure (with respect to u). Hence there exists subsequence
(fri)n,en € (fa)pen such that (fn,), oy pointwise converges to f, p-almost everywhere (a.e.). Moreover,
since (fy),ey convergences to g in LP2()92() (X 1), it is easy to show that (fni)n,en convergences to g in

Lr2(),42() (X, v). Then (fni)n,en convergences to g in measure (with respect to ). Thus we find a subsequence

(fmk) © € (fni)p,en such that (fmk) convergences to g pointwise v-a.e. Let M be a set of the
Ny € t ’

LN €N

points such that ( fmk> u does not convergence to g pointwise. Hence v (M) = 0. From the assumption
iy, €

L Oa) (X ) ¢ Lr2()220) (X v) in the sense of equivalence classes and so we write y ~ v by Lemma 1.

Thus v (M) = u (M) = 0. Hence (fnlk) y convergences to g pointwise p-a.e. Consequently using the

n,ykG

following inequality

£ @) =g @) < |f @) = fu, (@) +

we have f =g p-a.e. and f = ¢ v-a.e. That means I is closed. By the closed graph theorem, there exists
C > 0 such that

1 1
£l ze200020 (x,0) S CNF I prcrancr (x ) -

The proof of the other direction is easy.

In this Theorem, (b) can be proved easily by using the technique of the proof in (a). O

Lemma 3 a) If v(E) < p(E) for all E € ¥, then the inequality

1 1
1A o000 (x0) S W lzeerac) (x p)

holds for all f € LP()90) (X, 1),
b) Let pe IPy ([0,1]),1 < ¢ < 00. If there exists M > 0 such that v(E) < Mu(E) for all E € X, then
the inequality

1 1
”fHLp(-),q(X,V) S M Hf||Lp(~>,q(X7u)

holds for all f € LP()9 (X, ).
Proof a) Let v(E) < u(FE) for all E € ¥. From [5], we have f*¥ (t) < f*(¢) (f*” and f** are the

rearrangements of f with respect to the measures v and p respectively) for all ¢ > 0. This implies
l l
[ @ ar < [ (o a0 a
0 0

where [ = 1 (X). Thus we have

1 1
Hf”LP(J,Q(J(XW) S Hf||LP(~)#1<»)(X7H) .
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b) Let | = p(X) = co. Assume that there exists M > 0 such that v (E) < Mu(F) for all £ € ¥. If
we take k = My, then k is a measure. Then it is known that f** (t) = f** (&) > f** (t) by [5]. Therefore,

: to_
if we set 77 = u, then

Ta(h) = [t ayar < gty (6= [ e
0 0
a9 t\?
= [ttt () at
[ ()
0
q 1 t a 7 q 1 t a
> [tp@ "R — ) dt tple) T fOE L — | dt
Jie () s fureomee ()
0 1
1 e}
:Mﬁ/uﬁ)_lf*’“ (u)qdu—l—Mﬁ/uﬁ_lf*’“ (u)? du
0 1

< My / w1 (u) du = MoJ2, (f)
0

where M :maks{Mﬁ,Mﬁoo)} . Thus we have ||f||1Lp(_)1q(X’V) <M Hf||1L,,(_>,q(X’u).

Similarly the Lemma is proved for | = p (X) < oo. O

Lemma 4 Let p,q € IP; ([0,1]), and | = p(X) < 0.

a) If u = v and there exists M > 0 such that v(E) < Mu(E) for all E € ¥ then the inclusion
L' (X,u) C L' (X,v) holds.

b) If the inclusion L' (X, ) C L' (X, v) holds then the inclusion LP()9C) (X, ) ¢ LP()90) (X, 1) holds.
Proof a) It is known by [5].

b) Take any f € LP()40) (X, 1) is given. Since X[O,w]t%_lf" )" e LY () and L' (u) C L' (v).

a(t)

Thus we obtain X[om]tmflf* (1)1 e L' (v). That means f € LPO40) (X, v). O

Theorem 2 Let p,q € IP; ([0,1]) and | = pu(X) < co. Then the inclusion LP)90) (X 1) ¢ LPO90) (X )
holds if and only if p=~v and there exists M > 0 such that v (E) < Mu (E) for all E € X.

Proof = By Theorem 1, there exists M > 0 such that

1 1
1A zerar (x,0) S M pocrao (x,p0) (2.3)
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for all f € LP()40) (X, 1), Moreover,

l v(E)
a0 . ) 0 a(0)
Iy (52 [ (G () = [ 1810 = B ()78
0 0
holds. Similarly, we have
p(0) «9
H fle—= »(0)
b () 2(0) (E)
Therefore, we write
1 p(0) o)
XEl Lp().a0) (x,0) = v(E)r© 2.4
IXEl e a0 (x,0) 7(0) (E) (2.4)
and
1 p(0) o)
& (E)rO . 2.5
||XE||Lp<}>,q<»>(X7M) q(O)'u( ) (2.5)
Thus, from (2.3), (2.4), and (2.5), we have
v(E) < Mp(E)
<—=From Lemma 4, the proof is clear. O

Theorem 3 Let p;,q; € TP, ([0,1]), (i=1,2),1 = pu(X) < 0o, and q1 (0) pz (0) > g2 (0)py (0). If LPr()ar()
(X, ) € LP2()@20) (X, 1) then there exists a constant m > 0 such that p(E) > m for every p-nonnull set
EeX.

Proof By Theorem 1, there exists C' > 0 such that

1 1
1l Lp20ra200 (xS C S Lprra100 (x0

for all f e LPOa() (X ). Let E €% be a p-nonnull set. Since u(E) < oo, we have

l w(E)
(0) (0) (0)
v (x6) = [ o )2 O = [ 38t = B ()
1
0 0

1 ~ p1(0) as o 1 ~ p2(0) 2
and 50 [|XEll .m0 (x,) = oyt (E)1©@ holds. Similarly, we have [[Xpll 12010200 (x,0) = Gyt (B) 2@

Then we write

Do (0) a2(0) p1 (0) a1(0)

—=u E)r20 < (C " E)ri(©

q2 (0) (®) 71 (0) (&)
1q: (O) D2 (0) a1(0) _ a2(0)

< M(E)m(o) p2(0) |

r1(0)p2(0)

If we set m = (% %) nOr2O7e 0N e obtain (E) > m for every p-nonnull set F € X. O
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Theorem 4 Let p,q € IP; ([0,1]) and | = p(X) < oo .
a) If () <aq1 (), ¢1(0) <p1(0), and g2 (0) > p2 (0) then the inclusion
P () (X,p) C p2()a2() (X, 1)

holds.
b) If ¢(.) <p(.) and q(0) =p(0), then the inclusion

LP()p() (X,p) C P()a() (X, )

holds.
c) If p(.) <q(.) and q(0) =p(0), then the inclusion

P()a() (X,p) C ,p()p() (X, )

holds.
d) If q(0) > p(0) then the inclusion

L,9¢)-a() (X,p) C P()a() (X, 1)

holds.
e) If ¢(0) < p(0), then the inclusion

L) (x ) ¢ LIO90) (X )

holds.
Proof a) Take any f € LP*():a1() (X 1), Then we have

l
~Y
00 > Pl ql /
0

Therefore, we obtain f* € L% ([0,1]). Moreover, since ¢z (.) < q1 (.), we write L9 ([0,1]) ¢ L0 ([0,1])
from [7]. That means f* € L9() ([0,1]). From this result, we have

l
~/
Pzaqz
0

Thus we find that f € LP2():920) (X 1),
b) Take any f € LPC)P0) (X, ). That means f* € LPO) ([0,1]). Again since ¢ (.) < p(.), we know that
L0 ([0,1]) € L9O) ([0,1]) from [7]. Therefore, we have

l

)‘“(t) dt > lp1(0> 1/

0

l
()= dt < 170~ 1/(f* (1) dt < oc.
0

l l
a(0) 1

Ipa (f) = /tm (f* (t))Q(t) dt = /(f* (t))q(t) dt < oo.

0 0
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Thus we obtain f € LP()90) (X ).
¢) This hypothesis is proved easily using the technique in (b).

l
d) Take any f € L9040 (X, ). Assume that [ =y (X) > 1. Then since J, , (f) 2 [ (f* ()" dt < oo,
0
and since ¢ (0) > p(0), we have
1 l
a(o a(0
Ba (= [B871 (@)@ are [6871 0) ar
0 1

l

1
/ )9O gt 4 150 1/(f* ()" dt < oo
0

1
Therefore, f € LP()90) (X, ). Now let [ < 1 and so we have

l l

J,,,,I(f)%/tf)%*l( q<t)dt</ )10 4t < oo.

0 0

Thus similarly f € LP()90) (X, ).

l

e) Take any f € LP()90) (X, u). Assume that [ = p(X) > 1. Then since J, , (f) = [t? £50 1 (F )19 dt <
0

0o, we have

a(0

/ﬁﬁ*m@w@ﬁs%Aﬁ<m

and

ﬁ%Fumems%uﬁ<m
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Thus similarly f € L9090 (X, ). O

Theorem 5 If (X)) <oo, 1 <qg () <aq (), p11 5+ qz(.) =1 and () 1( =1 then the inclusion

—~]

P ()a() (X, M) c Lp2()az() (X, ,u)

holds.
Proof Take any f € LP*()¢1() (X 1), Then we have

t(ﬁ_ﬁ)f* (t) = t(ﬁ‘ﬁ)f* (t)ytt!

= t(ﬁ_ﬁ)f* (t)t(m( o) >)t ( ) = t(ml(t)_ﬁ)f* (t).

Therefore, write t(ﬁ_ﬁ)f* (t) € L1 ([0,1]) € L) (]0,1]) . That means f € LP2():920) (X p). O

Theorem 6 Let p;,q; € 1P ([0,1]),(i=1,2),u(X) < o0, ¢(.) >q1(.),q2(0) > p2(0), and ¢1 (0) < p1(0).
) =

If there exists a constant m > 0 such that u(E) > m for every p-nonnull set E € ¥ then the inclusion

LORO (X, ) € L7200 (X, )

holds.
Proof Take any f € LP*()@() (X ). Define that the set E,, = {x € X : |f ()| > n} for every n € N. Since

q1 (0) < p1 (0), we write L1010 (X 1) ¢ LoG-a1() (X 1) from Theorem 4. Therefore, there exists C' > 0
such that

1 1
[l 2000 ) < C I le om0 (x (2.6)

for all f € LP1()@() (X ). On the other hand, since |f (z)| >n > 1 for all z € E,, we have |f* (t)] > 1 for
all ¢ € [0, (Ey,)]. Thus if we set £ = u, then we have

nt-p /If\‘“* dp = /|fXE | dp = /| fxe,) | @) dt
< / |f*] <;> . X[0,(En)] (;) dt = 2/|f | (W)™ Xo,u(E,) (u) du
0

#(En) 1(En) 1
Fal (u)!h— du < 2 / Fal (u)(I1('IL) du < 2/ Fal (u)ql(u) d
0 0 0

for every n € N. Then using the inequality (2.6), we obtain

l
np(En) < 20/”1(“’ £ (@)™ du < 00 (2.7)
0
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for every n € N. By the hypothesis, either p (E,) =0 or u(E,) > m. Since the sequence (E,,) is nonincreasing
and ﬂlEn = &, we have u (E,) — 0. Thus there exists ng € N such that |f (z)| < ng, p—a.e. for all z € X,
n=

and so we write |f* (t)| < ng, pu — a.e. for all ¢ € [0,(]. Therefore, we have

l 1 1
/lf*| (t)qz(t) dt — / |f*‘ (t)q2(t)7QI(t) |f*| (t)m(t) dt < /ngz(t)—lh(t) |f*‘ (t)QI(t) dt.
0 0

0

Therefore, we write
l l
T
[ t@eae<ngi = [1 0" dt < oc. (2.8)
0 0

Thus we have f € L9()@0) (X 4). That means LPrO)a() (X, y) ¢ L92()a2() (X 1), Similarly, using the
inequalities (2.8), we write L9()1() (X, ) < L9()90) (X, 1) . Lastly using go (0) > ps (0), we obtain

() () (X, N) c [a()a() (X, N) c [22().a2() (X, N) c Lp2()az() (X, ,U)

from Theorem 2.4. O

Lemma 5 Hodélder inequality for variable exponent Lorentz spaces:
1 1 _ .
Let 1 < q(.) < q7 < oo, OO =1, and q(t)+q(t) =1. If f € P90 (X, 1) and g €

LY (X, ) then fg e L' (X, u) and there exists C > 0 such that

/|f () g (x)|dp(z) < C ||f||Lp<.),q<.)(X,M) HQHLM.M'(.)(X,M) :

X

Proof Let f € LP()90) (X 1) and g € L' (' () (X, ). Then we set % =u

[1r @@ 7! <t>\dts7f*<;)g*(;)dt

X

o0

—Q/f* dt—2/t1 Lf* (u) g *(u)dt—Q{t(z@ﬂfm)t‘(@ﬁM)ﬁ (w) g* (u) dt.

0

(o)
_ Q/t(ﬁt)**
0

Furthermore, by using the Holder inequality for variable exponent Lebesgue spaces in [7,12], the inequalities
f* < f* and g* < g**, there exists C; > 0 such that

2
<
~
~
—
S
Py
<
Q
|~
=
~—
S
*
—~
<
~
U
o~
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L L)
<2C; Ht(pm q(t))f (0,000 =C ||f||Lp<-),q<-)(x,#) ||h||Lp/<,>,q/(,>(X,#)
La()([0,00

Wbbn%%*

L0 ([0,00))

where C' = 2C]. O

Theorem 7 a) Let 1 <q(.)<q" <oo. If ﬁt) + p,}t) =1 and ﬁ + q’tt) =1 then the inclusion

LPOAO (X, ) P OO (X ) € LH(X, p)

holds.
b) Let p € IR ([0,1]),q € IP([0,]]), q(t) = {g i;g, and ¢,d > 1 such that Q@ C [0,00). If
q(0) > p(0) and q(c0) > p(c0) then

It (X,p) C 7,p()a() (X, 1) P () (X, 1)

holds such that X = [0,00] and p(x) = dx.
Proof a) Let f e LPO)40) (X, ) and h e LP'()4'0) (X, 1), From Lemma 5, there exists C' > 0 such that

/U@h@WM@SCWMmm@mWMMWWKW
X

Thus we obtain f.h € L' (X, x). That means LPC)40) (X, 1) . LP' (40 (X, ) € LY (X, p).
b) Take any g € L' (X, ). Define that

Ay =A{z:0 <|g ()] < oo},

Ay = {z g (z)| = 0},

and
(A1 U A)® = {z 1 |g (2)| = oo}

such that A; U As U (A3 U As)° = [0,00]. Now define that the functions

lg(x)l, TEA,

— 0 TEA2

) =
f() { 0, xe(AluAg)C
and
lg(@)]
PETos €41
h ($> — { 0 T€A2 .

0, z € (A1 U Ag)°

We also have |g| = |fh|. Since g € L* (X, i), we know that |g (z)] < co (a.e.). Thus we have p ((A; U A3)°)=0.
On the other hand, we have

1 o0
Ipa (f) = /t%71 (£ ()79 dt + /t%*l (f* (£))1 at
0 1
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1 o]
/ D dt + / (F ()" dt
0 1
1 1\ d
/ t? “dt+ (g* (t)3> dt
Q RH\Q

(9(2))" dz < 00

o —

and similarly J, o (h) < co. Thus we obtain f € LP()40) (X, p) and h € LV’ ()4'() (X, 1), Therefore, from
the inequality |g| = |fh|, we find that g € LP()90) (X, 1) LY’ ()4'C) (X ). Thus the proof is completed. O

Theorem 8 Let p; € IPy([0,1]),q; € IP, ([0,1]),(i =1,2),1 = u(X) < oco. If L) (X, u) ¢ LP2()a20) (X, )

P1(0)g2(0)

OO then any collection of disjoint measurable sets of positive measure is a finite ele-

such that ga— < (]1+
ment.

Proof Assume that (E,) is a sequence of disjoint measurable sets such that p(E,) # 0 for infinite one

n. Thus, since EJOlEn C X, we have p ( OleEn) < oo. Therefore, we write > p(E,) < co. That means
n= n= n=1

lim p(E,) = 0. Then there exists subsequence (Ey,), —such that E = koglEnk, E,, NE,, (k#j),

n—oo

+ p»1(0)
1 (E) < oo, and p(E,,) =2 4

w(E) for every k € N. Define that

Z XEnk (J?) :

k=1
Then since 2¢;" > 1

nu(E) - 1(En;)

(0) o

Iprar (f) = / tZI(O)_l (f (t))ql(t) dt = Z / tgl(o)_l (f (t))‘h(t) d
0 =1 0
o M(Enz) ( IS % lh(t)
a1(0)
— Z / $pr L ((Z (Zkk 2) XE“) (t)) dt
i=1 " k=1
M(Enl) N(Enz) N(Eng)
S / tm(U) 2‘11 dt+ / (2227 )‘h tP1(0> dt—|— / (2337 )ql tpl(U) dt_|_
0 0 0
w(Enpy,)
+ (2m )ql tm(o) Lat+ .
0
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0 41 (0) + 41 (0) + 41 (0)
" Eo; {”MEMW +(2227)" (B + (223770 u(Enﬁ(")}
(0) > 1(0)
E p1(0)
0 91 (0) 21 (0) B! 21 (0)
=D St (B,)R (BB 4 (3) (B
1 (0)
PO, ()3 Y (@) ot ()R
¢ (0) k=4
p1 (0) 1(0) 1(0) 8\ ¢t a1(0)
- q1 (0) {qu K (E 1)p1(0) + H (E'fm)plm) + <9 H (E'fls)pl(o)
p1 (0) 41(0) 9
+ E)ri© k0 < oo
¢ (O)M( : ,;
holds. Thus, we have f € LP*():a1() (X 1), On the other hand, we find that
n(E) o #(Eny)
2081 px \\a2(t) Zi-1 a2(t)
Jpan () = /tpz((l) (f* (1) dt:z / 5o ()%= g
0 k=179
o) Enk o) *
= / (Z xEnk> (1)) dt
k=4 7 k=1
o P 1(Eny )
=> / 150 (2022 g (25K > 1 for k > 4)
k=4
o #(Eny,) IS
a2V) qo (0
>3 [ ST @ = B (2" (8, B
k=4 k:4
oo
_ 2 0 Z ) o—kai (FHG)

k=4

o
_ 220 gy S 2 o (eo)—af (BEER)).
¢2 (0) k=4

(m(O)qz(U))) .
ar2 /) then we have klzm by = 0. Thus, we find that f ¢
—00

If we say that b, = k—292-2 b ((a2-)-

Lr2():220) (X 1), However, from the assumption, we must obtain f € LP2():¢2() (X, 1), Therefore, we find

that any collection of disjoint measurable sets of positive measure is a finite element. O
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