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Abstract: We fix a proper class of triangles ξ in a triangulated category C . Let W be a class of objects in C such that

ξxtiξ(W, W ′) = 0 for all W,W ′ ∈ W and all i ≥ 1. In this paper, we introduce the notion of W -Gorenstein objects and

G(W)-(co)resolution dimensions of any object in C and study the properties of W -Gorenstein objects and characterize

the finite G(W)-(co)resolution dimensions of any object. Some applications are given.
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1. Introduction

Triangulated categories were first introduced by Grothendieck and Verdier [20] in the 1960s for doing homological

algebra in abelian categories. From then on, they have been useful in algebraic geometry and homological

algebra. For this, one can reference [3, 11, 17]. Beligiannis in [4] first developed a homological algebra in a

triangulated category. Let ξ be a proper class of triangles in a triangulated category C . He introduced ξ -

projective objects, ξ -projective resolution, ξ -projective dimension, and their duals. Asadollahi and Salarian

in [1] introduced and studied ξ -Gorenstein projective objects in triangulated categories. Using the class G(P)

of the full subcategory of ξ -Gorenstein projective objects of C , they related an invariant called ξ -Gorenstein

projective dimension to any object A of C and then investigated some properties on the ξ -Gorenstein projective

dimension. Motivated by the classical structure of Tate cohomology, Asadollahi and Salarian in [2] developed

and studied a Tate cohomology theory in a triangulated category C . Based on Asadollahi and Salarian’s

work, the authors in [18] further studied Gorenstein homological dimensions for triangulated categories. More

importantly, they proved the equality sup{ξ -GpdM |for any M ∈ C} = sup{ξ -GidM |for any M ∈ C} .
It is well known that the idea of relative homological algebra was introduced by Eilenberg and Moore

[9], and was reinvigorated by Enochs, Jenda, and Torrecillas [6–8]. An R -module M is said to be Gorenstein

projective (for short G -projective; see [6]) if there is an exact complex

P = · · · → P1 → P0 → P 0 → P 1 → · · ·

of projective modules with M = Ker(P 0 → P 1) such that Hom(P, Q) is exact for each projective R -

module Q . To date, many authors have studied the related subjects; see [5, 10, 12–15, 19, 21, 22]. Let W
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be a self-orthogonal class of left R -modules. Geng and Ding in [10] introduced the notion of W -Gorenstein

modules, which is a common generalization of some modules such as Gorenstein projective (injective) and V-

Gorenstein projective (injective) modules. Let A be an abelian category. In [23], the author introduced the

so-called resolving subcategory X of A and researched the X -resolution dimensions and special X -precovers

for resolving subcategory X of A .

Motivated by the above-mentioned, our aim in this paper is to contribute in developing the relative

homological algebra in triangulated categories. Precisely speaking, for a fixed proper class of triangles ξ and a

fixed class of objects W such that ξxtiξ(W, W ′) = 0 for all W,W ′ ∈ W and all i ≥ 1 in a triangulated category

C , we introduce the notion of W -Gorenstein objects and G(W)-(co)resolution dimensions of any object in

the category C , where the symbol G(W) denotes the full subcategory of W -Gorenstein objects in C . The

paper is organized as follows. In the second section, we recall some definitions and collect some fundamental

results about triangulated categories that will be used throughout the paper. In Section 3, using the notion

of completely W -exact complexes, we introduce the notion of W -Gorenstein objects. More precisely, let X .

be a completely W -exact complex. For any integer n , there exists a C(W, −)-exact and C(−, W)-exact

triangle Kn+1
gn+1−→ Xn+1

fn+1−→ Kn −→ ΣKn+1 in ξ . The object Kn for any integer n is called a W -Gorenstein

object. We also introduce the notion of G(W)-(co)resolution dimensions of any object in C and then consider

their properties. In Section 4, we use the properties developed in the earlier section to characterize the finite

G(W)-(co)resolution dimensions of any object in the triangulated category C . In the last section, we give some

applications.

2. Preliminaries

In this section we recall some definitions and elementary properties about triangulated categories that are used

throughout the paper. First of all, for the definition of triangulated categories and some basic properties, one

can refer to Neeman’s book [17]. The following result is crucial in this paper.

Proposition 2.1 (See [4, 2.1] and [1, Proposition 2.2]). Let C be an additive category and Σ : C → C be an

autoequivalent functor and ∆ ⊆ Diag(C, Σ) . Suppose that the triple (C, Σ, ∆) satisfies all the axioms of a

triangulated category except possibly of the octahedral axiom. Then the following are equivalent:

(1) (Base change). For any triangle A
f→ B

g→ C
h→ ΣA ∈ ∆ and morphism ϵ : E → C , there is a

commutative diagram

0 −−−−→ M M −−−−→ 0y y y y
A

f−−−−→ G
g−−−−→ E

h−−−−→ ΣA∥∥∥ y ε

y ∥∥∥
A −−−−→ B −−−−→ C −−−−→ ΣAy y y y
0 −−−−→ ΣM ΣM −−−−→ 0

in which all horizontal and the vertical diagrams are triangles in ∆ .
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(2) (Cobase change). For any triangle A
f→ B

g→ C
h→ ΣA ∈ ∆ and morphism α : A → D , there is a

commutative diagram

0 −−−−→ N N −−−−→ 0y y y y
Σ−1C

−Σ−1h−−−−−→ A
g−−−−→ B

h−−−−→ C∥∥∥ α

y y ∥∥∥
Σ−1C −−−−→ D −−−−→ F −−−−→ Cy y y y

0 −−−−→ ΣN ΣN −−−−→ 0

in which all horizontal and the vertical diagrams are triangles in ∆ .

(3) (Octahedral axiom). Given two morphisms f1 : A → B and f2 : B → C , there is a commutative

diagram:

A
f1−−−−→ B −−−−→ X −−−−→ ΣA∥∥∥ f2

y y ∥∥∥
A

f2f1−−−−→ C −−−−→ Y −−−−→ ΣA

f1

y ∥∥∥ y Σf1

y
B

f2−−−−→ C −−−−→ Z −−−−→ ΣBy y y y
0 −−−−→ ΣX ΣX −−−−→ 0

in which all horizontal and the third vertical diagrams are triangles in ∆ .

A triangle A
f→ B

g→ C
h→ ΣA is called split if it is isomorphic to the triangle A

(0 1)−→ A
⊕

C

(
1
0

)
−→ C

0−→
ΣA . It is easy to see that it is split if and only if f is a section or g is a retraction or h = 0. The full subcategory

of the split triangles is denoted by ∆0 . A class of triangles ξ in C is closed under base change if for any triangle

A
f→ B

g→ C
h→ ΣA ∈ ξ as in above proposition (1), the triangle A → G → E → ΣA is in ξ . Dually, one

can define the class ξ is closed under cobase change. The class ξ is closed under suspension if for any triangle

A
f→ B

g→ C
h→ ΣA ∈ ξ and any integer i ∈ Z , the triangle ΣiA

(−1)iΣif−−−−−−→ ΣiB
(−1)iΣig−−−−−−→ ΣiC

(−1)iΣih−−−−−−→ Σi+1A

is in ξ . The class ξ is closed under saturation if in the situation of base change in the above proposition,

whenever the third vertical and the second horizontal triangle is in ξ , then the triangle A
f→ B

g→ C
h→ ΣA

is in ξ . Recall that a full subcategory ξ is called a proper class if (1) ξ is closed under isomorphisms, finite

coproducts, and ∆0 ⊆ ξ ⊆ ∆; (2) ξ is closed under suspensions and is saturated; (3) ξ is closed under base

and cobase change.
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3. W -Gorenstein objects

In this paper, we fix a proper class of triangles ξ in a triangulated category C . Recall that for any object of

C in C and any integer n ≥ 0, the ξ -extension functor ξxtnξ (−, C) is defined to be the nth right ξ -derived

functor of the functor C(−, C); see [4]. Let W be a class of objects in a triangulated category C such that

ξxtiξ(W, W ′) = 0 for all W,W ′ ∈ W and all i ≥ 1. Let H be a subcategory of C . For an object M ∈ C ,

write H⊥M if ξxt≥1
ξ (X, M) = 0 for any object X ∈ H . H⊥W denotes that ξxt≥1

ξ (X, W ) = 0 for any

object X ∈ H and for any object W ∈ W . We set H⊥ = {M ∈ C|ξxt≥1
ξ (X, M) = 0 for any X ∈ H} .

⊥H = {M ∈ C|ξxt≥1
ξ (M, X) = 0 for any X ∈ H} . In this section, the notion of W -Gorenstein objects is

introduced and studied.

Definition 3.1 A ξ -exact complex X . is a diagram

X . = · · · → X1
d1→ X0

d0→ X−1 → · · ·

in C , such that there exists a triangle Kn+1
gn+1−→ Xn+1

fn+1−→ Kn −→ ΣKn+1 in ξ with dn+1 = gnfn+1 for any

n ∈ Z .

Definition 3.2 A triangle A → B → C → ΣA in ξ is called C(−, W)-exact if for any W ∈ W , the induced

complex

0 → C(C, W ) → C(B, W ) → C(A, W ) → 0

is exact in the category Ab of abelian groups.

Definition 3.3 A ξ -exact complex X . is called C(−, W)-exact if for any n ∈ Z , there exists a C(−, W)-exact

triangle Kn+1
gn+1→ Xn+1

fn+1→ Kn → ΣKn+1 in ξ .

The C(W, −)-exact triangle and the C(W, −)-exact complex can be defined dually.

Definition 3.4 A ξ -exact complex X . is called completely W -exact if it is both C(W, −)-exact and C(−, W)-

exact and for each integer n , Xn ∈ W .

Remark 3.5 Let X . be a completely W -exact complex. For any integer n , there exists a C(W, −)-exact and

C(−, W)-exact triangle Kn+1
gn+1−→ Xn+1

fn+1−→ Kn −→ ΣKn+1 in ξ . Thus for any W ∈ W there are short

exact sequences

0 → C(Kn, W ) → C(Xn+1, W ) → C(Kn+1, W ) → 0

and
0 → C(W, Kn+1) → C(W, Xn+1) → C(W, Kn) → 0

in Ab . We paste them together and can obtain two exact sequences

· · · → C(X−1, W ) → C(X0, W ) → C(X1, W ) → · · ·

and
· · · → C(W, X1) → C(W, X0) → C(W, X−1) → · · ·

in Ab .
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Definition 3.6 Let X . be a completely W -exact complex. For any integer n , there exists a C(W, −)-exact

and C(−, W)-exact triangle Kn+1
gn+1−→ Xn+1

fn+1−→ Kn −→ ΣKn+1 in ξ . The object Kn for any integer n is

called a W -Gorenstein object. We use G(W) to denote the full subcategory of W -Gorenstein objects in C .

Remark 3.7 Recall that an object P ∈ C (respectively, I ∈ C ) is called ξ -projective (respectively, ξ -injecitve)

if for any triangle A → B → C → ΣA in ξ , the induced complex 0 → C(P, A) → C(P, B) → C(P, C) → 0

(respectively, 0 → C(C, I) → C(B, I) → C(A, I) → 0) is exact in Ab . The symbol P(ξ) (respectively, I(ξ))
denotes the full subcategory of ξ -projective (respectively, ξ -injective) objects of C . If we use P(ξ) (respectively,

I(ξ)) to replace W , W -Gorenstein objects are just ξ -G projective (ξ -G injective) objects in [1].

Definition 3.8 Let X be a subcategory of C . For M ∈ C , an X -resolution of M is a ξ -exact complex

· · · → Xn → Xn−1 → · · · → X1 → X0 → M → 0

where Xi ∈ X , i = 1, 2, · · · . If M admits an X -resolution, the X -resolution dimension of M , denoted by

resdimX (M) , is defined as the infimum of the set of n such that there exists a ξ -exact complex 0 → Xn →
· · · → X0 → M → 0 where all Xi are in X , i = 1, 2, · · ·n . If no such n exists, set resdimX (M) = ∞ . We

use resX̂ to denote the subcategory of objects in C with resdimX (M) < ∞ . A X -resolution of M is called

proper if, for any H ∈ X , the following complex

· · · → C(H, Xn) → C(H, Xn−1) → · · · → C(H, X1) → C(H ′, X0) → 0

is exact. We use resX̃ to denote the subcategory of objects of C admitting a proper X -resolution.

Dually, one can define the (proper) X -coresolution and X -coresolution dimension of M . We use

coresdimX (M) to denote the X -coresolution dimension of M , use coresX̂ to denote the subcategory of objects

in C with coresdimX (M) < ∞ , and use coresX̃ to denote the subcategory of objects of C admitting a proper

X -coresolution.

Lemma 3.9 (1) Let M ′ f→ M
g→ M ′′ h→ ΣM ′ be a C(W, −)-exact triangle in ξ . If M ′ and M ′′ are in

resW̃ , then so is M .

(2) Let M ′ → M → M ′′ → ΣM ′ be a C(−, W)-exact triangle in ξ . If M ′ and M ′′ are in coresW̃ ,

then so is M .

Proof We just prove (1). Dually, (2) can be proved. Since M ′ and M ′′ are in resW̃ , there are triangles

K ′
0 → W ′

0

∂′
0→ M ′ → ΣK ′

0 and K ′′
0 → W ′′

0

∂′′
0→ M ′′ → ΣK ′′

0 in ξ with W ′
0, W

′′
0 ∈ W and K ′

0, K
′′
0 ∈ resW̃ . Since

M ′ f→ M
g→ M ′′ h→ ΣM ′ is C(W, −)-exact, there is a morphism η ∈ C(W ′′

0 , M) such that gη = ∂′′
0 . Thus we

have the following diagram where the first two squares are commutative.

W ′
0 −−−−→(

1
0

) W ′
0 ⊕W ′′

0 −−−−→
(0 1)

W ′′
0 −−−−→ ΣW ′

0

∂′
0

y (f∂′
0 η)

y ∂′′
0

y Σ∂′
0

y
M ′ −−−−→

f
M −−−−→

g
M ′′ −−−−→

h
ΣM ′
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Since (0, h∂′′
0 ) = h∂′′

0 (0, 1) = hg(f∂′
0 η) = 0, so h∂′′

0 = 0, which shows that the third square is also commutative.

By (TR2), we have the following diagram in which the two top rows and the two left columns are triangles with

the top first square commutative.

Σ−1W ′′
0 −−−−→ W ′

0 −−−−→ W ′
0 ⊕W ′′

0 −−−−→ W ′′
0y y y y

Σ−1M ′′ −−−−→ M ′ −−−−→ M −−−−→ M ′′y y
K ′′

0 ΣK ′
0y y

W ′′
0 −−−−→ ΣW ′

0

Appying [16, Lemma 2.6], there is an object ΣK0 and there are arrow maps such that the following diagram is

commutative except for its bottom right square, which commutes up to sign −1, and all four rows and columns

are triangles.

Σ−1W ′′
0 −−−−→ W ′

0 −−−−→ W ′
0 ⊕W ′′

0 −−−−→ W ′′
0y y y y

Σ−1M ′′ −−−−→ M ′ −−−−→ M −−−−→ M ′′y y y y
K ′′

0 −−−−→ ΣK ′
0 −−−−→ ΣK0 −−−−→ ΣK ′′

0y y y y
W ′′

0 −−−−→ ΣW ′
0 −−−−→ Σ(W ′

0 ⊕W ′′
0 ) −−−−→ ΣW ′′

0

Using (TR2), we have the following diagram, in which all the rows and columns are triangles and all squares

are commutative except for the second square on the top, which is commutative up to sign −1.

K ′
0

a−−−−→ K0
b−−−−→ K ′′

0
c−−−−→ ΣK ′

0

d

y e

y o

y p

y
W ′

0
q−−−−→ W ′

0 ⊕W ′′
0

i−−−−→ W ′′
0

j−−−−→ ΣW ′
0

k

y l

y m

y n

y
M ′ f−−−−→ M

g−−−−→ M ′′ h−−−−→ ΣM ′

r

y s

y t

y u

y
ΣK ′

0
v−−−−→ ΣK0

w−−−−→ ΣK ′′
0

x−−−−→ Σ2K ′
0
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Using sign criteria, we have the following diagram, in which all the rows and columns are triangles and all

squares are commutative except for the second square on the bottom, which is commutative up to sign −1.

K ′
0

a−−−−→ K0
b−−−−→ K ′′

0
c−−−−→ ΣK ′

0

−d

y −e

y o

y p

y
W ′

0
q−−−−→ W ′

0 ⊕W ′′
0

i−−−−→ W ′′
0

j−−−−→ ΣW ′
0

−k

y −l

y −m

y −n

y
M ′ f−−−−→ M

g−−−−→ M ′′ h−−−−→ ΣM ′

r

y s

y −t

y −u

y
ΣK ′

0
v−−−−→ ΣK0

w−−−−→ ΣK ′′
0

x−−−−→ Σ2K ′
0

Using C(W, −), we have the following commutative diagram except for the second square on the top, in

which all rows and columns are exact

0 0y y
C(W, K ′

0)
κ−−−−→ C(W, K0)

β−−−−→ C(W, K ′′
0 )

µ

y ν

y y
0 −−−−→ C(W, W ′

0)
λ−−−−→ C(W, W ′

0 ⊕W ′′
0 ) −−−−→ C(W, W ′′

0 ) −−−−→ 0y α

y y
0 −−−−→ C(W, M ′) −−−−→ C(W, M) −−−−→ C(W, M ′′) −−−−→ 0y y

0 0

By snake lemma, α is epic. Since C(W, −) is a cohomological functor, C(W, ΣK0) → C(W, ΣW ′
0⊕W ′′

0 )

is monic. Replacing W with ΣW , we have that C(ΣW, ΣK0) → C(ΣW, Σw′
0 ⊕ w′′

0 ) is monic. Therefore,

C(W, K0) → C(W, W ′
0 ⊕ W ′′

0 ) is monic. Since λ , µ , and ν are monic, κ is monic. Using the dual method

above, one can prove that β is epic. Continuing the above procedure, we have M ∈ resW̃ . 2

In the rest of this paper, let W be a class of objects in a triangulated category C such that ξxtiξ(W, W ′) =

0, ξxt0ξ(−, W ) ∼= C(− ,W ), and ξxt0ξ(W, −) ∼= C(W ,−) for all W,W ′ ∈ W and all i ≥ 1.

Lemma 3.10 Let A → B → C → ΣA be a triangle in ξ .

(1) If C ⊥ W , then A ⊥ W if and only if B ⊥ W . If A ⊥ W and B ⊥ W , then C ⊥ W if and only if

A → B → C → ΣA is a C(−, W)-exact triangle.

(2) If W ⊥ A , then W ⊥ B if and only if W ⊥ C . If W ⊥ B and W ⊥ C , then W ⊥ A if and only if

A → B → C → ΣA is a C(W, −)-exact triangle.

Proof (1) It is a consequence of [1, Proposition 3.8]. Dually, one can prove (2). 2

The following proposition provides a criterion for a given object of C to be W -Gorenstein.
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Proposition 3.11 An object M in C is a W -Gorenstein object if and only if M ∈⊥ W
∩
W⊥ and M has a

proper W -resolution and a proper W -coresolution.

Proof ⇒: Since M is a W -Gorenstein object, there is a completely W -exact complex

X . = · · · → X1
d1→ X0

d0→ X−1 → · · ·

in C , such that for each integer n , Xn ∈ W and that there exists a both C(W, −)-exact and C(−, W)-exact

triangle Kn+1
gn+1−→ Xn+1

fn+1−→ Kn −→ ΣKn+1 in ξ with dn+1 = gnfn+1 for any n ∈ Z and M = K−1 . Thus

M has a proper W -resolution and a proper W -coresolution. Moreover, by [1, Proposition 3.8], M belongs to

⊥W
∩
W⊥ .

⇐: Let · · · → X1 → X0 → M → 0 and 0 → M → X−1 → X−2 → · · · be a proper W -resolution and a

proper W -coresolution of M , respectively. Pasting them together, by [1, Proposition 3.8], one can check it is

both C(W, −)-exact and C(−, W)-exact, since M ∈⊥ W
∩
W⊥ . 2

Recall that a class H in abelian categories is closed under extensions if for every short exact sequence

0 → H1 → H2 → H3 → 0 with H1 ∈ H and H3 ∈ H , then H2 ∈ H . In a triangulated category C , we give a

similar definition.

Definition 3.12 Let H be a class of objects. It is said to be closed under extensions if for any triangle

A → B → C → ΣA in ξ , A and C are in H , then so is B .

Lemma 3.13 G(W) is closed under extensions.

Proof Let A → B → C → ΣA be a triangle in ξ with A ∈ G(W) and C ∈ G(W). By Proposition 3.11,

A, C ∈⊥ W
∩

W⊥ , and then A → B → C → ΣA is both C(W, −)-exact and C(−, W)-exact following

Lemma 3.10. By Lemma 3.9, B has a proper W -resolution and a proper W -coresolution. Since A and C are

in ⊥W
∩
W⊥ , by Lemma 3.10, so is B . By Proposition 3.11, B is included in G(W). 2

Proposition 3.14 (1) If M ∈ resG̃(W) , then M ∈ resW̃ .

(2) If M ∈ coresG̃(W) , then M ∈ coresW̃ .

Proof We prove part (1); the proof of part (2) is dual. Since M ∈ resG̃(W), there is a C(G(W), −)-exact

triangle N → G0 → M → ΣN in ξ with G0 ∈ G(W) and N ∈ resG̃(W). Thus there is a C(W, −)-exact

triangle G′
0 → W0 → G0 → ΣG′

0 in ξ with G′
0 ∈ G(W) and W0 ∈ W . For the triangle Σ−1M → N → G0 → N

and the morphism W0
ε→ G0 , by [1, Proposition 2.2 (a)], there exists a commutative diagram
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0 −−−−→ G′
0 G′

0 −−−−→ 0y y y y
Σ−1M −−−−→ H −−−−→ W0 −−−−→ M∥∥∥ y ε

y ∥∥∥
Σ−1M −−−−→ N −−−−→ G0 −−−−→ My y y y

0 −−−−→ ΣG′
0 ΣG′

0 −−−−→ 0

in which all horizontal and vertical diagrams are triangles in ξ . Since N → G0 → M → ΣN is C(W, −)-exact,

by [1, Proposition 3.8], ξxt1(W, N) = 0. On the other hand, G′
0 ∈ W⊥ , so ξxt1(W, H) = 0. Therefore,

the triangle H → W0 → M → ΣH is C(W, −)-exact. Since N ∈ resG̃(W), there is a C(G(W), −)-exact

triangle K → G1 → N → ΣK in ξ with G1 ∈ G(W), K ∈ resG̃(W), and ξxt1ξ(W, K) = 0. There exists a

commutative diagram

0 −−−−→ K K −−−−→ 0y y y y
G′

0 −−−−→ L −−−−→ G1 −−−−→ ΣG′
0∥∥∥ y ε

y ∥∥∥
G′

0 −−−−→ H −−−−→ N −−−−→ G′
0y y y y

0 −−−−→ ΣK ΣK −−−−→ 0

in which all horizontal and vertical diagrams are triangles in ξ . Since G′
0 ∈ G(W) and G1 ∈ G(W), then

L ∈ G(W). Since ξxt1ξ(W, K) = 0, the triangle K → L → H → ΣK is C(W, −)-exact. Therefore,

H ∈ resG̃(W). Continuing the above process, one can prove that M ∈ resW̃ . 2

Lemma 3.15 G(W) is closed under direct summands.

Proof Let G ∼= G′ ⊕G′′ ∈ G(W). Consider the following split triangles G′

(
1
0

)
−→ G

(0 1)−→ G′′ −→ ΣG′ and

G′′

(
0
1

)
−→ G

(1 0)−→ G′ −→ ΣG′′ , which are C(G(W), −)-exact and C(−, G(W))-exact. Therefore, G′ and G′′ admit

both a proper G(W)-resolution and a proper G(W)-coresolution. By Proposition 3.14, G′ and G′′ admit both

a proper W -resolution and a proper W -coresolution. Since

ξxtiξ(G
′
⊕

G′′, W) ∼= ξxtiξ(G
′, W)

⊕
ξxtiξ(G

′′, W)

and

ξxtiξ(W, G′
⊕

G′′) ∼= ξxtiξ(W G′)
⊕

ξxtiξ(W, G′′).
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Both G′ and G′′ are in ⊥W
∩
W⊥ . By Proposition 3.11, G′ and G′′ are included in G(W), which shows that

G(W) is closed under direct summands. 2

Proposition 3.16 (1) ξxti≥1
ξ (G, M) = 0 for any G ∈ G(W) and any object M ∈ C with resdimW(M) < ∞ .

(2) ξxti≥1
ξ (N, G) = 0 for any G ∈ G(W) and any object N ∈ C with coresdimW(N) < ∞ .

Proof We just need to prove (1). First we assume Q ∈ W . Since G ∈ G(W), there is a C(−, W)-exact

triangle K → P → G → ΣK in ξ with P ∈ W and K ∈ G(W). By [1, Proposition 3.8], ξxt1ξ(G, Q) = 0 and

ξxt2ξ(G, Q) ∼= ξxt1ξ(K, Q) = 0 for K ∈ G(W). Therefore, ξxti≥1
ξ (G, Q) = 0. Now one can prove it completely

by induction on resdimW(M). 2

Proposition 3.17 (1) For each M ∈ C with resdimG(W)(M) = n < ∞ , there are two ξ -exact sequences,

0 → K → X → M → 0 and 0 → M → A → X ′ → 0 , where X, X ′ ∈ G(W) , resdimW(K) ≤ n − 1 , and

resdimW(A) ≤ n . If n = 0 , this should be interpreted as K = 0 .

(2) For each M ∈ C with coresdimG(W)(M) = n < ∞ , there are two ξ -exact sequences, 0 → M → Y →
N → 0 and 0 → Y ′ → B → M → 0 , where Y, Y ′ ∈ G(W) , coresdimW(N) ≤ n− 1 , and coresdimW(B) ≤ n .

If n = 0 , this should be interpreted as N = 0 .

Proof We just prove (1) by induction on n , since one can prove (2) dually. If n = 1, there is G(W)-resolution

0 → X1 → X0 → M → 0 of M with X1 ∈ G(W) and X0 ∈ G(W). There is a triangle X1 → W → X ′
1 → ΣX1

in ξ with W ∈ W and X ′
1 ∈ G(W). For the triangle X1 → X0 → M → ΣX1 and the morphism α : X1 → W ,

by [1, Proposition 2.2 (b)], there exists a commutative diagram

0 −−−−→ Σ−1X1 Σ−1X1 −−−−→ 0y y y y
Σ−1M −−−−→ X1 −−−−→ X0 −−−−→ M∥∥∥ α

y y ∥∥∥
Σ−1M −−−−→ W −−−−→ X −−−−→ My y y y

0 −−−−→ X ′
1 X ′

1 −−−−→ 0

in which all horizontal and vertical diagrams are triangles in ξ . Since X0 ∈ G(W) and X ′
1 ∈ G(W), then

X ∈ G(W) by Lemma 3.13. Then we get the first required ξ -exact sequence 0 → W → X → M → 0

with W ∈ W and X ∈ G(W) from the third row of the above diagram. For X , there is a triangle

X → W0 → X ′ → ΣX in ξ with W0 ∈ W and X ′ ∈ G(W). For morphisms f1 : W → X and f2 : X → W0 ,

by [1, Proposition 2.2 (C)], there is a commutative diagram:

147



HUANG and LIU/Turk J Math

W
f1−−−−→ X −−−−→ M −−−−→ ΣW∥∥∥ f2

y y ∥∥∥
W

f2f1−−−−→ W0 −−−−→ A −−−−→ ΣW

f1

y ∥∥∥ y Σf1

y
X

f2−−−−→ W0 −−−−→ X ′ −−−−→ ΣXy y y y
0 −−−−→ ΣM ΣM −−−−→ 0

in which all horizontal and the third vertical diagrams are triangles in ξ . The third column of the above diagram

yields the second required ξ -exact complex 0 → M → A → X ′ → 0 with X ′ ∈ G(W) and resdimW(A) ≤ 1,

since W0 and W0 are in W . Assume that the result holds for n − 1(n ≥ 2). Since resdimG(W)(M) = n ,

there is a ξ -exact triangle K → V0 → M → ΣK in ξ with resdimG(W)(K) = n − 1 and V0 ∈ G(W). For

K , by induction hypothesis, there is a ξ -exact complex 0 → K
α→ AK → X ′

K → 0, where X ′
K ∈ G(W),

resdimW(AK) ≤ n− 1. By [1, Proposition 2.2 (b)], there exists a commutative diagram

0 −−−−→ Σ−1X ′
K Σ−1X ′

K −−−−→ 0y y y y
Σ−1M −−−−→ K −−−−→ V0 −−−−→ M∥∥∥ α

y y ∥∥∥
Σ−1M −−−−→ AK −−−−→ XM −−−−→ My y y y

0 −−−−→ X ′
K X ′

K −−−−→ 0

in which all horizontal and vertical diagrams are triangles in ξ . Since V0 and X ′
K are in G(W), then by

Lemma 3.13 XM is in G(W). Then we get the first needed W -exact sequence 0 → AK → XM → M → 0 with

resdimW(AK) ≤ n − 1 and XM ∈ G(W) from the third row of the above diagram. Since XM ∈ G(W), there

is a triangle XM → W1 → X ′
M → ΣXM in ξ with W1 ∈ W and X ′

M ∈ G(W). For morphisms g1 : AK → XM

and g2 : XM → W1 , by [1, Proposition 2.2 (C)], there is a commutative diagram:

AK
g1−−−−→ XM −−−−→ M −−−−→ ΣAK∥∥∥ g2

y y ∥∥∥
AK

g2g1−−−−→ W1 −−−−→ AM −−−−→ ΣAK

g1

y ∥∥∥ y Σg1

y
XM

g2−−−−→ W1 −−−−→ X ′
M −−−−→ ΣXMy y y y

0 −−−−→ ΣXM ΣXM −−−−→ 0
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in which all horizontal and the third vertical diagrams are triangles in ξ . The third column of the above

diagram yields the second needed ξ -exact complex 0 → M → AM → X ′
M → 0 with X ′

M ∈ G(W) and

resdimW(AM ) ≤ n for W1 ∈ W and resdimW(AK) ≤ n− 1. 2

Definition 3.18 A morphism φ : G → M of C , where G ∈ G(W) , is called a G(W)-precover of M if it can

be completed to a C(G(W), −)-exact triangle K → G → M → ΣK . M is said to have a special G(W)-precover

if there is a triangle K → G → M → ΣK with G ∈ G(W) and ξxt1ξ(G(W), K) = 0 . M is said to have a

G(W)-approximation if there is a triangle K → G → M → ΣK with G ∈ G(W) and resdimW(K) < ∞ .

It is clear that M has a G(W)-precover if it has a special G(W)-precover and M has a special G(W)-

precover if it has a G(W)-approximation. Dually, one can define the G(W)-preenvelope, special G(W)-

preenvelope, and G(W)-coapproximation of M . Following Proposition 3.17 we have

Corollary 3.19 (1) Every object A of C with resdimG(W)(A) < ∞ has a G(W)-approximation and a special

G(W)-precover.

(2) Every object B of C with coresdimG(W)(B) < ∞ has a G(W)-coapproximation and a special G(W)-

preenvelope.

Before we end this section, we consider the so-called stability of W -Gorenstein objects. More precisely,

now we use G(W) to replace W in Definition 3.6. The objects ”Kn” for all n ∈ Z are called G(W)-Gorenstein

objects. We use G2(W) to denote the full subcategory of G(W)-Gorenstein objects in C . We claim that

Theorem 3.20 G2(W) = G(W).

Proof Let K ∈ G(W). Consider the diagram

K. : · · · → 0 → K → K → 0 → · · ·

in C . It is clear that K → K → 0 → ΣK and 0 → K → K → 0 are triangles in ξ that are both C(G(W), −)-

exact and C(−, G(W))-exact. Thus K. is a complete G(W)-exact complex and K ∈ G2(W).

Let G ∈ G2(W). Now we use Proposition 3.11 to check that G ∈ G(W). For any integer n , there

is a C(W, −)-exact and C(−, W)-exact triangle Gn+1 → Kn+1 → Gn → ΣGn+1 with Kn+1 ∈ G(W) and

G = G−1 . By Proposition 3.11 Kn ∈⊥ W
∩
W⊥ for any integer n . By [1, Proposition 3.8] and its duality, we

have that G ∈⊥ W
∩
W⊥ . Now we need to construct a proper W -coresolution of G . A proper W -resolution

of G can be constructed dually. Since K−1 ∈ G(W), there is a C(−, W)-triangle K−1
g2→ W0 → V0 → ΣK−1

in ξ such that W0 ∈ W and V0 ∈ G(W), and then V0 ∈ coresW̃ . By [1, Proposition 2.2 (C)], there is a

commutative diagram:
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G
g1−−−−→ K−1 −−−−→ G−2 −−−−→ ΣG∥∥∥ g2

y y ∥∥∥
G

g2g1−−−−→ W0 −−−−→ U0 −−−−→ ΣG

g1

y ∥∥∥ y Σg1

y
K−1

g2−−−−→ W0 −−−−→ V0 −−−−→ ΣK−1y y y y
0 −−−−→ ΣG−2 ΣG−2 −−−−→ 0

in which all horizontal and the third vertical diagrams are triangles in ξ . Since V0 ∈⊥ W and G−2 ∈⊥ W ,

U0 ∈⊥ W . We have a C(−, W)-exact triangle G → W0 → U0 → ΣG . By [1, Proposition 2.2 (b)], there exists

a commutative diagram

0 −−−−→ Σ−1V0 Σ−1V0 −−−−→ 0y y y y
Σ−1G−3 −−−−→ G−2 −−−−→ K−2 −−−−→ G−3∥∥∥ α

y y ∥∥∥
Σ−1G−3 −−−−→ U0 −−−−→ Z0 −−−−→ G−3y y y y

0 −−−−→ V0 V0 −−−−→ 0

in which all horizontal and vertical diagrams are triangles in ξ . Since K−2 ∈ coresW̃ and V0 ∈ coresW̃ ,

Z0 ∈ coresW̃ . Since K−2 ∈⊥ W and V0 ∈⊥ W , Z0 ∈⊥ W . Therefore, there is a C(−, W)-exact triangle

Z0 → W−1 → V−1 → ΣZ0 with V−1 ∈ coresW̃ and W−1 ∈ W . Since Z0 ∈⊥ W and W−1 ∈⊥ W , V−1 ∈⊥ W .

By [1, Proposition 2.2 (b)], there exists a commutative diagram

0 −−−−→ Σ−1V−1 Σ−1V−1 −−−−→ 0y y y y
U0 −−−−→ Z0 −−−−→ G−3 −−−−→ ΣU0∥∥∥ α

y y ∥∥∥
U0 −−−−→ W−1 −−−−→ U−1 −−−−→ ΣU0y y y y
0 −−−−→ V−1 V−1 −−−−→ 0

in which all horizontal and the vertical diagrams are triangles in ξ . Since G−3 ∈⊥ W and V−1 ∈⊥ W ,

U−1 ∈⊥ W . Therefore, the third row is a C(−, W)-exact triangle. Continuing the above procedure, one can

get a proper W -coresolution of G . 2
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4. W -Gorenstein (co)resolution dimensions

In this section, we give some characterizations of the finite G(W)-(co)resolution dimensions. For doing this, we

first give the following lemma.

Lemma 4.1 Let 0 → N → G1 → G0 → M → 0 be a ξ -exact complex with G0 ∈ G(W) and G1 ∈ G(W) .

Then there are two ξ -exact complexes 0 → N → P → G → M → 0 with P ∈ W and G ∈ G(W) and

0 → N → H → Q → M → 0 with Q ∈ W and H ∈ G(W) .

Proof By hypothesis, there are two triangles N → G1 → K → ΣN and K → G0 → M → ΣK in ξ . Since

G1 ∈ G(W), there is a triangle with G1 → P → G′
1 → ΣG1 in ξ with P ∈ W and G′

1 ∈ G(W). For morphisms

f1 : N → G1 and f2 : G1 → P , by [1, Proposition 2.2 (C)], there is a commutative diagram:

N
f1−−−−→ G1 −−−−→ K −−−−→ ΣN∥∥∥ f2

y y ∥∥∥
N

f2f1−−−−→ P −−−−→ X −−−−→ ΣN

f1

y ∥∥∥ y Σf1

y
G1

f2−−−−→ P −−−−→ G′
1 −−−−→ ΣG1y y y y

0 −−−−→ ΣK ΣK −−−−→ 0

in which all horizontal and the third vertical diagrams are triangles in ξ . For the triangle K → G0 → M → ΣK

and the morphism α : K → X , by [1, Proposition 2.2 (b)], there exists a commutative diagram

0 −−−−→ Σ−1G′
1 Σ−1G′

1 −−−−→ 0y y y y
Σ−1M −−−−→ K −−−−→ G0 −−−−→ M∥∥∥ α

y y ∥∥∥
Σ−1M −−−−→ X −−−−→ G −−−−→ My y y y

0 −−−−→ G′
1 G′

1 −−−−→ 0

in which all horizontal and vertical diagrams are triangles in ξ . Since G0 ∈ G(W) and G′
1 ∈ G(W), then

G ∈ G(W). Then we get the ξ -exact complex 0 → N → P → G → M → 0 with P ∈ W and G ∈ G(W).

Similarly, we use base change and octahedral axiom and can obtain the other required ξ -exact complex. 2

Proposition 4.2 For any object M in C and any positive integer n , the following are equivalent,

(1) resdimG(W)(M) ≤ n ;

(2) For some integer k with 1 ≤ k ≤ n , there is a ξ -exact complex 0 → Pn → · · · → P1 → P0 → M → 0

such that Pi ∈ G(W) if 0 ≤ i < k and Pj ∈ W if j ≥ k .
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(3) For any integer k with 1 ≤ k ≤ n , there is a ξ -exact complex 0 → Pn → · · · → P1 → P0 → M → 0

such that Pi ∈ G(W) if 0 ≤ i < k and Pj ∈ W if j ≥ k .

(2’) For some integer k with 0 ≤ k ≤ n , there is a ξ -exact complex 0 → An → · · · → A1 → A0 → M → 0

such that Ak ∈ G(W) and other Ai ∈ W .

(3’) For any integer k with 0 ≤ k ≤ n , there is a ξ -exact complex 0 → An → · · · → A1 → A0 → M → 0

such that Ak ∈ G(W) and other Ai ∈ W .

Proof (3) ⇒ (2) and (2) ⇒ (1): It is clear.

(1) ⇒ (3): Let 0 → Gn → · · · → G1 → G0 → M → 0 be a ξ -exact complex with all Gi ∈ G(W). We

prove (3) by induction on n . Let n = 1. Since G1 ∈ G(W), there is a triangle G1
α→ P1 → N → ΣG1 in ξ

with P1 ∈ W and N ∈ G(W). By [1, Proposition 2.2 (b)], there exists a commutative diagram

0 −−−−→ Σ−1N Σ−1N −−−−→ 0y y y y
Σ−1M −−−−→ G1 −−−−→ G0 −−−−→ M∥∥∥ α

y y ∥∥∥
Σ−1M −−−−→ P1 −−−−→ D0 −−−−→ My y y y

0 −−−−→ N N −−−−→ 0

in which all horizontal and vertical diagrams are triangles in ξ . Since G0 ∈ G(W) and N ∈ G(W), D0 ∈ G(W).

Then we get the W -exact sequence 0 → P1 → D0 → M → 0 with P1 ∈ W and D0 ∈ G(W). Now

assume that n > 1. There is a triangle A → G0 → M → ΣA in ξ with resdimG(W)(A) ≤ n − 1. By the

induction hypothesis, for any integer k with 2 ≤ k ≤ n , there is a ξ -exact complex 0 → Pn → · · · →
P1 → A → 0 such that Pi ∈ G(W) if 1 ≤ i < k and Pj ∈ W if j ≥ k . Therefore, there is a ξ -

exact complex 0 → Pn → · · · → P1 → G0 → M → 0. There is a triangle B → P1 → A → ΣB in

ξ . For the ξ -exact complex 0 → B → P1 → G0 → M → 0, by Lemma 4.1, there is a ξ -exact complex

0 → B → P ′
1 → G′

0 → M → 0 with P ′
1 ∈ W and G′

0 ∈ G(W). Therefore, we get the desired exact sequence

0 → Pn → · · · → P2 → P ′
1 → G′

0 → M → 0.

(3′) ⇒ (2′) and (2′) ⇒ (1): It is clear.

(1) ⇒ (3′): Let 0 → Gn → · · · → G1 → G0 → M → 0 be a ξ -exact complex with all Gi ∈ G(W).

We prove (3) by induction on n . If n = 1, by Lemma 4.1, the assertion is true. Now we assume that n ≥ 2.

There are two triangles K → G1 → K0 → ΣK and K0 → G0 → M → ΣK0 in ξ . For the ξ -exact complex

0 → K → G1 → G0 → M → 0, by Lemma 4.1, we get two exact sequences 0 → K → G′
1 → P0 → M → 0

with G′
1 ∈ G(W) and P0 ∈ W and 0 → Gn → · · · → G2 → G′

1 → P0 → M → 0. There is a triangle

N → P0 → M → ΣN in ξ with resdimG(W)(N) ≤ n − 1. By the induction hypothesis, for any integer k

with 1 ≤ k ≤ n , there is a ξ -exact complex 0 → An → · · · → A1 → N → 0 such that Ak ∈ G(W) and

other Ai ∈ W . Therefore, we get the wanted exact sequence 0 → An → · · · → A1 → P0 → M → 0. Now we

prove the case k = 0. There is a triangle A → G0 → M → ΣA in ξ with resdimG(W)(A) ≤ n − 1. By the

induction hypothesis, there is a ξ -exact complex 0 → Bn → · · · → B1 → A → 0 such that B1 ∈ G(W) and
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other Bi ∈ W . So we have a ξ -exact complex 0 → Bn → · · · → B1 → G0 → M → 0. There is a triangle

B → B1 → B′ → ΣB in ξ . For the ξ -exact complex 0 → B → B1 → G0 → M → 0, by Lemma 4.1, we get

a ξ -exact complex 0 → B → P ′′ → G → M → 0 with G ∈ G(W) and P ′′ ∈ W . Hence the exact sequence

0 → Bn → · · · → B2 → P ′′ → G → M → 0 is desired. 2

Dually, we have the following result.

Proposition 4.3 For any object M in C and any positive integer n , the following are equivalent,

(1) coresdimG(W)(M) ≤ n ;

(2) For some integer k with 1 ≤ k ≤ n , there is a ξ -exact complex 0 → M → P0 → P1 → · · · → Pn → 0

such that Pi ∈ G(W) if 0 ≤ i < k and Pj ∈ W if j ≥ k .

(3) For any integer k with 1 ≤ k ≤ n , there is a ξ -exact complex 0 → M → P0 → P1 → · · · → Pn → 0

such that Pi ∈ G(W) if 0 ≤ i < k and Pj ∈ W if j ≥ k .

(2’) For some integer k with 0 ≤ k ≤ n , there is a ξ -exact complex 0 → M → P0 → P1 → · · · → Pn → 0

such that Pk ∈ G(W) and other Pi ∈ W .

(3’) For any integer k with 0 ≤ k ≤ n , there is a ξ -exact complex 0 → M → P0 → P1 → · · · → Pn → 0

such that Pk ∈ G(W) and other Pi ∈ W .

Proposition 4.4 Assume that W is closed under direct summands. For any object M with resdimG(W)(M) <

∞ in C and any nonnegative integer n , the following are equivalent:

(1) resdimG(W)(M) ≤ n .

(2) M has a proper G(W)-resolution of length ≤ n .

(3) M has a G(W)-approximation, K → G → M → ΣK with resdimW(K) ≤ n− 1 .

(4) ξxtn+j
ξ (M, W ) = 0 for all j ≥ 1 and all W ∈ W .

(5) ξxtn+j
ξ (M, N) = 0 for all j ≥ 1 and all N with resdimW(N) < ∞ .

(6) ξxtn+1
ξ (M, N) = 0 for all N with resdimW(N) < ∞ .

Proof

(2) ⇒ (1) : It is trivial.

(1) ⇒ (2) : By Proposition 3.17 (1), there is a triangle K → G → M → ΣK in ξ with resdimW(K) ≤

n− 1 and G ∈ G(W). Thus, by Proposition 3.16 (1), ξxtjξ(A, K) = 0 for all A ∈ G(W) and j ≥ 1. Therefore,

the triangle K → G → M → ΣK is C(G(W), −)-exact. Replacing M with K , one can get that M has a

proper G(W)-resolution of length ≤ n .

(1) ⇔ (3) : It follows from Corollary 3.19 (1).

(1) ⇒ (4) : There is a G(W)-exact complex 0 → Gn → Gn−1 → · · · → G1 → G0 → M → 0 such that

Gi ∈ G(W) for 0 ≤ i ≤ n . ξxtn+j
ξ (M, W ) ∼= ξxtjξ(M, W ) = 0 for all W ∈ W and all j ≥ 1 by [1, Proposition

3.8] and Proposition 3.16 (1).

(4) ⇒ (5) : It is clear by the dimension shifting theorem for any triangle.

(5) ⇒ (6) : It is trivial.

(6) ⇒ (1) : Set resdimG(W)(M) ≤ m < ∞ . If m ≤ n , there is nothing to do. Therefore, as-

sume that m > n . By Proposition 4.2, there are W -exact triangles in ξ Ki → Wi → Ki−1 → ΣKi for
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1 ≤ i ≤ m − 1 and K0 → G → M → ΣK0 with Wi ∈ W and G ∈ G(W) and resdimG(W)(M) ≤ m − 1.

If n = 0, ξxt1ξ(M, K0) = 0 by Proposition 3.16 (1), K0 → G → M → ΣK0 is split. Then by Lemma 3.15,

resdimG(W)(M) = 0 ≤ n . Now set n ≥ 1. ξxt1ξ(Kn, Kn+1) ∼= ξxtn+1
ξ (M, Kn+1) = 0 by Proposition 3.16 (1).

Thus Kn+1 → Wn+1 → Kn → ΣKn+1 is split, and then Kn ∈ W . Therefore, resdimG(W)(M) ≤ n . 2

Dually,

Proposition 4.5 Assume that W is closed under direct summands. For any object M with coresdimG(W)(M) <

∞ in C and any nonnegative integer n , the following are equivalent:

(1) coresdimG(W)(M) ≤ n .

(2) M has a proper G(W)-coresolution of length ≤ n .

(3) M has a G(W)-coapproximation, M → G → K → ΣK with coresdimW(K) ≤ n− 1 .

(4) ξxtn+j
ξ (W, M) = 0 for all j ≥ 1 and all W ∈ W .

(5) ξxtn+j
ξ (N, M) = 0 for all j ≥ 1 and all N with coresdimW(N) < ∞ .

(6) ξxtn+1
ξ (N, M) = 0 for all N with coresdimW(N) < ∞ .

5. Applications

Asadollahi and Salarian gave a nice theorem about the finiteness of ξ -Gprojective dimensions; see [1, Theorem

4.6]. In [18], the authors used the vanishing of ξxtiξ(−, −) to characterize the ξ -Gprojective and ξ -G injective

dimensions of objects in C ; see [18, Lemma 4.4 and 4.5]. As mentioned in Remark 3.7, if we use P(ξ)

(respectively, I(ξ)) to replace W , W -Gorenstein objects are just ξ -Gprojective (ξ -G injective) objects in [1].

We denote the class of all ξ -Gprojective objects of C by GP(ξ), and denote the class of all ξ -G injective objects

of C by GI(ξ). According to [1, Theorem 3.11 and Proposition 3.13], GP(ξ) is closed under extensions and

direct summands. Dually, so is GI(ξ). It is clear that ξxt0ξ(N, M) ∼= C(N, M) if N ∈ P(ξ) or M ∈ I(ξ). It is

well known that P(ξ) (respectively, I(ξ)) is closed under direct summands. In this section, we use the preceding

results to characterize the ξ -Gprojective (ξ -G injective) dimensions as well as codimensions of objects in C . We

use ξ -Gpd(M) and ξ -Gid(M) instead of resdimGP(ξ)(M) and coresdimGI(ξ)(M) to denote the ξ -Gprojective

and ξ -G injective dimensions of M , respectively. Therefore, we have

Proposition 5.1 For any object M with ξ -Gpd(M) < ∞ in C and any positive integer n , the following are

equivalent:

(1) ξ -Gpd(M) ≤ n ;

(2) For some integer k with 1 ≤ k ≤ n , there is a ξ -exact complex 0 → Pn → · · · → P1 → P0 → M → 0

such that Pi ∈ GP(ξ) if 0 ≤ i < k and Pj ∈ P(ξ) if j ≥ k .

(3) For any integer k with 1 ≤ k ≤ n , there is a ξ -exact complex 0 → Pn → · · · → P1 → P0 → M → 0

such that Pi ∈ GP(ξ) if 0 ≤ i < k and Pj ∈ P(ξ) if j ≥ k .

(4) For some integer k with 0 ≤ k ≤ n , there is a ξ -exact complex 0 → An → · · · → A1 → A0 → M → 0

such that Ak ∈ GP(ξ) and other Ai ∈ P(ξ) .

(5) For any integer k with 0 ≤ k ≤ n , there is a ξ -exact complex 0 → An → · · · → A1 → A0 → M → 0

such that Ak ∈ GP(ξ) and other Ai ∈ P(ξ) .
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(6) M has a proper GP(ξ)-resolution of length ≤ n .

(7) M has a GP(ξ)-approximation, K → G → M → ΣK with resdimP(ξ)(K) ≤ n− 1 .

(8) ξxtn+j
ξ (M, W ) = 0 for all j ≥ 1 and all W ∈ P(ξ) .

(9) ξxtn+j
ξ (M, N) = 0 for all j ≥ 1 and all N with resdimP(ξ)(N) < ∞ .

(10) ξxtn+1
ξ (M, N) = 0 for all N with resdimP(ξ)(N) < ∞ .

Proposition 5.2 For any object M with ξ -Gid(M) < ∞ in C and any positive integer n , the following are

equivalent:

(1) ξ -Gid(M) ≤ n ;

(2) For some integer k with 1 ≤ k ≤ n , there is a ξ -exact complex 0 → M → P0 → P1 → · · · → Pn → 0

such that Pi ∈ GI(ξ) if 0 ≤ i < k and Pj ∈ I(ξ) if j ≥ k .

(3) For any integer k with 1 ≤ k ≤ n , there is a ξ -exact complex 0 → M → P0 → P1 → · · · → Pn → 0

such that Pi ∈ GI(ξ) if 0 ≤ i < k and Pj ∈ I(ξ) if j ≥ k .

(4) For some integer k with 0 ≤ k ≤ n , there is a ξ -exact complex 0 → M → P0 → P1 → · · · → Pn → 0

such that Pk ∈ GI(ξ) and other Pi ∈ I(ξ) .
(5) For any integer k with 0 ≤ k ≤ n , there is a ξ -exact complex 0 → M → P0 → P1 → · · · → Pn → 0

such that Pk ∈ GI(ξ) and other Pi ∈ I(ξ) .
(6) M has a proper GI(ξ)-resolution of length ≤ n .

(7) M has a GI(ξ)-approximation, M → G → K → ΣK with coresdimI(ξ)(K) ≤ n− 1 .

(8) ξxtn+j
ξ (W, M) = 0 for all j ≥ 1 and all W ∈ I(ξ) .

(9) ξxtn+j
ξ (N, M) = 0 for all j ≥ 1 and all N with coresdimI(ξ)(N) < ∞ .

(10) ξxtn+1
ξ (N, M) = 0 for all N with coresdimI(ξ)(N) < ∞ .

Proposition 5.3 For any object M in C and any positive integer n , the following are equivalent:

(1) resdimGI(ξ)(M) ≤ n ;

(2) For some integer k with 1 ≤ k ≤ n , there is a ξ -exact complex 0 → Pn → · · · → P1 → P0 → M → 0

such that Pi ∈ GI(ξ) if 0 ≤ i < k and Pj ∈ I(ξ) if j ≥ k .

(3) For any integer k with 1 ≤ k ≤ n , there is a ξ -exact complex 0 → Pn → · · · → P1 → P0 → M → 0

such that Pi ∈ GI(ξ) if 0 ≤ i < k and Pj ∈ I(ξ) if j ≥ k .

(4) For some integer k with 0 ≤ k ≤ n , there is a ξ -exact complex 0 → An → · · · → A1 → A0 → M → 0

such that Ak ∈ GI(ξ) and other Ai ∈ I(ξ) .
(5) For any integer k with 0 ≤ k ≤ n , there is a ξ -exact complex 0 → An → · · · → A1 → A0 → M → 0

such that Ak ∈ GI(ξ) and other Ai ∈ I(ξ) .

Proposition 5.4 For any object M in C and any positive integer n , the following are equivalent:

(1) coresdimGP(ξ)(M) ≤ n ;

(2) For some integer k with 1 ≤ k ≤ n , there is a ξ -exact complex 0 → M → P0 → P1 → · · · → Pn → 0

such that Pi ∈ GP(ξ) if 0 ≤ i < k and Pj ∈ P(ξ) if j ≥ k .
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(3) For any integer k with 1 ≤ k ≤ n , there is a ξ -exact complex 0 → M → P0 → P1 → · · · → Pn → 0

such that Pi ∈ GP(ξ) if 0 ≤ i < k and Pj ∈ P(ξ) if j ≥ k .

(4) For some integer k with 0 ≤ k ≤ n , there is a ξ -exact complex 0 → M → P0 → P1 → · · · → Pn → 0

such that Pk ∈ GP(ξ) and other Pi ∈ P(ξ) .

(5) For any integer k with 0 ≤ k ≤ n , there is a ξ -exact complex 0 → M → P0 → P1 → · · · → Pn → 0

such that Pk ∈ GP(ξ) and other Pi ∈ P(ξ) .
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