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Abstract: Let Ω ⊂ R2 be a smooth bounded domain and W 1,2
0 (Ω) be the usual Sobolev space. Let β , 0 ≤ β < 2, be

fixed. Define for any real number p > 1,

λp,β(Ω) = inf
u∈W

1,2
0 (Ω), u̸≡0

∥∇u∥22/∥u∥2p,β ,

where ∥·∥2 denotes the standard L2 -norm in Ω and ∥u∥p,β = (
∫
Ω
|x|−β |u|pdx)1/p . Suppose that γ satisfies γ

4π
+ β

2
= 1.

Using a rearrangement argument, the author proves that

sup
u∈W

1,2
0 (Ω),∥∇u∥2≤1

∫
Ω

|x|−βeγu
2(1+α∥u∥2p,β)dx

is finite for any α , 0 ≤ α < λp,β(BR) , where BR stands for the disc centered at the origin with radius R verifying that

πR2 is equal to the area of Ω. Moreover, when Ω = BR , the above supremum is infinity if α ≥ λp,β(BR) . This extends

earlier results of Adimurthi and Druet, Y. Yang, Adimurthi and Sandeep, Adimurthi and Yang, Lu and Yang, and J.

Zhu in dimension two.

Key words: Trudinger–Moser inequality, singular Trudinger–Moser inequality

1. Introduction

Let Ω be a bounded smooth domain in R2 , and W 1,2
0 (Ω) be the completion of C∞

0 (Ω) under the norm

∥u∥W 1,2
0 (Ω) = (

∫
Ω
|∇u|2dx)1/2 . The Trudinger–Moser inequality [9–11, 13, 19] says

sup
u∈W 1,2

0 (Ω),∥∇u∥2=1

∫
Ω

eγu
2

dx < +∞ (1.1)

for any γ ≤ 4π . Here and in the sequel, ∥ · ∥2 denotes the standard L2 -norm. Moreover, for any γ > 4π , the

supremum in (1.1) is infinity.

The inequality (1.1) was improved in many ways. It was proved by Adimurthi and Druet [1] that for

any α , 0 ≤ α < λ1(Ω), the first eigenvalue of the Laplace operator with respect to the Dirichlet boundary
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condition, there holds

sup
u∈W 1,2

0 (Ω), ∥∇u∥2≤1

∫
Ω

e4πu
2(1+α∥u∥2

2)dx < +∞; (1.2)

While if α ≥ λ1(Ω), then the supremum in (1.2) is infinity. It was then extended by Yang [14–16] to the general

dimensional case and Riemannian surface cases, and by de Souza and do Ó [4] to R2 . Moreover, Lu and Yang

[8] extended L2 -norm to Lp -norm in (1.2). Precisely, letting p > 1 and 0 ≤ α < λp(Ω) be fixed, there holds

sup
u∈W 1,2

0 (Ω),∥∇u∥2≤1

∫
Ω

e4πu
2(1+α∥u∥2

p)dx < +∞; (1.3)

If α ≥ λp(Ω), then the supremum in (1.3) is infinity. Here

λp(Ω) = inf
u∈W 1,2

0 (Ω), u ̸≡0

∫
Ω
|∇u|2dx(∫

Ω
|u|pdx

)2/p .
Another interesting improvement of (1.1) is due to Adimurthi and Sandeep [2], who derived a singular Trudinger–

Moser inequality. Namely, if 0 ≤ β < n and γ
αn

+ β
n = 1, then there holds

sup
u∈W 1,n

0 (Ω), ∥∇u∥n≤1

∫
Ω

|x|−βeγ|u|
n

n−1
dx < +∞; (1.4)

If γ > αn(1−β/n), the supremum in (1.4) is infinity. Here αn = nω
1/(n−1)
n−1 , ωn−1 is the area of the unit sphere

in Rn . This inequality was extended by Adimurthi and Yang [3] to Rn , by de Souza and do Ó [5] to R2 , and

by Yang [17, 18] to R4 and Riemannian manifold.

In this note, we combine (1.3) and (1.4) in the case n = 2. Let Ω be a smooth bounded domain in R2 .

Here and throughout this note we assume 0 ∈ Ω. Let p > 1 and 0 ≤ β < 2 be fixed. We define

λp,β(Ω) = inf
u∈W 1,2

0 (Ω), u ̸≡0

∫
Ω
|∇u|2dx(∫

Ω
|x|−β |u|pdx

)2/p . (1.5)

In the sequel, we write for simplicity

∥u∥p,β =

(∫
Ω

|x|−β |u|pdx
)1/p

. (1.6)

Our main result is the following:

Theorem 1.1. Let Ω be a smooth bounded domain in R2 , and BR ⊂ R2 be the disc centered at the origin with

radius R verifying that πR2 is equal to the area of Ω . Let p > 1 and 0 ≤ β < 2 be fixed and λp,β be defined

as in (1.5). Then we have

(i) for any α , 0 ≤ α < λp,β(BR) , there holds

sup
u∈W 1,2

0 (Ω),∥∇u∥2≤1

∫
Ω

|x|−βeγu
2(1+α∥u∥2

p,β)dx < +∞; (1.7)
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(ii) when Ω = BR , for any α ≥ λp,β(BR) ,

sup
u∈W 1,2

0 (Ω),∥∇u∥2≤1

∫
Ω

|x|−βeγu
2(1+α∥u∥2

p,β)dx = +∞.

Clearly Theorem 1.1 generalizes results of Adimurthi and Sandeep [2], Yang [14], and Lu and Yang [8] in

dimension two. The proof of Theorem 1.1 is based on a rearrangement argument and test function computation.

The remaining part of this note is organized as follows. In Section 2, using a variational direct method

and rearrangement argument, we prove three lemmas on eigenvalues. Theorem 1.1 is proved in Section 3.

2. Preliminary results

In this section, we study the properties of eigenvalues defined as in (1.5). The proof is based on a variational

direct method, symmetrization, and change of variables.

Lemma 2.1. For any real number p > 1 and any β , 0 ≤ β < 2 , we have λp,β(Ω) > 0 . Moreover, λp,β(Ω) can

be attained by a function ϕ0 ∈ W 1,2
0 (Ω) satisfying{
−∆ϕ0 = λp,β(Ω)|x|−β∥ϕ0∥2−p

p,β ϕ0
p−1 in Ω

∥∇ϕ0∥2 = 1, ϕ0 ≥ 0 in Ω,
(2.1)

where ∥ · ∥p,β is defined as in (1.6).

Proof. Choose a sequence of functions uk ∈ W 1,2
0 (Ω) such that ∥uk∥p,β = 1 and ∥∇uk∥22 → λp,β(Ω). It follows

that uk is bounded in W 1,2
0 (Ω). Without loss of generality, we assume

uk ⇀ u0 weakly in W 1,2
0 (Ω), (2.2)

uk → u0 strongly in Lq(Ω), ∀q ≥ 1. (2.3)

In view of (2.3), the Hölder inequality leads to ∥u0∥p,β = 1, while (2.2) implies that

lim
k→+∞

∫
Ω

∇uk∇u0dx =

∫
Ω

|∇u0|2dx,

which leads to ∫
Ω

|∇u0|2dx ≤ lim sup
k→+∞

∫
Ω

|∇uk|2dx = λp,β(Ω).

Hence u0 attains λp,β(Ω) and in particular, λp,β(Ω) > 0. Obviously, |u0| is also a minimizer and thus we can

assume u0 ≥ 0. Set

ϕ0 = u0/∥∇u0∥2.

Then ϕ0 attains λp,β(Ω) and satisfies the Euler–Lagrange equation (2.1). By the elliptic regularity theory (see

[6], Chapter 9), ϕ0 ∈ C1(Ω \ {0}) ∩ Cν(Ω) for some 0 < ν < 1. 2

If Ω is replaced by the disc BR in Lemma 2.1, we have the following:
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Lemma 2.2. λp,β(BR) > 0 , and λp,β(BR) can be attained by some radially symmetric decreasing function

ϕ0 ∈ W 1,2
0 (BR) satisfying (2.1) with Ω replaced by BR .

Proof. For any u ∈ C∞
0 (BR), let u∗ be the nonnegative decreasing rearrangement of |u| . Using the

Hardy–Littlewood inequality (see for examples [7, 12]), we have

∫
BR

|∇u∗|2dx ≤
∫
BR

|∇u|2dx

and ∫
BR

|x|−β |u|pdx ≤
∫
BR

|x|−βu∗pdx. (2.4)

This together with the definition of λp,β(BR) implies that

λp,β(BR) = inf
∥∇u∥22
∥u∥p,β

,

where the infimum takes over all nonnegative radially symmetric decreasing functions in W 1,2
0 (BR). Then by

the same procedure as in the proof of Lemma 2.1 we can find the desired minimizer ϕ0 . 2

For simplicity, we denote for any q > 1 and r > 0,

∥u∥q,Br =

(∫
Br

|u|qdx
)1/q

, ∥u∥q,β,Br =

(∫
Br

|x|−β |u|qdx
)1/q

.

Lemma 2.3. Let p > 1 and 0 ≤ β < 2 be fixed. Then there holds

λp,β(BR) = (1− β/2)1+2/pλp(BR1−β/2),

where λp(BR1−β/2) = inf∥u∥p=1 ∥∇u∥22 , and ∥ · ∥2 denotes the L2(BR1−β/2)-norm.

Proof. For simplicity, we write a = 1 − β/2. On one hand, there exists some nonnegative radially

symmetric function v ∈ W 1,2
0 (BRa) such that ∥v∥p,BRa = 1 and

∥∇v∥22,BRa = λp(BRa). (2.5)

We write v(r) = v(x) with r = |x| . Define a new radially symmetric function

u(r) = a−1/2v(ra) for r ∈ [0, R].
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Such a change of variable was also used by Adimurthi and Sandeep [2]. It follows that

∥u∥2p,β,BR
=

(∫
BR

|x|−βupdx

)2/p

(2.6)

=

(∫ R

0

2π(u(r))pr1−βdr

)2/p

= a−(1+2/p)

(∫ Ra

0

2π(v(t))ptdt

)2/p

= a−(1+2/p)∥v∥2p,BRa

= a−(1+2/p)

and that

∥∇u∥22,BR
=

∫ R

0

2πr|u′(r)|2dr (2.7)

= a

∫ R

0

2πr2a−1|v′(ra)|2dr

=

∫ Ra

0

2πt|v′(t)|2dt

= ∥∇v∥22,BRa .

In view of (2.5) and the definition of λp,β , we conclude

a1+2/pλp(BRa) ≥ λp,β(BR). (2.8)

On the other hand, by Lemma 2.2, there exists some nonnegative radially symmetric function u ∈
W 1,2

0 (BR) such that ∥u∥2p,β,BR
= 1 and ∥∇u∥22,BR

= λp,β(BR). Set

v(r) =
√
au(r1/a) for r ∈ [0, Ra].

Repeating the above calculation, we have ∥∇v∥22,BRa
= ∥∇u∥22,BR

and

∥v∥2p,BRa = a1+2/p

(∫
BR

|x|−βupdx

)2/p

= a1+2/p∥u∥2p,β,BR
= a1+2/p.

This implies that

a1+2/pλp(BRa) ≤ λp,β(BR). (2.9)

Combining (2.8) and (2.9), we conclude the lemma. 2

3. Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1. For (i) of Theorem 1.1, we use a symmetrization argument and a

change of variables, which was also used by Adimurthi and Sandeep [2]. For (ii) of Theorem 1.1, we employ
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the test function constructed by Yang [14] and Lu and Yang [8]. However, our calculation is more delicate;

specifically the singular eigenvalue λp,β(BR) is essentially involved.

Proof of (i) of Theorem 1.1. Let p > 1 and 0 ≤ β < 2 be fixed. Suppose the area of Ω is equal to πR2 .

For any u ∈ W 1,2
0 (Ω), let u∗ be the decreasing rearrangement of |u| . By the rearrangement argument, we have

u∗ ∈ W 1,2
0 (BR). Then we have the Polya–Szego inequality (see [3])

∫
BR

|∇u∗|2dx ≤
∫
Ω

|∇u|2dx

and by the Hardy–Littlewood inequality

∫
Ω

|x|−β |u|pdx =

∫
BR

(|x|−β |u|p)∗dx

≤
∫
BR

(|x|−β)∗(|u|p)∗dx

≤
∫
BR

|x|−βu∗pdx.

This leads to ∫
Ω

|x|−βeγu
2(1+α∥u∥2

p,β)dx ≤
∫
BR

|x|−βeγu
∗2(1+α∥u∗∥2

p,β,BR
)dx.

Hence, to prove (1.7), it suffices to prove that for any α , 0 ≤ α < λp,β(BR), and any nonnegative radially

symmetric decreasing function u ∈ W 1,2
0 (BR) with ∥∇u∥2,BR

≤ 1, there exists some constant C depending

only on α , β , and R such that ∫
BR

|x|−βeγu
2(1+α∥u∥2

p,β,BR
)dx ≤ C, (3.1)

where γ = 4π(1− β/2). For simplicity here we use u instead of u∗ , but we need to understand that u is not

the same as u ∈ W 1,2
0 (Ω). Set a = 1− β/2, and

v(r) =
√
au(r1/a).

By (2.6) and (2.7), we have

∥∇v∥2,BRa ≤ 1 (3.2)

and

∥u∥2p,β,BR
= a−(1+2/p)∥v∥2p,BRa . (3.3)

For simplicity we write b = 1 + α∥u∥2p,β,BR
. It follows from (3.3) that

b = 1 +
α

a1+2/p
∥v∥2p,BRa .
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By Lemma 2.2 and a straightforward calculation, we have∫
BR

|x|−βeγbu
2

dx =

∫ R

0

2πr2a−1eγb(u(r))
2

dr (3.4)

=
1

a

∫ Ra

0

2πte4πb(v(t))
2

dt

=
1

a

∫
BRa

e4πbv
2

dx

and

α

a1+2/p
<

λp,β(BR)

a1+2/p
= λp(BRa). (3.5)

In view of (3.2) and (3.5), it follows from Theorem 1.1 in [8] that∫
BRa

e4πbv
2

dx ≤ sup
u∈W 1,2

0 (BR), ∥∇u∥2,BR≤1

∫
BR

e
4πu2

(
1+ α

a1+2/p
∥u∥2

p,BR

)
dx,

which together with (3.4) and (2.4) implies (3.1). 2

Proof of (ii) of Theorem 1.1. Let Ω = BR . We write λp,β = λp,β(BR). By Lemma 2.2, λp,β is attained

by ϕ0 verifying that ϕ0 is a radially symmetric decreasing function, and ϕ0 ∈ W 1,2
0 (BR)∩C1(BR\{0})∩Cν(BR)

for some 0 < ν < 1. Clearly we have ϕ0(0) = maxBR
ϕ0 > 0. Denote ϕ0(r) = ϕ0(x) for 0 ≤ r = |x| ≤ R . Set

G(x) = − 1

2π
log |x|, |x| ≤ R. (3.6)

Following the lines of Yang [14] and Lu and Yang [8], we set

ϕϵ(x) =


√

1
2π log 1

ϵ , when |x| < ϵ

AG(x) +B, when ϵ ≤ |x| ≤ δ

tϵ(ϕ0(δ) + η(ϕ0 − ϕ0(δ))), when δ < |x| ≤ R,

where

A =

√
1
2π log 1

ϵ − tϵϕ0(δ)

1
2π log 1

ϵ −
1
2π log 1

δ

,

B =
tϵϕ0(δ)

1
2π log 1

ϵ −
√

1
2π log 1

ϵ
1
2π log 1

δ

1
2π log 1

ϵ −
1
2π log 1

δ

,

η ∈ C1(BR) satisfies 0 ≤ η ≤ 1, η ≡ 0 when |x| < δ , η ≡ 1 when |x| ≥ 2δ and |∇η| ≤ 2/δ for sufficiently small

δ > 0. One can see that ϕϵ ∈ W 1,2
0 (BR). We choose tϵ such that tϵ → 0, t2ϵ log

1
ϵ → +∞ , and t3ϵ log

1
ϵ → 0. A

straightforward calculation shows∫
ϵ≤|x|≤δ

|∇G|2dx =
1

2π
log

1

ϵ
− 1

2π
log

1

δ
,

880



YUAN and HUANG/Turk J Math

which gives

∫
ϵ≤|x|≤δ

|∇ϕϵ|2dx = A2

∫
ϵ≤|x|≤δ

|∇G|2dx

= 1− 2tϵϕ0(δ)√
1
2π log 1

ϵ

(1 + oϵ(1)),

where oϵ(1) → 0 as ϵ → 0. Note that ϕ0 is a distributional solution to

{
−∆ϕ0 = λp,β |x|−β∥ϕ0∥2−p

p,β ϕ0
p−1 in BR

∥∇ϕ0∥2 = 1, ϕ0 ≥ 0 in BR.
(3.7)

Testing the above equation by (ϕ0 − ϕ0(2δ))
+ , we have

∫
B2δ

|∇ϕ0|2dx =

∫
BR

λp,β |x|−β∥ϕ0∥2−p
p,β ϕ0

p−1(ϕ0 − ϕ0(2δ))
+dx

≤ λp,β∥ϕ0∥2−p
p,β

∫
B2δ

|x|−βϕ0
pdx

≤ λp,β∥ϕ0∥2−p
p,β (ϕ0(0))

p

∫
B2δ

|x|−βdx

= O(δ2−β).

Since ϕ0 ∈ Cν(BR), it follows that
∫
δ≤|x|≤2δ

|∇ϕϵ|2dx = t2ϵO(δθ), where

θ = min{2− β, 2ν}.

Moreover, we can estimate the energy of ϕϵ in domain BR \ B2δ as follows:

∫
|x|>2δ

|∇ϕϵ|2dx = t2ϵ

∫
|x|>2δ

|∇ϕ0|2dx

= t2ϵ(1−
∫
B2δ

|∇ϕ0|2dx)

= t2ϵ(1 +O(δ2−β)).

Combining the above three estimates, we obtain

∫
BR

|∇ϕϵ|2dx = 1− 2tϵϕ0(δ)√
1
2π log 1

ϵ

(1 + oϵ(1)) + t2ϵ(1 +O(δθ)). (3.8)
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Let vϵ = ϕϵ/∥∇ϕϵ∥2 . Then vϵ ∈ W 1,2
0 (BR) and ∥∇vϵ∥2 = 1. Combining (2.1) with (3.8) and noting that

(
∫
BR

|x|−βup
0dx)

−2/p = λp,β , we have

λp,β∥vϵ∥2p,β ≥ λp,β

∥∇ϕϵ∥22

(∫
|x|>2δ

|x|−βtpϵϕ
p
0dx

)2/p

=
λp,β

∥∇ϕϵ∥22
t2ϵ

(∫
BR

|x|−βϕp
0dx−

∫
B2δ

|x|−βϕp
0dx

)2/p

=
t2ϵ

∥∇ϕϵ∥22
(1 +O(δ2−β))

= t2ϵ(1 +O(δ2−β) +O(t2ϵ)).

Here we also used the estimate

1

∥∇ϕϵ∥22
= 1 +

2tϵϕ0(δ)√
1
2π log 1

ϵ

(1 + oϵ(1))− t2ϵ(1 +O(δθ)).

Recall that γ = 4π(1− β/2). A straightforward calculation shows on domain Bϵ ,

γv2ϵ
(
1 + λp,β∥vϵ∥2p,β

)
(3.9)

≥ (2− β) log
1

ϵ
+ (4− 2β)

√
2πtϵ

√
log

1

ϵ
ϕ0(δ)(1 + oϵ(1))

+(2− β)t2ϵ log
1

ϵ

(
O(δθ) +O(t2ϵ)

)
.

Taking

δ =
1(

t2ϵ log
1
ϵ

)2/θ ,
one gets ϵ/δ = oϵ(1) and t2ϵ log

1
ϵO(δθ) = oϵ(1). Moreover, we have t4ϵ log

1
ϵ = oϵ(1) and ϕ0(δ) = ϕ0(0)+O(δν).

Since 2ν/θ ≥ 1, we have tϵ

√
log 1

ϵ δ
ν = oϵ(1). Therefore, it follows from (3.9) that for any α ≥ λp,β ,∫

BR

|x|−βeγv
2
ϵ (1+α∥vϵ∥2

p,β)dx ≥
∫
|x|≤ϵ

|x|−βeγv
2
ϵ (1+λp,β∥vϵ∥2

p,β)dx

≥ 2π

2− β
e(4−2β)

√
2πϕ0(0)tϵ

√
log 1

ϵ+oϵ(1)

→ +∞ as ϵ → 0.

Here, in the second inequality, we have used the fact
∫
|x|≤ϵ

|x|−βdx = 2π
2−β ϵ

2−β . Hence (ii) of Theorem 1.1

follows. 2
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