1-1-2018

Serum S100B, NSE, and GRIA1 levels as neurological biomarkers in lead exposure

ESRA FIRAT OĞUZ
FATMA MERİÇ YILMAZ
ENGİN TUTKUN
ÖMER HİNÇ YILMAZ
MÜJGAN ERCAN

See next page for additional authors

Follow this and additional works at: https://journals.tubitak.gov.tr/medical

Part of the Medical Sciences Commons

Recommended Citation

OĞUZ, ESRA FIRAT; YILMAZ, FATMA MERİÇ; TUTKUN, ENGİN; YILMAZ, ÖMER HİNÇ; ERCAN, MÜJGAN; and SEZER, SEVİLAY (2018) "Serum S100B, NSE, and GRIA1 levels as neurological biomarkers in lead exposure," Turkish Journal of Medical Sciences: Vol. 48: No. 3, Article 1. https://doi.org/10.3906/sag-1511-174
Available at: https://journals.tubitak.gov.tr/medical/vol48/iss3/1

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Medical Sciences by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.
Serum S100B, NSE, and GRIA1 levels as neurological biomarkers in lead exposure

Authors
ESRA FIRAT OĞUZ, FATMA MERİÇ YILMAZ, ENGİN TUTKUN, ÖMER HİNÇ YILMAZ, MÜJGAN ERCAN, and SEVİLAY SEZER

This article is available in Turkish Journal of Medical Sciences: https://journals.tubitak.gov.tr/medical/vol48/iss3/1
Serum S100B, NSE, and GRIA1 levels as neurological biomarkers in lead exposure

Esra FIRAT OĞUZ1,*, Fatma Meriç YILMAZ2, Engin TUTKUN3, Ömer Hınç YILMAZ3, Müjgan ERCAN4, Sevilay SEZER1

1Department of Clinical Biochemistry, Ankara Numune Education and Research Hospital, Ankara, Turkey
2Department of Biochemistry, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, Turkey
3Ankara Occupational Diseases Hospital, Ankara, Turkey
4Aydın Public Health Laboratory, Aydın, Turkey

* Correspondence: dr_esrafirat@hotmail.com

1. Introduction
Lead (Pb) is a widespread heavy metal that can persist in water, plants, and soil in the environment naturally in an inert form (1). Human exposure can be associated with the use of lead-containing ceramic dishware, food cans, and paints or, more commonly, it may be occupational in individuals working in industrial areas like automobile batteries, paints, ceramics, plastics, and cosmetics (2,3).

The central nervous system (CNS) is a major target in lead exposure. Lead is known to be a risk factor for a variety of neurologic and psychiatric disorders. Lead-induced brain injury appears to affect cognitive functions in the frontal cortex, motor ability in the cerebellum, and memory in the hippocampus (3,4). Several mechanisms are offered for lead-induced neurotoxicity, including cholinergic dysfunction, glutamate receptor changes, increased oxidative stress, and impaired antioxidant defense system in the brain (5). Lead acts like calcium in the CNS and enters cells from calcium channels. Lead exposure causes an elevation in intracellular calcium as the result of high uptake to astrocytes. Lead also activates protein kinase C (PKC) like calcium and PKC activation leads to calcium release from intracellular stores. This causes secretion of excitatory neurotransmitters, phospholipase activation, and oxidative stress in the CNS (6).

S100B is a biomarker with low molecular weight (9–13 kDa) and belongs to the calcium-binding protein family. It is found in glial cells of the CNS, especially in astrocytes. Neuron-specific enolase (NSE) is a glycolytic enzyme found in neuronal cytoplasm and known as a biomarker of brain damage with S100B. After neuronal damage, their elevated levels are found in blood and cerebrospinal fluid according to the increased permeability of the blood–brain barrier (BBB) (7,8). Glutamate is one of the major neurotransmitters in brain and affects N-methyl-D-aspartate (NMDA) receptor activation, which is mediated by calcium. Glutamate receptors are divided into two groups: the fast-acting ligand-gated ionotropic channels and the slower-acting metabotropic receptors. The ionotropic receptors are cation-specific ion channels. These receptors are subdivided into three groups: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA),...
Glutamate receptors are important for synaptic transmission during learning and memory. AMPA receptors were demonstrated to mediate most excitatory responses in the brain (10). Some studies revealed that ionotropic NMDA receptors have important roles in lead-induced neurotoxicity (11–13).

Glutamate receptor 1 (GRIA1) is one of the ionotropic excitatory receptors in mammalian brains and is important in neural communication, learning, and memory (14). GRIA1 is responsible for glutamate-mediated excitation of neural cells and is important in memory formation and learning. GRIA1 levels were investigated in acute mercury intoxication and were suggested to be a potential neurological biomarker in mercury-induced neurotoxicity (15).

In this study, we aimed to study NSE, S100B, and GRIA1 levels in subjects with chronic lead exposure and determine whether these parameters could be used as biomarkers of lead neurotoxicity.

2. Materials and methods

2.1. Patients

The exposure group consisted of workers in the battery industry (n = 15) and smelters (n = 10), who were admitted to the Ankara Occupational Diseases Hospital for annual health examinations. The mean lead-related work duration was 7.6 years for battery workers and 5.4 years for smelters. Twenty-five healthy adults admitted to the hospital for routine check-ups, without a history of occupational Pb exposure and with normal physical examination and no chronic illness, were included in the study as the control group. Subjects with Pb exposure were divided into two groups according to their neurological examination results. This study was approved by the local ethics committee of Ankara Keçiören Training and Research Hospital (date: 22.02.2012 / no.: B.10.4.ISM.4.06.68.49).

2.2. Blood samples and measurement

Venous blood samples were collected in vacutainer tubes and centrifuged at 1300 × g for 10 min. Sera were separated and stored at −20 °C until analysis.

GRIA1 was measured with an ELISA kit (Cusabio Biotech Co., P.R. China; catalog number: CBS-EL009898HU) using a quantitative sandwich enzyme immunoassay technique. Detection range of the assay was 23.44–1500 pg/mL. Intra- and interassay precision were <8% and <10%, respectively.

NSE (catalog number: REF 12133113 122) and S100B (catalog number: REF 03175243 190) were measured by electrochemiluminescence immunoassay in a Cobas E601 analyzer (serial number: 2115-01; Roche, Germany). Detection range of the NSE assay was 0.050–370 ng/mL. Detection range of the S100B assay was 0.005–39 µg/L. Repeatability of the S100B assay was 1.0%, 1.8%, and 0.7% at concentrations of 0.09 µg/L, 0.26 µg/L, and 2.25 µg/L, respectively. Reproducibility of the S100B assay was 3.1%, 2.5%, and 2.9% at concentrations of 0.09 µg/L, 0.26 µg/L, and 2.24 µg/L, respectively. Repeatability of the NSE assay was 1.6%, 0.8%, and 0.7% at concentrations of 0.90 ng/mL, 11.9 ng/mL, and 95.1 ng/mL. Reproducibility of the NSE assay was 2.2%, 3.1%, and 3.8% at concentrations of 0.87 ng/mL, 11.4 ng/mL, and 87.3 ng/mL.

Whole-blood lead determination was performed using EDTA tubes in the toxicology laboratory of the Ankara Occupational Diseases Hospital using Varian AA 240Z (Agilent Technologies, Inc., Santa Clara, CA, USA) atomic absorption spectrophotometry (serial number: AA0904M070). Standard solutions were prepared by dilution of certified standard solutions (High-Purity Standards, Charleston, SC, USA). Two-level quality control materials were used (Seronorm; Sero AS, Billingstad, Norway). The lead calibration curve ranged from 0 to 100 µg/dL. Limits of detection and quantification were 0.02 and 0.1 µg/dL, respectively. The relative standard deviation of measurements was 4.2%.

2.3. Statistical analysis

The findings of this study were analyzed with SPSS 18 (SPSS Inc., Chicago, IL, USA). The conformity of continuous variables to normal distribution was tested with the Kolmogorov–Smirnov test. The descriptive statistics of continuous variables were expressed as median (min–max). The presence of a statistically significant difference between the groups in terms of continuous variables was examined with the Mann–Whitney U test for nonparametric variables. The presence of a correlation between the groups was examined with Spearman’s rho tests. P < 0.05 was considered the threshold of statistical significance for all tests. The area under the curve (AUC), specificity, and sensitivity values were calculated with receiver operating characteristic (ROC) analysis.

3. Results

Subjects in the lead exposure group were 25–62 years of age (median: 38) and those of the control group were 18–73 years of age (median: 37). In the lead exposure group, the median blood lead level was 34.2 µg/dL with a minimum value of 1.24 and a maximum value of 73.7 µg/dL. Mean exposure time was 6.21 ± 6.396 years. The exposure group consisted of workers in the battery industry (n = 15) and smelters (n = 10), who were admitted to the Ankara Occupational Diseases Hospital using Varian AA 240Z (Agilent Technologies, Inc., Santa Clara, CA, USA) atomic absorption spectrophotometry (serial number: AA0904M070). Standard solutions were prepared by dilution of certified standard solutions (High-Purity Standards, Charleston, SC, USA). Two-level quality control materials were used (Seronorm; Sero AS, Billingstad, Norway). The lead calibration curve ranged from 0 to 100 µg/dL. Limits of detection and quantification were 0.02 and 0.1 µg/dL, respectively. The relative standard deviation of measurements was 4.2%.

Whole-blood lead determination was performed using EDTA tubes in the toxicology laboratory of the Ankara Occupational Diseases Hospital using Varian AA 240Z (Agilent Technologies, Inc., Santa Clara, CA, USA) atomic absorption spectrophotometry (serial number: AA0904M070). Standard solutions were prepared by dilution of certified standard solutions (High-Purity Standards, Charleston, SC, USA). Two-level quality control materials were used (Seronorm; Sero AS, Billingstad, Norway). The lead calibration curve ranged from 0 to 100 µg/dL. Limits of detection and quantification were 0.02 and 0.1 µg/dL, respectively. The relative standard deviation of measurements was 4.2%.

Whole-blood lead determination was performed using EDTA tubes in the toxicology laboratory of the Ankara Occupational Diseases Hospital using Varian AA 240Z (Agilent Technologies, Inc., Santa Clara, CA, USA) atomic absorption spectrophotometry (serial number: AA0904M070). Standard solutions were prepared by dilution of certified standard solutions (High-Purity Standards, Charleston, SC, USA). Two-level quality control materials were used (Seronorm; Sero AS, Billingstad, Norway). The lead calibration curve ranged from 0 to 100 µg/dL. Limits of detection and quantification were 0.02 and 0.1 µg/dL, respectively. The relative standard deviation of measurements was 4.2%.

Whole-blood lead determination was performed using EDTA tubes in the toxicology laboratory of the Ankara Occupational Diseases Hospital using Varian AA 240Z (Agilent Technologies, Inc., Santa Clara, CA, USA) atomic absorption spectrophotometry (serial number: AA0904M070). Standard solutions were prepared by dilution of certified standard solutions (High-Purity Standards, Charleston, SC, USA). Two-level quality control materials were used (Seronorm; Sero AS, Billingstad, Norway). The lead calibration curve ranged from 0 to 100 µg/dL. Limits of detection and quantification were 0.02 and 0.1 µg/dL, respectively. The relative standard deviation of measurements was 4.2%.

Whole-blood lead determination was performed using EDTA tubes in the toxicology laboratory of the Ankara Occupational Diseases Hospital using Varian AA 240Z (Agilent Technologies, Inc., Santa Clara, CA, USA) atomic absorption spectrophotometry (serial number: AA0904M070). Standard solutions were prepared by dilution of certified standard solutions (High-Purity Standards, Charleston, SC, USA). Two-level quality control materials were used (Seronorm; Sero AS, Billingstad, Norway). The lead calibration curve ranged from 0 to 100 µg/dL. Limits of detection and quantification were 0.02 and 0.1 µg/dL, respectively. The relative standard deviation of measurements was 4.2%.

Whole-blood lead determination was performed using EDTA tubes in the toxicology laboratory of the Ankara Occupational Diseases Hospital using Varian AA 240Z (Agilent Technologies, Inc., Santa Clara, CA, USA) atomic absorption spectrophotometry (serial number: AA0904M070). Standard solutions were prepared by dilution of certified standard solutions (High-Purity Standards, Charleston, SC, USA). Two-level quality control materials were used (Seronorm; Sero AS, Billingstad, Norway). The lead calibration curve ranged from 0 to 100 µg/dL. Limits of detection and quantification were 0.02 and 0.1 µg/dL, respectively. The relative standard deviation of measurements was 4.2%.

Whole-blood lead determination was performed using EDTA tubes in the toxicology laboratory of the Ankara Occupational Diseases Hospital using Varian AA 240Z (Agilent Technologies, Inc., Santa Clara, CA, USA) atomic absorption spectrophotometry (serial number: AA0904M070). Standard solutions were prepared by dilution of certified standard solutions (High-Purity Standards, Charleston, SC, USA). Two-level quality control materials were used (Seronorm; Sero AS, Billingstad, Norway). The lead calibration curve ranged from 0 to 100 µg/dL. Limits of detection and quantification were 0.02 and 0.1 µg/dL, respectively. The relative standard deviation of measurements was 4.2%.

Whole-blood lead determination was performed using EDTA tubes in the toxicology laboratory of the Ankara Occupational Diseases Hospital using Varian AA 240Z (Agilent Technologies, Inc., Santa Clara, CA, USA) atomic absorption spectrophotometry (serial number: AA0904M070). Standard solutions were prepared by dilution of certified standard solutions (High-Purity Standards, Charleston, SC, USA). Two-level quality control materials were used (Seronorm; Sero AS, Billingstad, Norway). The lead calibration curve ranged from 0 to 100 µg/dL. Limits of detection and quantification were 0.02 and 0.1 µg/dL, respectively. The relative standard deviation of measurements was 4.2%.

Whole-blood lead determination was performed using EDTA tubes in the toxicology laboratory of the Ankara Occupational Diseases Hospital using Varian AA 240Z (Agilent Technologies, Inc., Santa Clara, CA, USA) atomic absorption spectrophotometry (serial number: AA0904M070). Standard solutions were prepared by dilution of certified standard solutions (High-Purity Standards, Charleston, SC, USA). Two-level quality control materials were used (Seronorm; Sero AS, Billingstad, Norway). The lead calibration curve ranged from 0 to 100 µg/dL. Limits of detection and quantification were 0.02 and 0.1 µg/dL, respectively. The relative standard deviation of measurements was 4.2%.
examination. Twelve of these 14 subjects had pain and numbness of the hands and others had pain and numbness of the feet. Eleven of the subjects had no neurological signs in their examination. There was no significant difference in the levels of GRIA1, NSE, or S100B between these two groups (P > 0.05) (Table 2).

There were no correlations between lead exposure and GRIA1, NSE, S100B, ALT, AST, and creatinine levels (Table 3).

ROC analysis was performed for GRIA1. The AUC for GRIA1 was 0.709. Sensitivity and specificity for GRIA1 levels to detect lead-related neurotoxicity were found as 70% and 56%, respectively (cut-off: 39.1 pg/mL) (Figure).

4. Discussion

The CNS is a major target in lead exposure. Lead is known to be a risk factor for a variety of neurologic and psychiatric disorders.

In the present study, we studied the levels of neurological biomarkers S100B, NSE, and GRIA1 in lead exposure and control groups. We found that GRIA1 levels were significantly higher in the lead exposure group. However, according to ROC analysis, the sensitivity and specificity values for GRIA1 levels to detect lead-induced neurotoxicity did not indicate that it is a good biomarker.

GRIA1 is one of the excitatory receptors in mammalian brains and is responsible for glutamate-mediated excitation of neural cells. It is important in memory formation and learning (14). Overactivation of glutamate receptors AMPA and NMDA is involved in the process of cell damage by increasing the intracellular Ca2+ concentration in neurons and activating the generation of free radicals, proteases, and phospholipases (16). These receptors are thought to be vulnerable to effects of Pb as Pb mimics calcium and activates PKC, this activation disturbing the signaling mechanisms (17–19). Studies indicate that Pb is accumulated in brain regions, especially in the hippocampus and cerebellum (20–22). In the hippocampus Pb affects Ca2+-dependent cellular processes. Studies suggested the NMDA receptor as a target in lead-induced neurotoxicity (11,23). In the present study, we think that the finding of higher GRIA1 levels in the exposure group support the literature findings and GRIA1 levels may be thought to be a potential biomarker in lead neurotoxicity.

Table 1. Comparison of serum GRIA1, NSE, and S100B and routine chemical parameters of the lead exposure and control groups

<table>
<thead>
<tr>
<th></th>
<th>Lead exposure group (n = 25)</th>
<th>Controls (n = 25)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRIA1 (pg/mL)</td>
<td>39.9 (33.5–64.5)</td>
<td>36.2 (32.0–51.2)</td>
<td>0.011*</td>
</tr>
<tr>
<td>NSE (ng/mL)</td>
<td>14.8 (10.6–35.4)</td>
<td>15.6 (4.9–30.0)</td>
<td>0.516</td>
</tr>
<tr>
<td>S100B (µg/L)</td>
<td>0.058 (0.026–0.160)</td>
<td>0.049 (0.027–0.135)</td>
<td>0.607</td>
</tr>
<tr>
<td>ALT (IU/L)</td>
<td>16 (3–91)</td>
<td>27 (11–52)</td>
<td>0.109</td>
</tr>
<tr>
<td>AST (IU/L)</td>
<td>18 (11–39)</td>
<td>21 (12–42)</td>
<td>0.662</td>
</tr>
<tr>
<td>Creatinine (mg/dL)</td>
<td>0.8 (0.6–1.3)</td>
<td>0.95 (0.77–1.25)</td>
<td>0.180</td>
</tr>
</tbody>
</table>

GRIA1, NSE, S100B, creatinine, ALT, and AST are expressed as median (min–max).
GRIA1: Glutamate receptor 1, NSE: neuron-specific enolase, ALT: alanine aminotransferase, AST: aspartate aminotransferase.

Table 2. Comparison of groups with and without neurological signs.

<table>
<thead>
<tr>
<th></th>
<th>Neurological signs (+) (n = 14)</th>
<th>Neurological signs (–) (n = 11)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRIA1 (pg/mL)</td>
<td>41.9 (33.5–54.6)</td>
<td>39.4 (35.8–64.5)</td>
<td>0.584</td>
</tr>
<tr>
<td>NSE (ng/mL)</td>
<td>15.0 (10.6–35.4)</td>
<td>14.9 (11.0–22.0)</td>
<td>0.661</td>
</tr>
<tr>
<td>S100B (µg/L)</td>
<td>0.051 (0.026–0.160)</td>
<td>0.058 (0.042–0.079)</td>
<td>0.380</td>
</tr>
<tr>
<td>Lead (µg/dL)</td>
<td>36.3 (1.2–73.0)</td>
<td>29.4 (13.4–47.2)</td>
<td>0.228</td>
</tr>
</tbody>
</table>

GRIA1, NSE, S100B, and lead are expressed as median (min–max).
GRIA1: Glutamate receptor 1, NSE: neuron-specific enolase.
However, there was no significant difference in the levels of GRIA1 between the lead-exposed groups with and without peripheral neurological signs and this result might be related to GRIA1 levels indicating Pb exposure in the CNS but not in the peripheral nervous system, as GRIA1 levels are known to have important roles in the CNS (13). Basu et al. also studied NMDA receptor levels in mink exposed to mercury, another heavy metal, and found decreased levels as a result of impaired glutamate homeostasis (24). In another study GRIA1 levels were investigated in cases of mercury exposure and were found to be higher than in the control group. High levels of GRIA1 were related to improvement of the neurological symptoms of exposed patients and it was suggested as a potential neurological biomarker in mercury-induced neurotoxicity (15).

On the other hand, no difference was found in terms of S100B and NSE levels between groups. Lead can cross the BBB by acting like calcium and accumulates in astroglial cells, disturbs immature astroglial cells, and blocks the formation of myelin sheath (2). During toxic conditions, glial cells undergo some changes like reactive gliosis. After glial reactions one of the most affected markers is S100B. S100B has two roles according to its levels. At nanomolar concentrations it acts as a neuroprotective factor and at micromolar concentrations it may act as a proinflammatory cytokine and promotes neuroinflammatory reactions and neuronal dysfunction (7). In our study we did not find a significant difference in the levels of S100B between lead-exposed workers and the control group. Marchi et al. measured S100B levels in patients with iatrogenic BBB disruption by intraarterial mannitol infusion and found that low levels of S100B were associated with BBB opening without CNS damage. High S100B release indicates synthesis and glial damage (25). Pleines et al. studied patients with traumatic brain injury (TBI) and found very low S100B levels in normal individuals without brain injury (22). We thought that in our lead-exposed group there was not glial damage in the brain for S100B to act like a neuroprotective factor and we therefore observed low levels of S100B. Zheng et al. studied Pb-exposed workers and found that high blood Pb concentrations were associated with significantly lower sensory and motor conduction velocities in the median, ulnar, and peroneal nerves (20). In neurological examinations we saw peripheral neurological signs like pain and numbness of the hands or feet in 10 participants, but there was no significant difference between the two groups. Bilińska et al. electrophysiologically recorded the subclinical damage in the peripheral nervous system in their study with asymptomatic workers chronically exposed to inorganic Pb (9,21). In our study 9 of 14 participants who had positive neurological examinations and complaints had electromyography as well and all of them were found to be in normal ranges. S100B is usually found in glial cells of the CNS in the largest amounts and it increases with glial damage or activation. Therefore, a reason for S100B to be nonsignificant might be that all participants had peripheral neurological damage.

NSE is a glycolytic enzyme found in the cytoplasm of neurons and neuroendocrine cells and shows functional damage of neurons. Because of the high molecular weight of NSE, it cannot pass through membranes. It is released after cell destruction and increased concentrations can be found in peripheral blood or liquor (7,26). Yarden et al. studied S100B and NSE in patients with CO poisoning.
and found no elevation in levels of these parameters in patients without loss of consciousness but significant elevation in unconscious patients (26). Gradisek et al. studied NSE and S100B in patients with TBI and found no differences in concentrations of these biomarkers between the group of survivors and patients who died because of non-TBI causes (27). We did not find any significant difference between lead exposure and control groups in terms of NSE levels. In another study it was indicated that protective features of the CNS prevent molecules from passing through the peripheral circulation. Therefore, it is recommended to evaluate behavioral and molecular measurements with the results of biomarkers of exposure to neurotoxicants (28).

In conclusion, the results of our study showed that subjects with chronic lead exposure are found to have increased glutamate receptor levels and do not seem to have glial or neuronal damage, which can be demonstrated with the elevation of NSE and S100B levels. GRIA1 levels might be used as a biomarker for the neurotoxicity of lead. Further studies are needed to identify the mechanisms involved in the neurotoxicity of lead.

References


