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doi:10.3906/mat-1506-47

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

h-Admissible Fourier integral operators

Chafika Amel AITEMRAR1, Abderrahmane SENOUSSAOUI2,∗
1Faculty of Mathematics and Computer Sciences, University of Sciences and Technologies - Mohamed Boudiaf,

Oran, Algeria
2Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of Oran 1, Oran, Algeria

Received: 11.06.2015 • Accepted/Published Online: 07.09.2015 • Final Version: 08.04.2016

Abstract: We study in this work a class of h -admissible Fourier integral operators. These operators are bounded

(respectively compact) in L2 if the weight of the amplitude is bounded (respectively tends to 0).
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1. Introduction

The theory of h-pseudodifferential operators is well suited for investigating various problems connected with

semiclassical elliptic differential equations. However, this theory fails to be adequate for studying semiclassical

equations of hyperbolic type, and one is then forced to examine a wider class of operators, the so-called h-Fourier

integral operators.

Since 1970, many efforts have been made by several authors in order to study this type of operator (see,

e.g.,[1, 4–9, 11]). The first works on Fourier integral operators deal with local properties. We note that Asada

and Fujiwara ([1]) have studied for the first time a class of Fourier integral operators defined on Rn.

The h -Fourier integral operators are represented by formulas of the type

(I (a, ϕ;h) f) (x) =

∫
Rn

∫
RN

e
i
hϕ(x,θ,y)a (x, θ, y) f (y) dydθ, (1.1)

f ∈ S (Rn) (the Schwartz space). The function a (x, θ, y) ∈ C∞ (Rn × RN × Rn
)

is called the amplitude,

the function ϕ (x, y, θ) C∞ (Rn × RN × Rn;R
)
is called the phase function, and h ∈ ]0, h0] is a semiclassical

parameter.

The purpose of this work is to generalize the notion of h -admissible operators defined in [13] by studying

the h-admissible Fourier integral operators of the form (2.2) (below). On some conditions on a and ϕ, we

show that the h-admissible Fourier integral operators are well defined and they are continuous on S (Rn) and

on S′ (Rn) (the space of tempered distributions). We give also a result where it is shown that these types of

operators are stable by composition.

The natural question is how these operators will be bounded on L2 or will be compact on L2. It has been

proved in [1] with some hypothesis on the phase function ϕ and the amplitude a that all operators of the form
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(1.1) are bounded on L2. The technique used there is based on the fact that the operators I (a, ϕ;h) I∗ (a, ϕ;h) ,

I∗ (a, ϕ;h) I (a, ϕ;h) are h-pseudodifferential and it uses the Calderòn–Vaillancourt theorem [3] (here I (a, ϕ;h)
∗

is the adjoint of I (a, ϕ;h)).

In this work, we apply the same technique of [1] to establish the boundedness and the compactness of

the operators of the type

(Fhψ) (x) = (2πh)
−n
∫ ∫

e
i
h (S(x,θ)−yθ)a (x, y)ψ (y) dydθ. (1.2)

To this end, we give a brief and simple proof of a result of [1] in our framework.

We mainly prove the continuity of the operator Fh on L2 (Rn) when the weight of the amplitude a

is bounded. Moreover, Fh is compact on L2 (Rn) if this weight tends to zero. Using the estimate given in

[10, 13, 14] for h-pseudodifferential (h-admissible) operators, we also establish an L2 -estimate of ∥Fh∥ .
We note that if the amplitude a is just bounded, the Fourier integral operator Fh is not necessarily

bounded on L2 (Rn) . In Hasanov [6] and [2, 15] a class of unbounded Fourier integral operators with an

amplitude in the Hörmander’s class S0
1,1 and in

∩
0<ρ<1

S0
ρ,1 was constructed .

2. A general class of h-admissible Fourier integral operators

We are interesting in giving a sense of the integrals of type

(I (a, ϕ;h) f) (x) =

∫
Rn

∫
RN

e
i
hϕ(x,θ,y)a (x, θ, y) f (y) dydθ, (2.1)

with f ∈ S (Rn) , x ∈ Rn, h ∈ ]0, h0] .

Suppose that the function ϕ satisfies the following conditions:

(H1) ϕ : Rn × RN × Rn → R is a C∞ application (ϕ is a real function)

(H2) ∀ (α, β, γ) ∈ Nn × NN × Nn,∃Cα,β,γ ≥ 0;∣∣∂αx ∂βy ∂γθ ϕ (x, θ, y)∣∣ ≤ Cα,β,γλ
2−(|α|+|β|+|γ|) (x, θ, y) ,

where λ (x, θ, y) =
(
1 + |x|2 + |y|2 + |θ|2

)1/2
.

(H3) There exist real numbers K1,K2 > 0 such that

K1λ (x, θ, y) ≤ λ (∂yϕ, ∂θϕ, y) ≤ K2λ (x, θ, y) , ∀ (x, θ, y) ∈ Rn
x × RN

θ × Rn
y .

(H∗
3 ) There exist real numbers K∗

1 ,K
∗
2 > 0 such that

K∗
1λ (x, θ, y) ≤ λ (x, ∂θϕ, ∂xϕ) ≤ K∗

2λ (x, θ, y) ,∀ (x, θ, y) ∈ Rn
x × RN

θ × Rn
y .

For any open subset Ω of Rn
x × RN

θ × Rn
y ;µ ∈ R and ρ ∈ [0, 1] , we set

Γµ
ρ (Ω) =

{
a ∈ C∞ (Ω) :

∣∣∂αx ∂βy ∂γθ a∣∣ ≤ Cαβγλ
µ−ρ(|α|+|β|+|γ|) (x, θ, y)

}
.

When Ω = Rn
x × RN

θ × Rn
y , we denote Γµ

ρ (Ω) = Γµ
ρ .
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In order to generalize the notion of h -admissible operators (cf.[13]), we give the following definitions

Definition 1 We call h-admissible symbol of weight (µ, ρ) , every C∞ application a (h) of ]0, h0] in Γµ
ρ , such

that

∀N ∈ N, a (h) =
N∑
j=0

hjaj + hN+1rN+1 (h) ,

where aj ∈ Γµ−2ρj
ρ , and {rN+1 (h) , h ∈ ]0, h0]} is bounded in Γ

µ−2ρ(N+1)
ρ .

Definition 2 We call h-admissible Fourier integral operator , every C∞ application A of ]0, h0] in L
(
S (Rn) ,L2 (Rn)

)
(L (E,F ) is the space of bounded linear mapping from E to F ) , for which there exists a sequence (aj)j ∈ Γµ

0

satisfying

A (h) =
N∑
j=0

hjI (aj , ϕ;h) + hN+1RN+1 (h) , for N ∈ N and N large enough, (2.2)

where

(I (aj , ϕ;h) f) (x) =

∫
Rn

∫
RN

e
i
hϕ(x,θ,y)aj (x, θ, y) f (y) dydθ,

sup
h∈]0,h0]

∥RN+1 (h)∥L(L2(Rn)) <∞.

To give a meaning to the right-hand side of (2.1) , we consider g ∈ S
(
Rn

x × RN
θ × Rn

y

)
, g (0) = 1. If

a ∈ Γµ
0 , we define

ap (x, θ, y) = g

(
x

p
,
θ

p
,
y

p

)
a (x, θ, y) , p > 0.

Theorem 1 If ϕ satisfies (H1) , (H2) , (H3) , and (H∗
3 ) , and if a ∈ Γµ

0 , then

1. For all f ∈ S (Rn) , limp→∞ [(I (ap, ϕ;h) f)] (x) exists for every x ∈ Rn and is independent of the choice

of the function g. We then set

(I (a, ϕ;h) f) := lim
p→∞

(I (ap, ϕ;h) f) .

2. I (a, ϕ;h) ∈ L (S (Rn)) and I (a, ϕ;h) ∈ L (S′ (Rn)) .

Proof Let δ ∈ C∞
0 (Rn) such that suppδ ⊆ [−1, 2] and δ ≡ 1 on [0, 1] .

For all ε > 0, we set

ωε (x, θ, y) = δ

(
|∂yϕ|2 + |∂θϕ|2

ελ (x, θ, y)
2

)
.

The hypothesis (H3) implies that there exists γ > 0 such that we have on the support of ωε

λ (x, θ, y) ≤ γ

[(
1 + |y|2

) 1
2

+ ε
1
2λ (x, θ, y)

]
.

555



AITEMRAR and SENOUSSAOUI/Turk J Math

Therefore, there exists ε0 and a constant γ0, such that for all ε ≤ ε0 we have the inequality

λ (x, θ, y) ≤ γ0

(
1 + |y|2

) 1
2

.

on the support of ωε.

In the sequel, we fix ε = ε0. Then it is immediate that I (ωε0ap, ϕ;h) f is an absolutely convergent

integral and we have

lim
p→∞

I (ωε0ap, ϕ;h) f = I (ωε0a, ϕ;h) f. (2.3)

Using (H2) we prove also that I (ωε0a, ϕ;h) f is a continuous operator from S (Rn) into itself. To study

limp→∞ I ((1− ωε0) ap, ϕ;h) f , we introduce the operator

L =
h

i

(∑n
j=1

(
∂yjϕ

)
∂

∂yj
+
∑N

j=1

(
∂θjϕ

)
∂

∂θj

)
|∂yϕ|2 + |∂θϕ|2

.

Clearly we have

L
(
eiϕ
)
= eiϕ. (2.4)

Let Ω0 be the open subset of Rn × RN × Rn defined by

Ω0 =
{
(x, θ, y) , |∂yϕ|2 + |∂θϕ|2 >

ε0
2
λ (x, θ, y)

2
}
.

We need the following lemma.

Lemma 1 For all integer q ≥ 0, and b ∈ C∞ (Rn
y × RN

θ

)
, we have(

tL
)q

((1− ωε0) b) =
∑

|α|+|β|≤q

gqα,β∂
β
y ∂

β
θ ((1− ωε0) b) ,

where the gqα,β are in Γ−q
0 (Ω0) and depend only on ϕ . Recall that tL designates the transpose of L.

We prove the lemma by recurrence. It is obvious for q = 0. Now we see easily that

tL =
∑
j

Fj
∂

∂yj
+
∑
j

Gj
∂

∂θj
+H, (2.5)

where Fj ∈ Γ−1
0 (Ω0) , Gj ∈ Γ−1

0 (Ω0) , and H ∈ Γ−2
0 (Ω0) (which results from the hypothesis (H2)). Therefore,

the recurrence is immediately proved. □
For all integer q ≥ 0, we have from (2.4)

I ((1− ωε0) ap, ϕ;h) f (x) =

∫ ∫
e

i
hϕ(x,θ,y)

(
tL
)q

((1− ωε0) ap, f) dydθ. (2.6)

Now (tL)
q
((1− ωε0) apf) described (when p varies) a bound of Γµ−q

0 , and

lim
p→∞

(
tL
)q

((1− ωε0) apf) (x, θ, y) =
(
tL
)q

((1− ωε0) af) (x, θ, y) , (2.7)

for all (x, θ, y) ∈ Rn × RN × Rn.
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Finally, for all s > n+N we have∫ ∫
λ−s (x, θ, y) dθdy ≤ γsλ

n̸+N−s (x) . (2.8)

It results so from (2.6)–(2.8) and using Lebesgue’s theorem we have

lim
p→∞

I ((1− ωε0) ap, ϕ;h) f (x) =

∫ ∫
e

i
hϕ(x,θ,y)

(
tL
)q

((1− ωε0) a, f ;h) dydθ, (2.9)

where q satisfies q > n+N + µ . From (2.3) and (2.9) we can prove the first part of the theorem.

Now let us show that I ((1− ωε0) a, ϕ) is continuous. Taking account of (2.5) and (2.9), we get

I ((1− ωε0) a, ϕ;h) f (x) =
∑
|γ|≤q

∫ ∫
e

i
hϕ(x,θ,y)b(q)γ (x, θ, y) ∂γy f (y) dydθ, (2.10)

with b
(q)
γ ∈ Γµ−q

0 . On the other hand, we have

xα∂βx

(
e

i
hϕb(q)γ (x, θ, y)

)
∈ Γ

µ−q+|α|+|β|
0 . (2.11)

We deduce from (2.10) and (2.11) that, for all q > n+N + µ+ |α|+ |β| , there exists a constant Cα,β,q such

that ∣∣xα∂βx I ((1− ωε0) a, ϕ;h) f (x)
∣∣ ≤ Cα,β,q sup

x∈Rn

|γ|≤q

|∂γxf (x)| ,

which proves the continuity of I ((1− ωε0) a, ϕ) . 2

3. Composition of two h-admissible Fourier integral operators

Theorem 2 Let ϕ1, ϕ2 be two phases satisfying (H1) , (H2) , and (H3) . Set

ϕ (x, θ, z) = ϕ1 (x, θ1, y) + ϕ2 (y, θ2, z) , (3.1)

with θ1 ∈ RN1 , θ2 ∈ RN2 , x ∈ Rn ,y ∈ Rn, z ∈ Rn, θ = (θ1, y, θ2) . Then ϕ verifies (H1) , (H2) , (H3) and, for all

a1 ∈ Γµ1

0 , a2 ∈ Γµ2

0 , we have

I (a1, ϕ1;h) I (a2, ϕ2;h) = I (a1 × a2, ϕ;h) , (3.2)

with

(a1 × a2) (x, θ, z) = a1 (x, θ1, y) a2 (y, θ2, z) .

Proof (H1) and (H2) are immediate to verify for ϕ. Therefore, we will prove the hypothesis (H3) .

The left side of the inequality (H3) is evident; it suffices to show that ϕ satisfies the right side of the

inequality:

there exists K > 0 such that

λ (x, θ1, y, θ2, z) ≤ Kλ (z, ∂zϕ2, ∂yϕ1 + ∂yϕ2, ∂θ1ϕ1, ∂θ2ϕ2) . (3.3)
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Applying the property (H3) to ϕ1 and ϕ2 we get that there exists C > 0 such that

λ (x, θ1, y, θ2, z) ≤ Cλ (∂yϕ1, ∂θ1ϕ1, y, ∂θ2ϕ2, ∂zϕ2, z) . (3.4)

We have also

λ (y) ≤ C
′
λ (∂θ2ϕ2, ∂zϕ2, z) , (3.5)

from (H3) applied to ϕ2, and

|∂yϕ2| ≤ C ′′λ (y, θ2, z) ≤ C ′′′ (λ (∂θ2ϕ2, ∂zϕ2, z)) , (3.6)

from (H2) and (H3) applied to ϕ2.

Finally, we note that

|∂yϕ1| ≤ |∂yϕ1 + ∂yϕ2|+ |∂yϕ2| . (3.7)

The inequalities (3.4)–(3.7) imply (3.3).

Now let us show the composition formulas. For this, let us introduce the sequences of functions (i = 1, 2)

χi
p (x, θi, y) = exp

(
−p−1

(
|x|2 + |θi|2 + |y|2

))
; (x, θi, y) ∈ Rn × RNi × Rn

It is clear that (3.2) is satisfied for

a1p = a1χ
1
p, a

2
p = a2χ

2
p.

However,

χ1
p (x, θ1, y)χ

2
p (y, θ2, z) = exp

(
−p−1

(
|x|2 + 2 |y|2 + |θ1|2 + |θ2|2 + |z|2

))
.

Hence, it results that

lim
p→∞

(
I
(
a1pa

2
p, ϕ;h

)
f
)
(x) = (I (a1a2, ϕ) f ;h) (x) , (3.8)

for all f ∈ S (Rn).

On the other hand, the proof of theorem 1 shows that there exists, for all l ∈ N and j = 1, 2, an integer

Mj,l and a constant Cj,l > 0, such that, for all f in S (Rn) and p ≥ 1, we have∥∥I (ajp, ϕj ;h) f∥∥Bl ≤ Cl,j ∥f∥BMj,l , (3.9)

where Bl (Rn) =
{
u ∈ L2 (Rn) , xαDβ

xu ∈ L2 (Rn) , |α|+ |β| ≤ l
}
.

We deduce first from (3.9) that, for all fixed f0 in S (Rn), gp = I
(
a2p, ϕ2;h

)
f0 describes a bounded of

S (Rn) when p varies. S (Rn) being Montel space, we can extract a subsequence, suppose that gp converges

in S (Rn) to g = I (a1, ϕ2;h) f0 , but we have∥∥I (a1p, ϕ1;h) gp − I (a1, ϕ1;h) g
∥∥
Bl ≤

∥∥I (a1p, ϕ1;h) (gp − g)
∥∥
Bl (3.10)

+
∥∥(I (a1p, ϕ1;h)− I (a1, ϕ1;h)

)
g
∥∥
Bl .

Even re-extracting a subsequence, we can suppose that

I
(
a1p, ϕ1;h

)
g → I (a1, ϕ1;h) g, in S (Rn) . (3.11)
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It follows from (3.9)–(3.11) that, for all l , leaves to extract a subsequence, we have

I
(
a1p, ϕ1;h

)
I
(
a2p, ϕ2;h

)
f0 → I (a1, ϕ1;h) I (a2, ϕ2;h) f0 in Bl. (3.12)

2

4. About the particular case

In this section we shall be interested in a particular case on the phase function ϕ , which is very important in

applications for solving Cauchy problems [12]. Let

ϕ (x, y, θ) = S (x, y)− yθ,

Suppose that S satisfies

(G1) S ∈ C∞ (Rn
x × Rn

0 ;R) (S is a real function)

(G2) For all (α, β) ∈ Nn × Nn , there exist Cα,β > 0, such that∣∣∣∂αx ∂βθ S (x, θ)
∣∣∣ ≤ Cα,βλ (x, θ)

(2−|α|−|β|)
.

(G3) There exists δ0 > 0 such that

inf
x,θ∈Rn

∣∣∣∣det ∂2S

∂x∂θ
(x, θ)

∣∣∣∣ ≥ δ0.

Lemma 2 If S satisfies (G1) , (G2) , and (G3) , then S satisfies the following inequalities:

There exist C1, C2 > 0, such that{
|x| ≤ C1λ (θ, ∂θS) , for all (x, θ) ∈ R2n,
|θ| ≤ C2λ (x, ∂xS) , for all (x, θ) ∈ R2n.

(4.1)

There also exists C3 > 0 such that for all (x, θ) , (x′, θ′) ∈ R2n,

|x− x′|+ |θ − θ′| ≤ C3 [|(∂θS) (x, θ)− (∂θS) (x
′, θ′)|+ |θ − θ′|] . (4.2)

Proof The mappings Rn ∋ θ → fx (θ) = ∂xS (x, θ) , Rn ∋ x → gθ (x) = ∂θS (x, θ) and R2n ∋ (x, θ) →

h2 (x, θ) = (θ, ∂θS (x, θ)) are global diffeomorphisms of Rn. From (G2) and (G3) , it follows that
∥∥∥(f−1

x

)′∥∥∥ and∥∥∥(g−1
θ

)′∥∥∥ are uniformly bounded on Rn and
∥∥∥(h−1

2

)′∥∥∥ is uniformly bounded on R2n . Thus (G3) and Taylor’s

theorem lead to the following estimate:

There exist M,N > 0, such that for all (x, θ) , (x′, θ′) ∈ R2n,

|θ| =
∣∣f−1

x (fx (θ))− f−1
x (fx (0))

∣∣ ≤M |∂xS (x, θ)− ∂xS (x, 0)| ≤ C4λ (x, ∂xS) ,

with C4 > 0;

|x| =
∣∣g−1

θ (gθ (θ))− g−1
θ (gθ (0))

∣∣ ≤ N |∂θS (x, θ)− ∂θS (0, θ)| ≤ C5λ (∂θS, θ) ,
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with C5 > 0;

|(x, θ)− (x′, θ′)| =
∣∣h−1

2 (h2 (x, θ))− h−1
2 (h2 (x

′, θ′))
∣∣ ≤ C5 |(θ, ∂θS (x, θ))− (θ′, ∂θS (x′, θ′))| .

2

Lemma 3 Let us assume that S satisfies (G1) , (G2) , and (G3) . Then the function ϕ (x, y, θ) = S (x, θ)− yθ

satisfies (H1) , (H2) , (H3) , and (H∗
3 ) .

Proof (H1) and (H2) are trivially satisfied.

From (4.1) we have

λ (x, y, θ) ≤ λ (x, θ) + λ (y) ≤ C6 (λ (θ, ∂θS) + λ (y)) , C6 > 0.

Moreover, we have ∂yj
ϕ = −θj ; and ∂θjϕ = ∂θjS − yj , and so

λ (θ, ∂θS) = λ (∂yϕ, ∂θϕ+ y) ≤ 2λ (∂yϕ, ∂θϕ, y) ,

which finally gives for some C7 > 0,

λ (x, θ, y) ≤ C6 (2λ (∂yϕ, ∂θϕ, y)) ≤
1

C7
λ (∂yϕ, ∂θϕ, y) .

The second inequality in (H3) is a consequence of (4.1) .

By a similar argument we can show (H∗
3 ) . 2

When θ = θ′ in (4.2), there exists C3 > 0, such that all (x, x′, θ) ∈ R3n,

|x− x′| ≤ C3 |(∂θS) (x, θ)− (∂θS) (x
′, θ)| . (4.3)

Proposition 1 If S satisfies (G1) and (G2) , then there exists a constant ε0 > 0 such that the phase function

ϕ given in (4.1) belongs to Γ2
1 (Ωϕ,ε0) where

Ωϕ,ε0 =
{
(x, θ, y) ∈ R3n; |∂θS (x, θ)− y|2 < ε0

(
|x|2 + |y|2 + |θ|2

)}
.

Proof We have to show that: there exists ε0 > 0, such that for all α, β, γ ∈ Nn, there exist Cα,β,γ > 0 :∣∣∣∂αx ∂βθ ∂γyϕ (x, θ, y)∣∣∣ ≤ Cα,β,γλ (x, θ, y)
(2−|α|−|β|−|γ|)

, (x, θ, y) ∈ Ωϕ,ε0 . (4.4)

If |γ| = 1, then ∣∣∣∂αx ∂βθ ∂γyϕ (x, θ, y)∣∣∣ = ∣∣∣∂αx ∂βθ (−θ)
∣∣∣ = { 0∣∣∣∂βθ (−θ)

∣∣∣ if |α| ̸= 0
if α = 0

;

If |γ| > 1, then ∣∣∣∂αx ∂βθ ∂γyϕ (x, θ, y)∣∣∣ = 0.

Hence, the estimate (4.4) is satisfied.
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If |γ| = 0, then for all α, β ∈ Nn; |α|+ |β| ≤ 2, there exists Cα,β > 0 such that∣∣∣∂αx ∂βθ ϕ (x, θ, y)∣∣∣ = ∣∣∣∂αx ∂βθ S (x, θ)− ∂αx ∂
β
θ (yθ)

∣∣∣ ≤ Cα,βλ (x, θ, y)
(2−|α|−|β|)

.

If |α|+ |β| > 2, one has ∂αx ∂
β
θ ϕ (x, θ, y) = ∂αx ∂

β
θ S (x, θ). In Ωϕ,ε0 we have

|y| = |∂θS (x, θ)− y − ∂θS (x, θ)| ≤
√
ε0

(
|x|2 + |y|2 + |θ|2

) 1
2

+ C8λ (x, θ) , (4.5)

with C8 > 0. For ε0 sufficiently small, we obtain a constant C9 > 0 such that

|y| ≤ C9λ (x, θ) , ∀ (x, θ, y) ∈ Ωϕ,ε0 .

This inequality leads to the equivalence

λ (x, θ, y) ≃ λ (x, θ) in Ωϕ,ε0 ; (4.6)

thus the assumption (G2) and (4.6) give the estimate (4.4). 2

Using (4.6), we give the following result.

Proposition 2 If (x, θ) → a (x, θ) belongs to Γm
k (Rn

x × Rn
θ ) , then (x, θ, y) → a (x, θ) belongs to Γm

k (Rn
x×Rn

θ×
Rn

y ) ∩ Γm
k (Ωϕ,ε0) , k ∈ {0, 1} .

5. L2 -boundedness and L2 -compactness of Fh

We have the following results concerning the L2 -boundedness and L2 -compactness of the h -admissible Fourier

integral operator defined by

(Fhψ) (x) = (2πh)
−n
∫ ∫

e
i
h (S(x,θ)−yθ)a (x, y)ψ (y) dydθ.

Theorem 3 Let Fh be the integral operator of distribution kernel

K (x, y;h) =

∫
Rn

e
i
h (S(x,y)−yθ)a (x, y) d̂θ, (5.1)

where d̂θ = (2πh)
−n

dθ, a ∈ Γm
k

(
R2n

x,θ

)
, k = 0, 1, h ∈ ]0, h0] and S satisfies (G1) , (G2) , and (G3) . Then

FhF
∗
h and F ∗

hFh are h-admissible operators with symbol in Γm
k

(
R2n

)
, k = 0, 1, given by

σ (FhF
∗
h ) (x, ∂xS (x, θ)) ≡ |a (x, θ)|2

∣∣∣∣∣
(
det

∂2S

∂θ∂x

)−1

(x, θ)

∣∣∣∣∣ ,
σ (F ∗

hFh) (∂θS (x, θ) , θ) ≡ |a (x, θ)|2
∣∣∣∣∣
(
det

∂2S

∂θ∂x

)−1

(x, θ)

∣∣∣∣∣ ,
we denote here a ≡ b for a, b ∈ Γ2p

k

(
R2n

)
if (a− b) ∈ Γ2p−2

k

(
R2n

)
and σ stands for the symbol.
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Proof If u ∈ S (Rn) , then Fhu (x) is given by

(Fhu) (x) =

∫
Rn

K (x, y)u (y) dy. (5.2)

=

∫
Rn

∫
Rn

e
i
h (S(x,θ)−yθ)a (x, θ)u (y) dyd̂θ.

=

∫
Rn

e
i
hS(x,θ)a (x, θ)

(∫
Rn

e−
i
hyθu (y) dy

)
d̂θ.

=

∫
Rn

e
i
hS(x,θ)a (x, θ)Fhu (θ) d̂θ,

where Fh is the Fourier transformation.

Here Fh is a continuous linear mapping from S (Rn) to S (Rn) (by Theorem 4). Let v ∈ S (Rn), then

⟨Fhu, v⟩L2(Rn) =

∫
Rn

(∫
Rn

e
i
hS(x,θ)a (x, θ)Fhu (θ) d̂θ

)
v (x)dx.

=

∫
Rn

Fhu (θ)

(∫
Rn

e
i
hS(x,θ)a (x, θ)v (x) dx

)
d̂θ.

Thus

⟨Fhu (x) , v (x)⟩L2(Rn) = (2π)
−n ⟨Fhu (θ) ,Fh ((F

∗v)) (θ)⟩
L2(Rn)

.

where

Fh ((F
∗
hv)) (θ) =

∫
Rn

e−
i
hS(x̃,θ)a (x̃, θ) v (x̃) dx̃. (5.3)

Hence, for all v ∈ S (Rn) ,

(FhF
∗
hv) (x) =

∫
Rn

∫
Rn

e
i
h (S(x,θ)−S(x̃,θ))a (x, θ) a (x̃, θ) v (x̃) dx̃d̂θ. (5.4)

The main idea to show that FhF
∗
h is a h -pseudodifferential operator is to use the fact that S (x, θ) −

S (x̃, θ) can be expressed by the scalar ⟨x− x̃, ξ (x, x̃, θ)⟩ , after considering the change of variables (x, x̃, θ) →
(x, x̃, ξ = ξ (x, x̃, θ)) .

The distribution kernel of FhF
∗
h is

K (x, x̃;h) =

∫
Rn

e
i
h (S(x,θ)−S(x̃,θ))a (x̃, θ) a (x, θ) d̂θ.

we obtain from (4.3) that if

|x− x̃| ≥ ε

2
λ (x, x̃, θ) , where ε > 0 is sufficiently small,

then

|(∂θS) (x, θ)− (∂θS) (x̃, θ)| ≥
ε

2C5
λ (x, x̃, θ) . (5.5)
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Choosing ω ∈ C∞ (Rn) such that

ω (x) ≥ 0, ∀x ∈ R,

ω (x) = 1, if x ∈
[
−1

2
,
1

2

]
supp ω ⊂ ]−1, 1[ ,

and setting

b (x, x̃, θ) := a (x, θ) a (x̃, θ) = bε1 (x, x̃, θ) + bε2 (x, x̃, θ) .

bε1 (x, x̃, θ) = ω

(
|x− x̃|

ελ (x, x̃, θ)

)
b (x, x̃, θ) .

bε1 (x, x̃, θ) =

[
1− ω

(
|x− x̃|

ελ (x, x̃, θ)

)]
b (x, x̃, θ) .

We have K (x, x̃;h) = Kε
1 (x, x̃;h) +Kε

2 (x, x̃;h) , where

Kε
j (x, x̃;h) =

∫
Rn

e
i
h (S(x,θ)−S(x̃,θ))bεj (x, x̃, θ) d̂θ, j = 1, 2.

We will study separately the kernels Kε
1 and Kε

1 .

On the support of bε2, inequality (5.5) is satisfied and we have

Kε
2 (x, x̃;h) ∈ S (Rn × Rn) .

Indeed, using the oscillatory integral method, there is a linear partial differential operator L of order 1 such

that

L
(
e

i
h (S(x,θ)−S(x̃,θ))

)
= e

i
h (S(x,θ)−S(x̃,θ)),

where

L =
h
∑

l [(∂θlS) (x, θ)− (∂θlS) (x̃, θ)] ∂θl

i |(∂θS) (x, θ)− (∂θS) (x̃, θ)|2
.

The transpose operator of L is

tL =

n∑
l=1

Fh,l (x, x̃, θ) ∂θl +Gh (x, x̃, θ) ,

where Fl (x, x̃, θ) ∈ Γ−1
0 (Ωε) , G (x, x̃, θ) ∈ Γ−2

0 (Ωε) ,

Fh,l (x, x̃, θ) =
h [(∂θlS) (x, θ)− (∂θlS) (x̃, θ)]

i |(∂θS) (x, θ)− (∂θS) (x̃, θ)|2
,

Gh (x, x̃, θ) =
h

i

n∑
l=1

∂θl
(∂θlS) (x, θ)− (∂θlS) (x̃, θ)

|(∂θS) (x, θ)− (∂θS) (x̃, θ)|2
,

Ωε =

{
(x, x̃, θ) ∈ R3n : (∂θS) (x, θ)− (∂θS) (x̃, θ) >

ε

2C5
λ (x, x̃, θ)

}
.
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On the other hand, we prove by inducting on q that

(
tL
)q
bε2 (x, x̃, θ) =

∑
|γ|≤q,γ∈N

gγ,q (x, x̃, θ) ∂
γ
θ b

ε
2 (x, x̃, θ) , g

(q)
γ ∈ Γ−q

0 (Ωε) ,

and so

Kε
2 (x, x̃;h) =

∫
Rn

e
i
h (S(x,θ)−S(x̃,θ))

(
tL
)q
bε2 (x, x̃, θ) d̂θ.

Using Leibenitz’s formula, (G2) , and the form (tL)
q
, we can choose q large enough such that for all α, α′, β, β′ ∈

Nn, ∃Cα,α′,β,β′ > 0,

sup
x,x̃∈Rn

∣∣∣xαx̃α′
∂βx∂

β′

x̃ K
ε
2 (x, x̃)

∣∣∣ ≤ Cα,α′,β,β′ .

Next, we study Kε
1 : this is more difficult and depends on the choice of the parameter ε . It follows from Taylor’s

formula that

S (x, θ)− S (x̃, θ) = ⟨x− x̃, ξ (x, x̃, θ)⟩Rn

ξ (x, x̃, θ) =

∫ 1

0

(∂xS) (x̃+ t (x− x̃) , θ) dt

we define the vectorial function

ξ̃ε (x, x̃, θ) = ω

(
|x− x̃|

2ελ (x, x̃, θ)

)
ξ (x, x̃, θ) +

(
1− ω

(
|x− x̃|

2ελ (x, x̃, θ)

))
(∂xS) (x̃, θ) .

We have

ξ̃ε (x, x̃, θ) = ξ (x, x̃, θ) , on the supp bε1.

Moreover, for ε sufficiently small,

λ (x, θ) ≃ λ (x̃, θ) ≃ λ (x, x̃, θ) , on the supp bε1. (5.6)

Let us consider the mappings

R3n ∋ (x, x̃, θ) →
(
x, x̃, ξ̃ε (x, x̃, θ)

)
. (5.7)

for which the Jacobian matrix is  In 0 0
0 In 0

∂xξ̃
ε ∂x̃ξ̃

ε ∂θ ξ̃
ε

 .

We have

∂ξ̃εj
∂θi

(x, x̃, θ) =
∂2S

∂θi∂xj
(x̃, θ) + ω

(
|x− x̃|

2ελ (x, x̃, θ)

)(
∂ξj
∂θi

(x, x̃, θ)− ∂2S

∂θi∂xj
(x̃, θ)

)

− |x− x̃|
2ελ (x, x̃, θ)

∂λ

∂θi
(x, x̃, θ)λ−1 (x, x̃, θ)ω′

(
|x− x̃|

2ελ (x, x̃, θ)

)(
ξj (x, x̃, θ)−

∂S

∂xj
(x̃, θ)

)
.
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Thus, we obtain∣∣∣∣∣∂ξ̃εj∂θi
(x, x̃, θ)− ∂2S

∂θi∂xj
(x̃, θ)

∣∣∣∣∣ ≤
∣∣∣∣ω( |x− x̃|

2ελ (x, x̃, θ)

)∣∣∣∣ ∣∣∣∣∂ξj∂θi
(x, x̃, θ)− ∂2S

∂θi∂xj
(x̃, θ)

∣∣∣∣
+λ−1 (x, x̃, θ)

∣∣∣∣ω′
(

|x− x̃|
2ελ (x, x̃, θ)

)∣∣∣∣ ∣∣∣∣ξj (x, x̃, θ)− ∂S

∂xj
(x̃, θ)

∣∣∣∣ .
Now it follows from (G2) , (5.6) , and Taylor’s formula that

∣∣∣∣∂ξj∂θi
(x, x̃, θ)− ∂2S

∂θi∂xj
(x̃, θ)

∣∣∣∣ ≤
∫ 1

0

∣∣∣∣ ∂2S

∂θi∂xj
(x̃+ t (x− x̃) , θ)− ∂2S

∂θi∂xj
(x̃, θ)

∣∣∣∣ dt
≤ C10 |x− x̃|λ−1 (x, x̃, θ) , C10 > 0. (5.8)

∣∣∣∣ξj (x, x̃, θ)− ∂S

∂xj
(x̃, θ)

∣∣∣∣ ≤
∫ 1

0

∣∣∣∣ ∂S∂xj (x̃+ t (x− x̃) , θ)− ∂S

∂xj
(x̃, θ)

∣∣∣∣ dt (5.9)

≤ C11 |x− x̃| , C10 > 0.

From (5.8) and (5.9), there exists a positive constant C12 > 0, such that∣∣∣∣∣∂ξ̃j∂θi
(x, x̃, θ)− ∂2S

∂θi∂xj
(x̃, θ)

∣∣∣∣∣ ≤ C12ε, ∀i, j ∈ {1, . . . , n} . (5.10)

If ε < δ0
2C , then (5.10) and (G3) yield the estimate

δ0
2

≤ −C̃ε+ δ0 ≤ −C̃ε+ det
∂2S

∂θ∂x
≤ det ∂θ ξ̃

ε (x, x̃, θ) . (5.11)

with C̃ > 0. If ε is such that (5.6) and (5.11) hold, then the mapping given in (5.7) is global diffeomorphism

of R3n . Hence there exists a mapping

θ : Rn × Rn × Rn ∋ (x, x̃, ξ) → θ (x, x̃, ξ) ∈ Rn,

such that

ξ̃ε (x, x̃, θ (x, x̃, ξ)) = ξ.

θ
(
x, x̃, ξ̃ε (x, x̃, θ)

)
= x.

∂αθ (x, x̃, ξ) = o (1) , ∀α ∈ N3n\ {0} .
(5.12)

If we change the variable ξ by θ (x, x̃, ξ) in Kε
1 (x, x̃;h) , we obtain

Kε
1 (x, x̃;h) =

∫
e

i
h ⟨x−x̃,ξ⟩bε1 (x, x̃, θ (x, x̃, ξ))

∣∣∣∣det ∂θ∂ξ (x, x̃, ξ)
∣∣∣∣ d̂ξ. (5.13)

From (5.12) we have, for k = 0, 1, that bε1 (x, x̃, θ (x, x̃, ξ))
∣∣∣det ∂θ

∂ξ (x, x̃, ξ)
∣∣∣ belongs to Γ2m

k

(
R2n

)
.
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Applying the stationary phase theorem to (5.13), we obtain the expression of the symbol of the h-

admissible operator FhF
∗
h ,

σ (FhF
∗
h ) = bε1 (x, x̃, θ (x, x̃, ξ))

∣∣∣∣det ∂θ∂ξ (x, x̃, ξ)
∣∣∣∣
x=x̃

+R (x, ξ) ,

where R (x, ξ) belongs to Γ2m−2
k

(
R2n

)
if a ∈ Γm

k

(
R2n

)
, k = 0, 1.

For x = x̃, we have

bε1 (x, x, θ (x, x, ξ)) = |a (x, θ (x, x, ξ))|2 ,

where θ (x, x, ξ) is the inverse of the mapping

θ → ∂xS (x, θ) = ξ.

Thus

σ (FhF
∗
h ) (x, ∂xS (x, θ)) ≡ |a (x, θ)|2

∣∣∣∣det ∂2S

∂θ∂x
(x, θ)

∣∣∣∣−1

.

From (5.2) and (5.3), we obtain the expression of F ∗
hFh : ∀v ∈ S (Rn) :

(
Fh (F

∗
hFh)F−1

h

)
v (θ) =

∫
Rn

e−
i
hS(x,θ)a (x, θ)

(
Fh

(
F−1

h v
))

(x) dx.

=

∫
Rn

e−
i
hS(x,θ)a (x, θ)

(∫
Rn

e−
i
hS(x,θ̃)a

(
x, θ̃
) (
Fh

(
F−1

h v
)) (

θ̃
)
d̂θ̃

)
dx.

=

∫
Rn

∫
Rn

e−
i
h (S(x,θ)−S(x,θ̃))a (x, θ) a

(
x, θ̃
)
v
(
θ̃
)
d̂θ̃dx.

Hence the distribution kernel of the integral operator Fh (F
∗
hFh)F−1

h is

K̃
(
θ, θ̃;h

)
=

∫
e−

i
h (S(x,θ)−S(x,θ̃))ã (x, θ) a

(
x, θ̃
)
d̂x.

We remark that we can deduce K̃
(
θ, θ̃;h

)
= K̃ (x, x̃;h) by replacing x by θ. On the other hand, all assumptions

used here are symmetrical on x and θ; therefore, Fh (F
∗
hFh)F−1

h is a nice h-admissible operator with symbol

σ (F ∗
hFh) (∂θS (x, θ) , θ) = |a (x, θ)|2

∣∣∣∣det ∂2S

∂θ∂x
(x, θ)

∣∣∣∣−1

.

2

Corollary 1 Let Fh be the integral operator with the distribution kernel

K (x, y;h) =

∫
Rn

e
i
h (S(x,y)−yθ)a (x, y) d̂θ,

where a ∈ Γm
0

(
R2n

x,θ

)
and S satisfies (G1) , (G2) , and (G3) . Then we have

(1) For any m such that m ≤ 0, Fh can be extended as a bounded linear mapping on L2 (Rn) .

(2) For any m such that m < 0, Fh can be extended as a compact operator on L2 (Rn) .

566



AITEMRAR and SENOUSSAOUI/Turk J Math

Proof It follows from theorem (3) that F ∗
hFh is a h−admissible operator with symbol in Γ2m

0

(
R2n

)
.

(1) If m ≤ 0, the weight λ2m (x, θ) is bounded, and so we can apply the Calderòn–Vaillancourt theorem

for F ∗
hFh and obtain the existence of a positive constant γ (n) and a integer k (n) such that

∥(F ∗
hFh)u∥L2(Rn) ≤ γ (n)Qk(n) (σ (FhF

∗
h )) ∥u∥L2(Rn) , ∀u ∈ S (Rn) ,

where

Qk(n) (σ (FhF
∗
h )) =

∑
|α|+|β|≤k(n)

sup
(x,θ)∈Rn

∣∣∣∂αx ∂βθ σ (FhF
∗
h ) (∂θS (x, θ) , θ)

∣∣∣ .
Hence, for all v ∈ S (Rn) ,

∥Fhu∥L2(Rn) ≤ ∥F ∗
hFh∥

1
2

L(L2(Rn)) ∥u∥L2(Rn) ≤
(
γ (n)Qk(n) (σ (FhF

∗
h ))
) 1

2 ∥u∥L2(Rn) .

Thus, Fh is also a bounded linear operator on L2 (Rn) .

(2) If m < 0, lim|x|+|θ|→∞ λm (x, θ) = 0, and the compactness theorem shows that the operator F ∗
hFh

can be extended as a compact operator on L2 (Rn) . Thus, the Fourier integral operator Fh is compact on

L2 (Rn) . Indeed, let (φj)j∈N be an orthonormal basis of L2 (Rn) , then

∥∥∥∥∥∥F ∗
hFh −

n∑
j=1

⟨φj , .⟩F ∗
hFhφj

∥∥∥∥∥∥→ 0 as n→ ∞.

Since Fh is bounded, for all ψ ∈ L2 (Rn) ,

∥∥∥∥∥∥Fhψ −
n∑

j=1

⟨φj , ψ⟩Fhφj

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥F ∗
hFhψ −

n∑
j=1

⟨φj , ψ⟩F ∗
hFhφj

∥∥∥∥∥∥
∥∥∥∥∥∥ψ −

n∑
j=1

⟨φj , ψ⟩φj

∥∥∥∥∥∥ ,
it follows that ∥∥∥∥∥∥Fh −

n∑
j=1

⟨φj , .⟩Fhφj

∥∥∥∥∥∥→ 0 as n→ ∞.

2
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