f-Biminimal immersions

FATMA GÜRLER
CİHAN ÖZGÜR

Follow this and additional works at: https://journals.tubitak.gov.tr/math

Part of the Mathematics Commons

Recommended Citation
Available at: https://journals.tubitak.gov.tr/math/vol41/iss3/9

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.
f-Biminimal immersions

Fatma GÜRLER, Cihan ÖZGÜR

Balkesir University, Department of Mathematics, Çağs, Balikesir, Turkey

Received: 06.08.2015 • Accepted/Published Online: 24.06.2016 • Final Version: 22.05.2017

Abstract: In the present paper, we define **f**-biminimal immersions. We consider **f**-biminimal curves in a Riemannian manifold and **f**-biminimal submanifolds of codimension 1 in a Riemannian manifold, and we give examples of **f**-biminimal surfaces. Finally, we consider **f**-biminimal Legendre curves in Sasakian space forms and give an example.

Key words: **f**-Biminimal immersion, **f**-biminimal curve, **f**-biminimal surface, Legendre curve

1. Introduction and preliminaries

Let \((M, g)\) and \((N, h)\) be two Riemannian manifolds. A map \(\varphi : (M, g) \rightarrow (N, h)\) is called a harmonic map if it is a critical point of the energy functional

\[
E(\varphi) = \frac{1}{2} \int_{\Omega} \|d\varphi\|^2 \, dv_g,
\]

where \(\Omega\) is a compact domain of \(M\). The Euler–Lagrange equation gives the harmonic map equation

\[
\tau(\varphi) = tr(\nabla d\varphi) = 0,
\]

where \(\tau(\varphi) = tr(\nabla d\varphi)\) is called the tension field of the map \(\varphi\) [6]. The map \(\varphi\) is said to be biharmonic if it is a critical point of the bienergy functional

\[
E_2(\varphi) = \frac{1}{2} \int_{\Omega} \|\tau(\varphi)\|^2 \, dv_g,
\]

where \(\Omega\) is a compact domain of \(M\) [10]. In [10], Jiang obtained the Euler–Lagrange equation of \(E_2(\varphi)\). This gives us the biharmonic map equation

\[
\tau_2(\varphi) = tr(\nabla^2 \varphi - \nabla^2_{\varphi} \tau(\varphi) - tr(R^N(d\varphi, \tau(\varphi))d\varphi) = 0,
\]

(1.1)

which is the bitension field of \(\varphi\), and \(R^N\) is the curvature tensor of \(N\), defined by

\[
R^N(X, Y)Z = \nabla^X\nabla^Y Z - \nabla^Y\nabla^X Z - \nabla^Z_{[X, Y]} Z.
\]

An **f**-harmonic map with a positive function \(f : M \rightarrow \mathbb{R}\) is a critical point of \(f\)-energy

*Correspondence: cozgur@balikesir.edu.tr

2010 AMS Mathematics Subject Classification: 53C40, 53C25, 53C42.
where Ω is a compact domain of M. Using the Euler–Lagrange equation for the f-harmonic map, in [5] and [16] the f-harmonic map equation is obtained by

$$\tau_f(\varphi) = f\tau(\varphi) + d\varphi(\text{grad} f) = 0,$$

(1.2)

where $\tau_f(\varphi)$ is called the f-tension field of the map φ. The map φ is said to be f-biharmonic [13] if it is a critical point of the f-bienergy functional

$$E_{f}(\varphi) = \frac{1}{2} \int_{\Omega} f \|d\varphi\|^2 d\nu_g,$$

where Ω is a compact domain of M. The Euler–Lagrange equation for the f-biharmonic map is given by

$$\tau_{2,f}(\varphi) = f\tau_2(\varphi) + \Delta f\tau(\varphi) + 2\nabla_{\text{grad} f}\tau(\varphi) = 0,$$

(1.3)

where $\tau_{2,f}(\varphi)$ is the f-bitension field of the map φ [13]. If f is a constant, an f-biharmonic map turns into a biharmonic map.

In [12], Loubeau and Montaldo defined and considered biminimal immersions. They studied biminimal curves in a Riemannian manifold, curves in a space form, and isometric immersions of codimension 1 in a Riemannian manifold.

An immersion φ is called biminimal [12] if it is a critical point of the bienergy functional $E_2(\varphi)$ for variations normal to the image $\varphi(M) \subset N$, with fixed energy. Equivalently, there exists a constant $\lambda \in \mathbb{R}$ such that φ is a critical point of the λ-bienergy

$$E_{2,\lambda}(\varphi) = E_2(\varphi) + \lambda E(\varphi)$$

(1.4)

for any smooth variation of the map $\varphi_t : [-\epsilon, +\epsilon[\ni \varphi_0 = \varphi$, such that $V = \frac{d\varphi_t}{dt} |_{t=0} = 0$ is normal to $\varphi(M)$. The Euler–Lagrange equation for a λ-biminimal immersion is

$$[\tau_{2,\lambda}(\varphi)]^\perp = [\tau_2(\varphi)]^\perp - \lambda[\tau(\varphi)]^\perp = 0$$

(1.5)

for some value of $\lambda \in \mathbb{R}$, where $[\cdot]^\perp$ denotes the normal component of $[\cdot]$. An immersion is called free biminimal if it is biminimal for $\lambda = 0$ [12].

In [12], Loubeau and Montaldo studied biminimal immersions. In [9], Inoguchi and Lee completely classified biminimal curves in 2-dimensional space forms. In [8], Inoguchi studied biminimal curves and surfaces in contact 3-manifolds. In [13], Lu defined f-biharmonic maps between Riemannian manifolds. In [15], Ou considered f-biharmonic maps and f-biharmonic submanifolds. In [7], Güvenç and the second author studied f-biharmonic Legendre curves in Sasakian space forms. Motivated by the studies [12] and [13], in this paper, we define f-biminimal immersions. We consider f-biminimal curves in a Riemannian manifold. We also consider f-biminimal submanifolds of codimension 1 in a Riemannian manifold and give some examples of f-biminimal surfaces. Furthermore, we give an example for an f-biminimal Legendre curve in a Sasakian space form.

Now we give the following definition:
Definition 1.1 An immersion \(\varphi \) is called \(f \)-biminimal if it is a critical point of the \(f \)-bienergy functional \(E_{2f}(\varphi) \) for variations normal to the image \(\varphi(M) \subset N \), with fixed energy. Equivalently, there exists a constant \(\lambda \in \mathbb{R} \) such that \(\varphi \) is a critical point of the \(\lambda \cdot f \)-bienergy

\[
E_{2,\lambda,f}(\varphi) = E_{2f}(\varphi) + \lambda E_f(\varphi)
\]

for any smooth variation of the map \(\varphi_t \) defined above. Using the Euler–Lagrange equations for \(f \)-harmonic and \(f \)-biharmonic maps, an immersion is \(f \)-biminimal if

\[
[\tau_{2,\lambda,f}(\varphi)]^\perp = [\tau_{2,f}(\varphi)]^\perp - \lambda [\tau_f(\varphi)]^\perp = 0
\]

(1.6)

for some value of \(\lambda \in \mathbb{R} \). We call an immersion free \(f \)-biminimal if it is \(f \)-biminimal for \(\lambda = 0 \). If \(f \) is a constant, then the immersion is biminimal.

Remark 1.1 The notions of \(f \)-biharmonic submanifolds, biminimal submanifolds, and \(f \)-biminimal submanifolds are distinct. We will see details in the examples given in Section 4 and Section 5.

2. \(f \)-Biminimal curves

Let \(\gamma : I \subset \mathbb{R} \rightarrow (M^m,g) \) be a curve parametrized by arc length in a Riemannian manifold \((M^m,g)\). We recall the definition of Frenet frames:

Definition 2.1 [11] The Frenet frame \(\{E_i\}_{i=1,2,...,m} \) associated with a curve \(\gamma : I \subset \mathbb{R} \rightarrow (M^m,g) \) is the orthonormalization of the \((m+1) \)–tuple

\[
\left\{ \frac{\nabla^{(k)} \gamma}{\| \gamma \|} \left(\frac{\partial}{\partial t} \right) \right\}_{k=0,1,...,m}
\]

described by

\[
E_1 = \frac{d\gamma}{\partial t} \left(\frac{\partial}{\partial t} \right),
\]

\[
\nabla^\gamma E_1 = k_1 E_2,
\]

\[
\nabla^\gamma E_i = -k_{i-1} E_{i-1} + k_i E_{i+1}, \quad 2 \leq i \leq m-1,
\]

\[
\nabla^\gamma E_m = -k_{m-1} E_{m-1},
\]

where the functions \(\{k_1, k_2, \tau, k_3, ..., k_{m-1}\} \) are called the curvatures of \(\gamma \). In addition \(E_1 = T = \gamma' \) is the unit tangent vector field to the curve.

First, we have the following proposition for an \(f \)-biminimal curve in a Riemannian manifold:

Proposition 2.1 Let \(M^m \) be a Riemannian manifold and \(\gamma : I \subset \mathbb{R} \rightarrow (M^m,g) \) be an isometric curve. Then \(\gamma \) is \(f \)-biminimal if and only if there exists a real number \(\lambda \) such that

\[
f \{ (k_1^\prime - k_1^3 - k_1 k_2^2) - k_1 g(R(E_1, E_2)E_1, E_2) \} + (f'' - \lambda f) k_1 + 2f'k' = 0.
\]

(2.1)
where R is the curvature tensor of (M^m, g) and $\{E_i\}_{i=1, 2, \ldots, m}$ is the Frenet frame of γ.

Proof Using equation (1.2), Definition 2.1, and $\tau(\gamma) = k_1 E_2$ (see [12]), the f-tension field of γ is

$$
\tau_f(\gamma) = f k_1 E_2 + f' E_1. \tag{2.5}
$$

From Definition 2.1, we have

$$
\nabla_T^2 T = -k_1^2 E_1 + k_1' E_2 + k_1 k_2 E_3, \tag{2.6}
$$

$$
\nabla_T \nabla_T \nabla_T T = -3k_1 k_1' E_1 + (k_1'' - k_1'' - k_1) E_2 + (k_1' k_2 + (k_1 k_2)) E_3 \tag{2.7}
$$

and

$$
\nabla_{grad} \tau(\gamma) = f' \left\{-k_1^2 E_1 + k_1' E_2 + k_1 k_2 E_3 \right\}. \tag{2.8}
$$

Using equations (2.6), (2.7), and (2.8) in equation (1.3), its f-bitension field is

$$
\tau_{2,f}(\gamma) = f \left\{(-3k_1 k_1') E_1 + (k_1'' - k_1'' - k_1) E_2 + (k_1' k_2 + (k_1 k_2)) E_3 \right\}
+ (k_1 k_2) E_4 - k_1 R(E_1, E_2) E_1
+ f'' k_1 E_2 + 2f' \left\{-k_1^2 E_1 + k_1' E_2 + k_1 k_2 E_3 \right\}. \tag{2.9}
$$

By the use of equations (2.5) and (2.9) in equation (1.6), we find

$$
f \left\{(k_1'' - k_1'' - k_1) E_2 + (k_1' k_2 + (k_1 k_2)) E_3 \right\}
+ (k_1 k_2) E_4 - k_1 \left[R(E_1, E_2)E_1\right] \right\}
+ f'' k_1 E_2 + 2f' \left\{k_1' E_2 + k_1 k_2 E_3 \right\} - \lambda \left\{k_1 E_2 \right\} = 0. \tag{2.10}
$$

Then taking the scalar product of equation (2.10) with $E_2, E_3, E_4, \text{ and } E_j$, $5 \leq j \leq m$, respectively, we obtain the desired results. □

Now we investigate f-biminimality conditions for a surface or a three-dimensional Riemannian manifold with a constant sectional curvature. We have the following corollary:
Corollary 2.1 1) A curve γ on a surface of Gaussian curvature G is f-biminimal if and only if its signed curvature k satisfies the equation

$$f \left(k'' - k^3 + kG \right) + \left(f'' - \lambda f \right) k + 2f'k' = 0$$ \hspace{0.5cm} (2.11)

for some $\lambda \in \mathbb{R}$.

2) A curve γ on Riemannian 3-manifold M of constant sectional curvature c is f-biminimal if and only if its curvature k and torsion τ satisfy the system

$$f \left(k'' - k^3 - k\tau^2 + kc \right) + \left(f'' - \lambda f \right) k + 2f'k' = 0$$

$$f \left(k'\tau + (k\tau)' \right) + 2f'k\tau = 0$$ \hspace{0.5cm} (2.12)

for some $\lambda \in \mathbb{R}$.

Proof 1) Since γ is a curve on a surface, if γ is f-biminimal then by the use of equation (2.1), we obtain

$$f \left\{ k'' - k^3 - k\left(R(T, N)T, N\right) \right\} + \left(f'' - \lambda f \right) k + 2f'k' = 0.$$ \hspace{0.5cm} (2.13)

Then we have

$$g(R(T, N)T, N) = -G.$$ \hspace{0.5cm} (2.14)

Finally, substituting equation (2.14) into equation (2.13), we obtain

$$f \left\{ k'' - k^3 + kG \right\} + \left(f'' - \lambda f \right) k + 2f'k' = 0.$$ \hspace{0.5cm} (2.15)

2) Since γ is a curve on a Riemannian 3-manifold, the Frenet frame of γ is $\{ T, N = B_2, B = B_3 \}$, and then equations (2.1) and (2.2) turn into

$$f \left\{ k'' - k^3 - k\tau^2 - k\left(R(T, N)T, N\right) \right\} + \left(f'' - \lambda f \right) k + 2f'k' = 0$$ \hspace{0.5cm} (2.15)

and

$$f \left\{ k'\tau + (k\tau)' - k\left(R(T, N)T, B\right) \right\} + 2f'k\tau = 0.$$ \hspace{0.5cm} (2.16)

Since M has constant sectional curvature we have

$$g(R(T, N)T, N) = -c$$ \hspace{0.5cm} (2.17)

and

$$g(R(T, N)T, B) = 0.$$ \hspace{0.5cm} (2.18)

Finally, substituting equations (2.17) and (2.18) into equations (2.15) and (2.16), respectively, we get

$$f \left\{ k'' - k^3 - k\tau^2 + kc \right\} + \left(f'' - \lambda f \right) k + 2f'k' = 0$$

and

$$f \left\{ k'\tau + (k\tau)' \right\} + 2f'k\tau = 0.$$ This completes the proof. \hspace{0.5cm} \square
Remark 2.1 In Proposition 2.1 and Corollary 2.1, if we take \(f \) as a constant, we obtain Proposition 2.2 and Corollary 2.4 in [12].

Now assume that \(M^2 \subset \mathbb{R}^3 \) is a surface of revolution obtained by rotating the arc length parametrized curve \(\alpha(u) = (h(u), 0, g(u)) \) in the \(xz \)-plane around the \(z \)-axis. Then it can be easily seen that the Gaussian curvature \(G \) of the surface of revolution is

\[
G = -\frac{h''(u)}{h(u)}. \tag{2.19}
\]

The Gaussian curvature \(G \) depends only on \(u \); that is, \(G \) is constant along any parallel. This implies that if the Gaussian curvature is constant along a curve, then either the curve is a parallel or the curve lies in a part of the surface with constant Gaussian curvature [4]. From equation (2.19) and equation (2.11), it is easy to see that if a parallel of \(M \) is \(f \)-biminimal then \(f \) is a constant, which means that the parallel is biminimal. Biminimal curves in a surface of revolution was studied by Aykut in [1]. Hence, we can state the following result:

Proposition 2.2 An \(f \)-biminimal parallel in a surface of revolution is biminimal.

3. Codimension-1 \(f \)-biminimal submanifolds

Let \(\varphi : M^m \rightarrow N^{m+1} \) be an isometric immersion of codimension 1. We shall denote by \(B, \eta, A, \Delta, \) and \(H_1 = H\eta \) the second fundamental form, the unit normal vector field, the shape operator, the Laplacian, and the mean curvature vector field of \(\varphi \) (\(H \) the mean curvature function), respectively.

Then we have the following proposition:

Proposition 3.1 Let \(\varphi : M^m \rightarrow N^{m+1} \) be an isometric immersion of codimension 1 and \(H_1 = H\eta \) its mean curvature vector. Then \(\varphi \) is \(f \)-biminimal if and only if

\[
\Delta H - H \| B \|^2 + H \text{Ricci}(\eta, \eta) + \left(\frac{\Delta f}{f} - \lambda \right) H + 2\text{grad}\ln f(H) = 0 \tag{3.1}
\]

for some value of \(\lambda \) in \(\mathbb{R} \).

Proof Assume that \(\varphi \) is \(f \)-biminimal. Let \(\{e_i\}, 1 \leq i \leq m \) be a local geodesic orthonormal frame at \(p \in M \). Then using equation (1.2), the \(f \)-tension field of \(\varphi \) is

\[
\tau_f(\varphi) = fmH\eta + d\varphi(\text{grad} f) \tag{3.2}
\]

and using equation (1.3) and the definitions of \(\tau(\varphi) \) and \(\tau_2(\varphi) \) in [12], its \(f \)-bitension field is

\[
\tau_{2,f}(\varphi) = f \left\{ m(\Delta H)\eta + 2m \sum_{i=1}^{m} e_i(H)v_i^\varphi \eta - mH\Delta v^\varphi \eta \right. \\
left. + mH \sum_{i=1}^{m} R^N(d\varphi(e_i), \eta)d\varphi(e_i) \right\} + \Delta f(mH\eta) + 2m\nabla^\varphi_{\text{grad} f} H\eta. \tag{3.3}
\]

Then taking the scalar product of equations (3.2) and (3.3) with \(\eta \), respectively, we find

\[
g(\tau_f(\varphi), \eta) = fmH \tag{3.4}
\]
and
\[g(\tau_2 f(\varphi), \eta) = f \left\{ m(\Delta H) + 2m \sum_{i=1}^{m} e_i(H)g(\nabla_{e_i}^\varphi \eta, \eta) - mHg(\Delta^\varphi \eta, \eta) \right\} \]
\[-mHg(\sum_{i=1}^{m} R^N(d\varphi(e_i), \eta)d\varphi(e_i), \eta) \right\} + \Delta f(mH) + 2mg(\nabla_{\text{grad} f}^\varphi H\eta, \eta). \tag{3.5} \]

By use of the Weingarten formula, we have
\[\nabla_{\text{grad} f}^\varphi H\eta = (\text{grad} f(H))\eta + H\nabla_{\text{grad} f}^\varphi \eta \]
\[= (\text{grad} f(H))\eta + H(-A_\eta \text{grad} f + \nabla_{\text{grad} f}^\perp \eta) \]
\[= (\text{grad} f(H))\eta - HA_\eta \text{grad} f. \]

Hence, taking the scalar product of the above equation with \(\eta \), we obtain
\[g(\nabla_{\text{grad} f}^\varphi H\eta, \eta) = \text{grad} f(H). \tag{3.6} \]

Moreover, we have
\[g(\nabla_{e_i}^\varphi \eta, \eta) = \frac{1}{2} e_i g(\eta, \eta) = 0 \tag{3.7} \]
and
\[g(\sum_{i=1}^{m} R^N(d\varphi(e_i), \eta)d\varphi(e_i), \eta) = -\text{Ricci}(\eta, \eta). \tag{3.8} \]

Using the definition of the Laplacian, we get
\[g(\Delta^\varphi \eta, \eta) = \sum_{i=1}^{m} g(-\nabla_{e_i}^\varphi \nabla_{e_i}^\varphi \eta + \nabla_{\nabla_{e_i}^\varphi e_i}^\varphi \eta, \eta) \]
\[= \sum_{i=1}^{m} g(\nabla_{e_i}^\varphi \eta, \nabla_{e_i}^\varphi \eta) = \|B\|^2. \tag{3.9} \]

By use of equations (3.6), (3.7), (3.8), and (3.9) in equation (3.5), we have
\[g(\tau_2 f(\varphi), \eta) = f \left\{ m(\Delta H) - mH \|B\|^2 + m\text{Ricci}(\eta, \eta) \right\} \]
\[+ \Delta f(mH) + 2mg(\text{grad} f(H)). \tag{3.10} \]

Finally, substituting equations (3.4) and (3.10) in equation (1.6), we obtain (3.1).

Conversely, assume that (3.1) holds on \(M^m \). If we take the product of equation (3.1) with \(mf \) we have
\[mf \Delta H - mf H \|B\|^2 + mf H\text{Ricci}(\eta, \eta) \]
\[+ (mf \Delta f - mf \lambda) H + 2m\text{grad} f(H) = 0. \tag{3.11} \]
It is easy to see that
\[(\tau_2, f(\varphi)) = f \left\{ m(\Delta H) - mH\|B\|^2 - mHRicci(\eta, \eta) \right\} + \Delta f(mH) + 2m\text{grad}f(H) \] (3.12)
and
\[(\tau_f(\varphi)) = fmH. \] (3.13)

In view of equations (3.12) and (3.13), equation (3.11) turns into
\[(\tau_2, f(\varphi)) - \lambda (\tau_f(\varphi)) = 0, \]
which means that \(M^m\) is \(f\)-biminimal. This proves the proposition.

Corollary 3.1 Let \(\varphi : M^m \rightarrow N^{m+1}(c)\) be an isometric immersion of a Riemannian manifold \(N^{m+1}(c)\) of constant curvature \(c\). Then \(\varphi\) is \(f\)-biminimal if and only if there exists a real number \(\lambda\) such that
\[
\Delta H - \left(m^2H^2 - s + m(m-2)c - \frac{\Delta f}{f} + \lambda \right) H - 2\text{grad} \ln f(H) = 0, \] (3.14)
where \(H\) is the mean curvature function and \(s\) the scalar curvature of \(M^m\). In addition, let \(\varphi : M^2 \rightarrow N^3(c)\) be an isometric immersion from a surface to a three-dimensional space form. Then \(\varphi\) is \(f\)-biminimal if and only if
\[
\Delta H - 2 \left(2H^2 - G - \frac{1}{2} \frac{\Delta f}{f} + \frac{1}{2} \lambda \right) H - \text{grad} \ln f(H) = 0 \] (3.15)
for some \(\lambda \in \mathbb{R}\).

Proof Let \(\{e_i\}, 1 \leq i \leq m\) be a local geodesic orthonormal frame of \(M^m\), \(\{k_1, k_2, ..., k_m\}\) its principal curvatures, and \(B\) its second fundamental form. Then using the proof of Corollary 3.2. in [12], we have
\[
\|B\|^2 = m^2H^2 - s + m(m-1)c
\]
and
\[Ricci(\eta, \eta) = mc. \]

By use of Proposition 3.1, we obtain
\[
\Delta H - \left(m^2H^2 - s + m(m-2)c - \frac{\Delta f}{f} + \lambda \right) H - 2\text{grad} \ln f(H) = 0. \] (3.16)

For \(\varphi : M^2 \rightarrow N^3(c)\), substituting \(m = 2\) into equation (3.16), we get the result.

Remark 3.1 In Proposition 3.1 and Corollary 3.1, if we take \(f\) as a constant, we obtain Proposition 3.1 and Corollary 3.2 in [12].
4. Examples of f-biminimal surfaces

In the present section, we give some examples of f-biminimal surfaces. To obtain examples of free f-biminimal surfaces, similar to Theorem 2.3 in [15], we state the following theorem:

Theorem 4.1 $\varphi : (M^2, g) \to (N^n, h)$ is a free f-biminimal map if and only if $\varphi : (M^2, f^{-1}g) \to (N^n, h)$ is a free biminimal map.

Proof Using equation (1.6), $\varphi : (M^2, g) \to (N^n, h)$ is a free f-biminimal map if and only if

$$[\tau_2, f(\varphi, g)]^\perp = f[\tau_2(\varphi, g)]^\perp + \Delta f[\tau(\varphi)]^\perp + 2\left[\nabla_{\text{grad} f} \tau(\varphi, g)\right]^\perp = 0,$$

which is equivalent to

$$[\tau_2(\varphi, g)]^\perp + (\Delta \ln f + \|\text{grad} \ln f\|^2) [\tau(\varphi)]^\perp + 2\left[\nabla_{\text{grad} \ln f} \tau(\varphi)\right]^\perp = 0.$$

Furthermore, by Corollary 1 in [14], the relationship between the bitension field $[\tau_2(\varphi, g)]^\perp$ and that of map $\varphi : (M^2, \bar{g} = F^{-2}g) \to (N^n, h)$ is given by

$$[\tau_2(\varphi, \bar{g})]^\perp = F^4 [\tau_2(\varphi, g)]^\perp + (\Delta \ln F^2 + \|\text{grad} \ln F^2\|^2) [\tau(\varphi)]^\perp + 2\left[\nabla_{\text{grad} \ln F^2} \tau(\varphi)\right]^\perp = 0.$$

Then map $\varphi : (M^2, \bar{g} = F^{-2}g) \to (N^n, h)$ is free biminimal if and only if

$$[\tau_2(\varphi, g)]^\perp + (\Delta \ln F^2 + \|\text{grad} \ln F^2\|^2) [\tau(\varphi)]^\perp + 2\left[\nabla_{\text{grad} \ln F^2} \tau(\varphi)\right]^\perp = 0. \quad (4.1)$$

Substituting $F^2 = f$ into equation (4.1), we obtain the result. \hfill \Box

Examples

1. Let us consider the cone on a free biminimal curve on S^2 with

$$\varphi : (S^2, d\theta^2) \to (\mathbb{R}^3 \setminus \{0\} = \mathbb{R}^+ \times_{S^2} S^2, dt^2 + t^2 d\theta^2).$$

Then it is a free biminimal surface [12], where \times_{S^2} denotes the warped product. Hence, from Theorem 4.1, $\varphi : (S^2, f d\theta^2) \to (\mathbb{R}^3 \setminus \{0\} = \mathbb{R}^+ \times_{S^2} S^2, dt^2 + t^2 d\theta^2)$ is a free f-biminimal surface.

2. Let $\beta : I \to \mathbb{R}^2$ be the logarithmic spiral whose curvature $k = \frac{1}{\sqrt{2}s}$ and $\alpha : I \to \mathbb{R}^3$ be a helix of the cylinder on the plane curve β with its Frenet frame $\{T, N, B\}$. Then the envelope S of α parametrized by $X : (\mathbb{R}^2, g) \to (\mathbb{R}^3, \bar{g}), \; X(u, s) = \alpha(s) + u(B + T)$ is a free biminimal surface [12]. Hence, from Theorem 4.1, $X : (\mathbb{R}^2, f g) \to (\mathbb{R}^3, \bar{g})$ is a free f-biminimal surface.

3. The circular cylinder $\varphi : D = \{(u, v) \in (0, 2\pi) \times \mathbb{R}\} \to \mathbb{R}^3$ with $\varphi(u, v) = (r \cos u, r \sin u, v)$ is an f-biminimal surface for $f(u) = C_1 e^{-\sqrt{-1} - \lambda u} + C_2 e^{-\sqrt{-1} - \lambda^2 u}$, where C_1 and C_2 are real constants. It is easy to see that this surface with $f(u) = C_1 e^{-\sqrt{-1} - \lambda u} + C_2 e^{-\sqrt{-1} - \lambda^2 u}$ is not an f-biharmonic surface because if φ is f-biharmonic, then using Theorem 3.2 of [15] we get $\lambda = 0$. Then the function f is indefinite, so this surface can not be f-biharmonic and free f-biminimal. Moreover, using Proposition 3.1 of [12], we obtain that φ cannot be biminimal unless $\lambda = -\frac{1}{r^2}$. This shows that the f-biharmonicity, biminimality, and f-biminimality of φ are different.
5. \(f\)-Biminimal Legendre curves in Sasakian space forms

Let \((M^{2m+1}, \varphi, \xi, \eta, g)\) be a contact metric manifold. If the Nijenhuis tensor of \(\varphi\) equals \(-2d\eta \otimes \xi\), then \((M^{2m+1}, \varphi, \xi, \eta, g)\) is called a Sasakian manifold [2]. If a Sasakian manifold has constant \(\varphi\)-sectional curvature \(c\), then it is called a Sasakian space form. The curvature tensor of a Sasakian space form is given by

\[
R(X, Y)Z = \frac{c + 3}{4} \{g(Y, Z)X - g(X, Z)Y\} + \frac{c - 1}{4} \{g(X, \varphi Z)\varphi Y - g(Y, \varphi Z)\varphi X \\
+ 2g(X, \varphi Y)\varphi Z + \eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X \\
+ g(X, Z)\eta(Y) - g(Y, Z)\eta(X)\xi\}
\]
(5.1)

for all \(X, Y, Z \in TM\) [3].

A submanifold of a Sasakian manifold is called an integral submanifold if \(\eta(X) = 0\) for every tangent vector \(X\). A 1-dimensional integral submanifold of a Sasakian manifold is called a Legendre curve of \(M\). Hence, a curve \(\gamma : I \rightarrow M = (M^{2m+1}, \varphi, \xi, \eta, g)\) is called a Legendre curve if \(\eta(T) = 0\), where \(T\) is the tangent vector field of \(\gamma\) [3].

We can state the following theorem:

Theorem 5.1 Let \(\gamma : (a, b) \rightarrow M\) be a nongeodesic Legendre Frenet curve of osculating order \(r\) in a Sasakian space form \(M = (M^{2m+1}, \varphi, \xi, \eta, g)\). Then \(\gamma\) is \(f\)-biminimal if and only if the following three equations hold:

\[
k_1'' - k_1^3 - k_1 k_2^2 + \frac{(c + 3)}{4} k_1 + 2k_1' \frac{f'}{f} + k_1'' \frac{f''}{f} - \lambda k_1 + \frac{3(c - 1)}{4} [k_1 g(\varphi T, E_2)^2]^\perp = 0, \\
k_1' k_2 + (k_1 k_2)' + 2k_1 k_2 \frac{f'}{f} + \frac{3(c - 1)}{4} [k_1 g(\varphi T, E_2)g(\varphi T, E_3)]^\perp = 0, \\
\]

and

\[
k_1 k_2 k_3 + \frac{3(c - 1)}{4} [k_1 g(\varphi T, E_2)g(\varphi T, E_4)]^\perp = 0.
\]

Proof Let \(M = (M^{2m+1}, \varphi, \xi, \eta, g)\) be a Sasakian space form and \(\gamma : (a, b) \rightarrow M\) a Legendre Frenet curve of osculating order \(r\). Differentiating \(\eta(T) = 0\) and using Definition 2.1, we obtain

\[
\eta(E_2) = 0.
\]
(5.2)

Then using equations (5.1) and (5.2), we have

\[
R(T, \nabla_T T)T = -k_1 \left(\frac{c + 3}{4} E_2 - 3k_1 \frac{(c - 1)}{4} g(\varphi T, E_2)\varphi T\right).
\]
(5.3)

By use of equations (2.5), (2.9), and (5.3) in equation (1.6), we find

\[
\left(k_1'' - k_1^3 - k_1 k_2^2 + \frac{(c + 3)}{4} k_1 + 2k_1' \frac{f'}{f} + k_1'' \frac{f''}{f} - \lambda k_1\right) E_2 + \left(k_1' k_2 + (k_1 k_2)' + 2k_1 k_2 \frac{f'}{f}\right) E_3
\]
\[+ (k_1k_2k_3)E_4 + \frac{3(c - 1)}{4} [k_1g(\varphi T, E_2)\varphi T] \perp = 0. \]

(5.4)

Then taking the scalar product of equation (5.4) with \(E_2, E_3, \) and \(E_4, \) respectively, we obtain the desired results.

Let us recall some notions about the Sasakian space form \(\mathbb{R}^{2m+1}(-3) \) [3]:

Let us take \(M = \mathbb{R}^{2m+1} \) with the standard coordinate functions \((x_1, ..., x_m, y_1, ..., y_m, z) \), the contact structure \(\eta = \frac{1}{2}(dz - \sum_{i=1}^{m} y_i dx_i) \), the characteristic vector field \(\xi = 2 \frac{\partial}{\partial z} \), and the tensor field \(\varphi \) given by

\[
\varphi = \begin{bmatrix}
0 & \delta_{ij} & 0 \\
-\delta_{ij} & 0 & 0 \\
0 & y_j & 0
\end{bmatrix}.
\]

The Riemannian metric is \(g = \eta \otimes \eta + \frac{1}{4} \sum_{i=1}^{m} ((dx_i)^2 + (dy_i)^2) \). Then \((M^{2m+1}, \varphi, \xi, \eta, g) \) is a Sasakian space form with constant \(\varphi \)-sectional curvature \(c = -3 \) and it is denoted by \(\mathbb{R}^{2m+1}(-3) \). The vector fields

\(X_i = 2 \frac{\partial}{\partial y_i}, \ X_{i+m} = \varphi X_i = 2(\frac{\partial}{\partial x_i} + y_i \frac{\partial}{\partial z}), \ 1 \leq i \leq m, \ \xi = 2 \frac{\partial}{\partial z}, \)

(5.5)

form a g-orthonormal basis and the Levi-Civita connection is calculated as

\[
\nabla_{X_i}X_j = \nabla_{X_{i+m}}X_j + \delta_{ij} \xi, \ \nabla_{X_{i+m}}X_j = -\delta_{ij} \xi,
\]

\[
\nabla_{X_i} \xi = \nabla_{X_{i+m}} \xi = \nabla_{\xi}X_{i+m} = X_i
\]

(see [2]).

Now let us produce an example of \(f \)-biminimal Legendre curves in \(\mathbb{R}^5(-3) \):

Example Let \(\gamma = (\gamma_1, ..., \gamma_5) \) be a unit speed Legendre curve in \(\mathbb{R}^5(-3) \). The tangent vector field of \(\gamma \) is

\[
T = \frac{1}{2} \left\{ \gamma_3'X_1 + \gamma_4'X_2 + \gamma_1'X_3 + \gamma_2'X_4 + (\gamma_5' - \gamma_1'\gamma_3 - \gamma_2'\gamma_4)\xi \right\}.
\]

Using the above equation, since \(\gamma \) is a unit speed Legendre curve, we have \(\eta(T) = 0 \) and \(g(T, T) = 1 \); that is,

\[
\gamma_5' = \gamma_1'\gamma_3 + \gamma_2'\gamma_4
\]

and

\[
(\gamma_1')^2 + ... + (\gamma_5')^2 = 4.
\]

For a Legendre curve, we can use the Levi-Civita connection and equation (5.5) to write

\[
\nabla_T T = \frac{1}{2} \left(\gamma_3''X_1 + \gamma_4''X_2 + \gamma_1''X_3 + \gamma_2''X_4 \right),
\]

(5.6)

\[
\varphi T = \frac{1}{2} \left(-\gamma_1'X_1 - \gamma_2'X_2 + \gamma_3'X_3 + \gamma_4'X_4 \right).
\]

(5.7)
Equations (5.6) and (5.7) and φT ⊥ E2 hold if and only if
\[\gamma_1'' \gamma_3'' + \gamma_2'' \gamma_4'' = \gamma_3'' \gamma_1'' + \gamma_4'' \gamma_2''. \]

Finally, we can give the following explicit example:

Let us take \(\gamma(t) = (\sin 2t, -\cos 2t, 0, 0, 1) \) in \(\mathbb{R}^5 \). Using the above equations and Theorem 5.1, \(\gamma \) is an \(f \)-biminimal Legendre curve with osculating order \(r = 2, k_1 = 2, f = e^t, \varphi T \perp E_2 \). We can easily check that the conditions of Theorem 5.1 are verified. Using Theorem 3.1 of [7], the curve \(\gamma \) is not \(f \)-biharmonic. For \(\lambda \neq -4 \), it is easy to see that \(\gamma \) is not biminimal. Hence, the biminimality and \(f \)-biminimality of \(\gamma \) are different unless \(\lambda = -4 \).

Acknowledgment

The authors would like to thank the referees for their valuable comments, which helped to improve the manuscript.

References

[1] Aykut DB. Some special curves on surfaces. MSc, Balikesir University, Balikesir, Turkey, 2015.