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1. Introduction
Well-constrained hypocentral parameters (latitude, 
longitude, depth, and origin time) are essential for most 
seismological and earthquake hazard studies. Velocity 
model errors affect Local earthquake locations more due 
to seismic arrivals passage through the heterogeneous 
crust and uppermantle. 

The 1-D seismic velocity models are necessary 
for accurate earthquake locations at many real-time 
seismological centers. Reliable earthquake locations are 
essential to analyze seismicity and characterize active 
faults to understand the tectonic regime of a region. Most 
earthquake catalogs provided by seismic networks are 
based on layered 1-D velocity models. Scattering in the 
earthquake locations may be caused by errors in station 
parameters (location and timing errors), misidentification 

of seismic phases, and velocity models in earthquake 
location computation (Husen and Hardebeck, 2010). 

Additionally, 1-D seismic velocity models are essential 
as initial reference models for 3-D local earthquake 
tomography studies. A high-quality data set, well-
identified seismic phases, and an accurate velocity model 
are crucial for reliable earthquake locations. Using high-
quality arrival times from well-constrained earthquake 
locations to derive seismic velocity models has led to a 
minimum 1-D model (Kissling, 1988). 

A minimum 1-D model can be obtained from 
simultaneous inversion for earthquake location, seismic 
velocities, and station delays by solving the coupled 
hypocenter-velocity problem. To derive a reliable 1-D 
model, an extensive range of 1-D velocity models are 
tested (Kissling et al., 1994). The minimum 1-D model 

Abstract: We present a detailed one-dimensional (1-D) velocity model of the Lake Van Basin and its surrounding region, alongside 
precise hypocenter locations, utilizing seismic data from the aftershocks of the 23 October 2011 Lake Van earthquake (Mw = 7.1). 
The 1-D minimum velocity model is computed by the VELEST program by analyzing body wave traveltimes and station corrections. 
Encompassing a geographical area of 180 × 90 km² centered around Lake Van, the study incorporated seismic data from 10 newly 
deployed stations, complementing the existing network of the Kandilli Earthquake Research Institute. A comprehensive manual analysis 
was conducted on a dataset comprising 7643 events occurring between 23 October 2011 and 21 January 2015. Among these, 1193 
well-located events recorded by 16 stations were selected, encompassing 48,387 P-wave and 26,913 S-wave arrival times. The iterative 
simultaneous inversion technique was applied to refine velocity and hypocenter parameters while mitigating the influence of near-surface 
velocity heterogeneity and station elevation through station corrections. The resulting 1-D velocity model delineates eight distinct layers 
up to a depth of 39 km, including a 3-km-thick sedimentary layer, while determining the VP/VS ratio for each layer. Rigorous testing 
procedures were implemented to ensure the stability and accuracy of the velocity structure and aftershock locations. The relocation of 
the aftershock sequence using the new 1-D velocity model revealed significant shifts in the distribution pattern, notably concentrating 
relocated events towards the vicinity of the main shock area. This study underscores the efficacy of the VELEST software in deriving a 
robust 1-D velocity model and refining hypocenter locations for the Lake Van region. The insights gained enhance our understanding of 
the region’s seismotectonic and have implications for seismic hazard assessment and risk mitigation strategies.
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represents average seismic velocities for each layer sampled 
by ray distribution. Station delays compensate for near-
surface velocity changes under stations and large-scale 
systematic variations of seismic velocities (Husen et al., 
1999). While 1-D velocity models offer the advantages of 
computational simplicity and straightforward 
interpretation, they are constrained by their inability to 
account for lateral variations in velocity, representing a 
significant limitation in their application. While numerous 
studies have examined the crust and uppermost mantle 
structure in Eastern Anatolia using various methods at a 
broader scale, most of these investigations have 
predominantly focused on the western segment of the 
Lake Van region. The initial 1-D crustal velocity model of 
Turkelli et al. (2003) was obtained from a grid search 
technique using the ETSE array data covering the area 
west of Lake Van. Zor et al. (2003) investigated the crustal 
structure of the Eastern Anatolian Plateau using receiver 
functions. They found that the average crustal thickness is 
45 km, and the average crustal shear velocity is 3.7 km/s 
for the Eastern Anatolian Plateau. Al Lazki et al. (2004) 
performed the uppermantle P-wave (Pn) velocities method 
and observed large-scale (approximately 500 km) low Pn 
velocity structures (<8.0 km/s). Crustal and uppermantle 
seismic discontinuities beneath Eastern Türkiye were 
imaged using the S-wave receiver function by Angus et al. 
(2006). They interpreted that Moho depth ranges from 
between 30 and 55 km. The 1-D crustal model derived by 
Pınar et al. (2007) was an average crust model based on 
previous studies.  Anomalously high VP/VS ratios have 
previously been reported in Eastern Anatolia and 
attributed to volcanic activity in the region and partial 
melt in the crust at a depth of 40 km (Salah et al., 2011). To 
investigate earthquake clustering and time-dependent 
seismicity patterns in the region, Toker and Ecevitoğlu 
(2012) utilized data from 6500 aftershocks recorded at the 
VANB-Broadband station of Kandilli Observatory and 
Earthquake Research Institute (KOERI) between October 
2011 and 2012.  Their findings indicated a shallow range of 
4–10 km in the aftershock distribution, characterized by a 
low-angle thrust system. Bayrak et al. (2013) analyzed the 
seismogenesis and earthquake triggering during the first 
40 days of the Van earthquake aftershock sequence with 
2D mapping of b- and p-values, 3D mapping of b-value, 
and coseismic Coulomb stress modeling. They observed 
that the mainshock occurred in a highly stressed region 
and argued that the sequence comprised larger aftershocks 
due to large asperities within the rupture zone. Utkucu et 
al. (2013) calculated Coulomb stress changes before and 
after the 23 October 2011 Van, eastern Türkiye. According 
to their study, the coseismic stress changes of the 
background seismicity had slightly promoted stress over 
the rupture plane of the 2011 Van earthquake, it released a 

stress shadow over the Gürpınar Fault which was discussed 
as the source of the 7 April 1646 Van earthquake. Based on 
historical seismicity information, it is also discussed that 
the repetition of the 1646 Van earthquake would be the 
most likely candidate to strike the Lake Van area in the 
future. Spatial distribution and source mechanisms of the 
2011 Van earthquake’s aftershocks have been utilized to 
define four clusters about their relative location to the 
mainshock rupture. Correlations between the aftershock 
patterns and the coseismic Coulomb stress changes are 
determined by calculating the stress changes over optimally 
oriented and specified fault planes. It is shown that there is 
an apparent correlation between the mainshock stress 
changes and the observed spatial pattern of the aftershock 
occurrence. According to the calculated stress change 
maps, the 2011 Van earthquake decreased the stress over 
the GF, further delaying the successor of the 1646 Van 
earthquake strike. Vanacore et al. (2013) detected a deep 
Moho in eastern Anatolia of up to approximately 55 km 
and an extremely high VP/VS ratio (>1.85) compared to 
that could be associated with recent volcanism in eastern 
from receiver function analysis of data for the period 
between 2005 and 2010. In the study of Delph et al. (2015), 
ambient noise tomography was employed to analyze the 
crustal thickness and 3-D shear-wave velocities across the 
Anatolian Plate. The findings indicated a calculated crustal 
thickness of approximately 40 km. The shear-wave velocity 
models unveiled an average crustal Vs ranging between 
3.2 and 3.5 km/s along the Eastern Anatolian Plateau, with 
a mantle S-wave velocity of about 4.2 km/s observed in the 
Lake Van region. Govers and Fichtner (2016) employed 
regional full-waveform tomography to visualize Anatolia’s 
crust and uppermantle structures in their investigation. 
This analysis revealed the presence of ultraslow velocities 
(≤4.3 km/s) beneath eastern Anatolia. Notably, in eastern 
Türkiye, the Moho depth exhibited a range between 34 and 
52 km, consistent with the conclusions drawn by Vanacore 
et al. (2013). According to Oruç et al. (2017) the strong 
negative Bouguer anomalies in Eastern Anatolian plateau 
have low density and relatively thick crustal root. They also 
suggest that the crust is thickened by the vertical loads and 
compressive forces up to 34–46 km. Toker et al. (2017) 
analyzed the source mechanisms and faulting pattern of 
the aftershocks in the Lake Erçek area, Eastern Anatolia, 
during the 2011 Van event (Mw 7.1) to drive a stress tensor 
acting around Lake Erçek. In their study, the focal 
mechanism and seismic reflection data proved that Lake 
Erçek was initially generated by compressional 
activity. Kind et al. (2015) utilized S-receiver functions in 
their analysis, aiming to explore variations in lithospheric 
thickness across the entire region of Türkiye and its 
surrounding areas. They employed teleseismic data to 
characterize seismic discontinuities between the Moho 
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and the discontinuity at a depth of 410 km. Their findings 
indicated that the Lithosphere-Asthenosphere Boundary 
(LAB) depth beneath the Anatolian region ranged between 
80 and 100 km, whereas this depth did not change 
significantly when traversing the North Anatolian and 
East Anatolian fault zones. Çınar and Alkan (2017) studied 
the crustal and uppermantle structures around Lake Van 
by analyzing the inversion fundamental mode Rayleigh 
wave phase velocity dispersion curves. Their findings 
revealed an average shear-wave velocity in the lower crust 
of approximately 3.5 km/s, suggesting a potential 
association with volcanism. The S-wave velocity models 
confirmed a crust-mantle boundary at around 42 km, 
displaying shear velocities ranging from 3.6 to 4.2 km/s. 
Additionally, velocities in the uppermantle, spanning 45 to 
70 km, were slower than those suggested by global models, 
hinting at the possible presence of hot asthenospheric 
material.  Mahatsente et al. (2018) employed gravity 
models to examine the crust and uppermantle structures, 
aiming to understand the driving forces behind 
asthenospheric flow and the isostatic condition in Eastern 
Anatolia. They used both terrestrial and satellite-derived 
gravity data for their analysis. The constructed gravity 
models revealed notable variations in lithospheric 
thickness between the Anatolian and Arabian plates. 
Specifically, the lithospheric mantle in Eastern Anatolia 
exhibited a thinner profile (approximately 62–74 km) 
compared to the Arabian plate (approximately 84–95 km), 
suggesting a possibility that a portion of the Anatolian 
mantle lithosphere may have undergone removal through 
delamination. In the study of Toker and Şahin (2019), 
high-resolution crustal tomography beneath the tectono-
magmatic lake regions (Lakes Van and Erçek) of Eastern 
Anatolia (Türkiye) was employed to estimate Poisson’s 
ratio from the Vp and Vs structures. This was achieved 
through joint inversion analyses of Vp and Vs traveltimes, 
using the station records from the permanent network of 
Kandilli Observatory and Earthquake Research Institute 
(KOERI, Türkiye). The results of Poisson’s ratio anomaly 
reveal distinct and substantial variations in different 
tectonic units, demonstrating prominent, continuous, and 
dense high Poisson’s ratio anomalies in the range of 0.27 to 
0.30 for the lowermost crust/the uppermost mantle 
beneath the regions of Lakes Van and Erçek, along with 
comparably low average Poisson’s ratio (approximately 
0.23) anomalies for the brittle crust in several local areas.

According to a Pn velocity distribution study by Hearn 
and Ni (1994), low Pn velocities (<7.9 km/s) beneath most 
of the Turkish-Iranian Plateau and high Pn velocities (>8.1 
km/s) beneath the Black Sea and southern Caspian Sea. 
Çınar and Alkan (2017) investigated 1-D crustal structure 
in Eastern Anatolia by the Rayleigh wave method. Alkan 
et al. (2020) employed P and S wave receiver functions 

and their joint inversions to investigate the lithosphere 
beneath the Lake Van region. Utilizing approximately 600 
teleseismic earthquake data, the study revealed that the 
VP/VS ratio around the east and west of Lake Van exceeded 
the standard value (1.73), reaching 1.85. Velocity models 
for the Lake Van region indicated that the thinnest Moho 
was identified in the east of Lake Van (approximately 42 
km), while the thickest Moho was calculated in the north 
of Lake Van (approximately 45 km).  The previous studies 
were either large-scale or limited to the western region west 
of Lake Van. The area lacks a 1-D velocity model derived 
from high-quality data recorded by a dense network. 
Aftershock sequences provide valuable information to 
understand the earth’s crust and source properties of large 
earthquakes due to the large number of events occurring 
during a short period in a small area (Singh et al., 2012). 
Toker and Şahin (2022) studied on multifrequency P- 
and S-wave attenuation tomography models of Lake Van 
area (East Anatolia) by estimating coda-normalized wave 
spectra of 3027 local earthquakes (2.0 < Mw < 7.1). In the 
study by Toker et al. (2021), the finite source characteristics 
of the 2011 Van earthquake were determined by using the 
teleseismic waveforms to focus on the source location. 
This study presents the study’s results on the aftershock 
series of the Mw = 7.1 Lake Van thrust event. A combined 
temporary and permanent station network recorded 
the aftershocks. Accurate and reliable hypocenters were 
obtained by applying the concept of the minimum 1-D 
model by Kissling (1988) and Kissling et al. (1994). The 
accurate hypocenters are used to estimate the seismogenic 
depth range and to correlate with the tectonic structures of 
the Lake Van region and surroundings.

2. Tectonic and geological settings 
The East Anatolian High Plateau, northwestern Iran, and 
the Caucasus regions belong to one of the high elevation 
zones (average approximately 2 km) along the Alpine-
Himalayan Mountain belt (Şengör and Yılmaz 1983; 
Jackson, 1992; Şengör et al., 2003). The region is under 
a compressional regime due to the collision of Arabian 
and Eurasian plates initiated 11 Ma ago (Şengör and 
Yılmaz, 1981; Şengör et al., 2003). According to GPS 
measurements, the northward movement of the Arabian 
Plate to Eurasia is about 18–20 mm/year (Reilinger et al., 
2006). As seen in Figure 1, the Lake Van Basin is located 
east of Karlıova Triple Junction, where North Anatolian 
and East Anatolian Faults intersect. The Lake Van Basin 
is assumed to be a remnant of continental collision during 
the oceanic closure and subduction of the Arabian Plate 
beneath the Eurasian Plate (Şengör and Kidd, 1979; 
Dewey et al., 1986; Şaroğlu and Yılmaz, 1986) due to the 
north-south shortening regime where the continental 
collision zone between Arabia and Eurasia. The region is 
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accommodated by thrust and conjugate strike-slip faults 
(Figure 1). According to historical and instrumental 
period seismic data, Lake Van is in a highly seismic area 
with a complex tectonic regime. The results of the focal 
mechanism and stress analysis solutions by Kalafat et 
al. (2014) also support that the 2011 Van earthquakes 
occurred on the reverse faulting and the seismic activity 
has been continuing under a compressional regime in the 
region.  

The geology of Lake Van is seen in Figure 2. The 
Lake Van Basin is bounded by Quaternary volcanic in 
the northeast (Mount Tendürek, 3533m), in the north 
(Mount Süphan, 4051 m), and the west (Mount Nemrut, 
2950 m) and the Bitlis-Zagros Structure Zone in the south. 
The southern geology of Lake Van is formed of Paleozoic 
metamorphic rocks called the Bitlis Massif. In Figure 2, 
volcanic rocks exist on the northern and western parts of 
Lake Neogene and Quaternary. Ophiolitic melange units 
are observed in the eastern Lake Van region of the Upper 
Cretaceous-Oligocene (Üner and Mutlu, 2019). In Lake 
Van, 700-m-thick sediments accumulated 600 thousand 
years ago (Litt et al., 2009; Stockhecke et al., 2014).

Although it was known that the eastern part of the 
Lake Van Basin was affected by Gürpınar, Everek, and 
Alaköy Faults (Koçyiğit et al., 2001), there was insufficient 
information regarding the recent activity of the fault in the 

literature until the Van earthquake happened. Evidence 
of an apparent surface rupture was not observed after 
the earthquake, and the deformation structures at the 
surface reflect the thrust nature with a deformation that 
affected approximately 8 to 12 km on land (Emre et al., 
2011, 2013; Özalp et al., 2011; Özkaymak et al., 2011; 
Doğan and Karakaş, 2013; Koçyiğit, 2013). The Van Fault 
Zone is a 70-km-long, extends on E-W, northwest dipping, 
and approximately N70°W striking thrust fault (Figure 
2) (Akyüz et al., 2011; Emre et al., 2011; Kalafat et al., 
2012c; Koçyiğit, 2013; Mckenzie et al., 2016). The focal 
mechanism solutions of the Van earthquake aftershocks 
also support the region under a compressional regime 
that causes the reverse fault mechanism in the region 
(Kalafat et al., 2014). According to the stress analysis 
results, the compressional (P) direction of the stress axes 
is in the NNW/SSE direction, whereas the extensional 
(T) direction (ENE-WSW), which is coherent with the 
aftershock distribution in the region (Kalafat et al., 2014). 
The distribution of the aftershocks covering approximately 
an area of 2300 km2 supports the presence of a rupture 
approximately 70 ± 10 km long (Kalafat, 2012c; Gallovic et 
al., 2013). Seismological studies show that the lithospheric 
thickness is thin in the region (Al Lazki et al., 2003; Gök et 
al., 2003; Keskin, 2003; Şengör et al., 2003; Lei and Zhao, 
2007). During the East Anatolian Seismic Experiment 

Figure 1. Simplified tectonic map of the eastern Mediterranean region modified 
after Gülen (1989). GPS-determined plate/block motions relative to Eurasia are 
shown with thick arrows, and the obtained slip rates are also given (McClusky et al., 
2000).  The African Plate’s motion is the NUVEL-1A estimate (DeMets et al., 1990). 
The oceanic crusts of the Black Sea (Finetti et al., 1988) and the Mediterranean 
Sea (Bogdanov et al., 1994) are indicated with a striped pattern. CAF, Central 
Anatolian Fault; EAF, East Anatolian Fault; NAF, North Anatolian Fault; NEAF, 
North Eastern Anatolian Fault; IA, Isparta Angle; KJ, Karlıova Junction; MBSR, 
Mid-Black Sea Ridge; MR, Mediterranean Ridge (Gülen et al., 2002).
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(ETSE) project that covers the area on the west part of 
Lake Van, several researchers concluded that beneath East 
Anatolia, the lithospheric mantle is thin or absent (Gök et 
al., 2000; Al Lazki, 2003; Gök et al., 2003; Sandvol et al., 2003; 
Angus et al., 2006). Eastern Anatolia’s crustal thickness is 45 
km (Zor et al., 2003).

3. Seismic networks and data collection 
Lake Van region has been monitored by the KOERI (Kandilli 
Earthquake Research Institute) and AFAD (Earthquake 
Department at Disaster and Emergency Management 
Presidency) permanent seismic network for a long time; 
however, the station distribution was not dense enough to 
apply a tomographic study in the region as seen in Figure 3. 
The 2011 Lake Van earthquake was recorded by only three 
seismic recordings within 200 km of the mainshock (Gülerce 
et al., 2012). 

After the Van earthquake (Mw 7.1) on October 23rd, 
2011, 10 seismic stations (eight broadband and two 
acceleration seismometers) were installed around Lake 
Van for several days to detect the aftershock sequence for 
6 months. Figure 4 shows the study area with the newly 
installed network and existing stations. Some new network 
stations stayed for six months, while others were kept 
permanently. 

The dataset is manually analyzed by using the zSacWin 
program developed at KOERI’s Regional Earthquake and 
Tsunami Monitoring Center (RETMC) (Yılmazer, 2003) 
that is based on HYPO71 software (Lee and Lahr, 1972). 
The aim of using this method is to build a uniform, reliable, 
manually picked database and combine three different data 
sets as a first initial solution. VELEST program does not allow 
manual picking. The data set consists of KOERI, AFAD, 
and temporary seismic networks with a magnitude ranging 
between 1 and 7.2. We manually picked P- and S-wave arrival 
times to obtain a high-quality data set and recorded at least 
three stations with a minimum of 3 P-wave and 2-S wave 
arrivals. The data is initially analyzed by the HYPO71 location 
algorithm (Lee and Lahr, 1972) using a 1-D velocity model 
obtained by Kalafat et al. (1987) since this model is the model 
for routine processes at KOERI. This would be important 
for future comparisons of the new locations. In total, 7643 
earthquakes were relocated between 23 October 2011 and 21 
January 2015 within a circular epicentral distance of 350 km 
from the main shock. The events consisted of 48,387 P-wave 
arrivals and 26,913 S-wave arrival times. To get a steadier 
result, we relocated the events using VELEST software 
(Kissling et al., 1995a) in single-event mode using the velocity 
model (Pınar et al., 2007). Earthquake distribution is shown 
in Figure 5.
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(2020).
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4. The 1-D P-wave velocity model
Seismic wave traveltime is a nonlinear function of 
hypocentral parameters and seismic velocities sampled 
along the ray paths between stations and hypocenters. 
The dependence on seismic velocities and hypocentral 
parameters is the coupled hypocenter-velocity model 
problem (Crosson, 1976; Kissling, 1988; Thurber, 1992). 
However, in a standard earthquake location procedure, 
the velocity parameters are fixed a priori, and observed 
traveltimes are minimized by perturbation of hypocentral 

parameters (origin time, epicentral coordinates, and 
depth). Ignoring the coupling between hypocentral 
and velocity parameters during the location can cause 
systematic errors (Eberhart Phillips and Michael, 1993) in 
the hypocenter location. In addition, error estimates are 
strongly affected by the a priori velocity model (Kissling 
et al., 1995b). 

Precise hypocenter locations and error estimations 
demand the solution of velocity and hypocentral 
parameters in the coupled inverse problem. The minimum 
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in Eastern Anatolia. The rectangular area is the study area selected for 1-D inversion. Location and 
active fault map of the study area and digital elevation model (DEM) of Lake Van and its surroundings. 
Beyüzümü Fault by Ateş et al. (2007), Gürpınar Fault and Edremit Fault Zone by Özalp et al. (2016), 
and other active faults by Emre et al. (2013), Selçuk et al. (2020).
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Figure 4. Study area. Map showing active faults in Lake Van, and surroundings and distribution of seismic stations 
(triangles). The 23 October 2011 Van earthquake is shown as the red star. Gürpınar and Edremit Fault zones are compiled 
from Özalp et al. (2016). Beyüzümü Fault is compiled from Ateş et al. (2007). Other faults are from Emre et al. (2013).

1-D velocity model is calculated by simultaneous inversion 
of hypocenter and velocity parameters by trial-and-error 
process (Kissling, 1988). The velocity of each layer of the 
minimum 1-D velocity is the weighted average of all rays 
within that depth (Husen et al., 1999). For lateral variations 
station corrections in shallow layers, station corrections 
are merged in the inversion process. For stations with 
good azimuthal ray distribution, corrections will indicate 
near-surface geology. Those regions with poor azimuthal 
station distribution station corrections in the far regions 
of the network contain velocity information about the 
shallow subsurface and linear effects of the deep structure. 

To determine the study area’s minimum 1-D velocity 
model, we used the iterative 1-D inversion algorithm, 
VELEST routine (Kissling et al., 1995a), that accounts for 
station elevation. The nonlinear problem is linearized, and 
the solution is obtained iteratively, whereas each iteration 
consists of solving the forward problem and the inverse 
problem at once with station corrections. Including station 
elevations in the inversion process allows us to trace rays 
to the proper positions during the forward modeling. 

Data quality is essential for the success, efficiency, and 
accuracy of the inversion process. Before the inversion 
process, we relocated all events by using the velocity model 
(Pınar et al., 2007) running the VELEST software in single 
mode (Figure 6). In order to build a reliable and high-
quality data set, we applied selection criteria for the data 

set of all events. For the inversion process, only the events 
that consist of a minimum of 10 P-wave arrivals with an 
azimuthal gap smaller than 180° were selected (Figure 6). 
The depth distribution of the aftershocks (Figure 7) mainly 
ranges from 5 to 25 km, with a maximum depth of 40 km 
(Figure 7).

The selected data set and seismic stations used during 
1-D inversion with VELEST software consist of 1193 
local events (Figure 8a). The depth distribution displays 
NE- SW dip of the aftershock sequence (Figure 8b) and 
mainshock occurring at around 6 km depth (Figures 8b 
and 8c). Earthquake for 1-D inversion with the mainshock, 
latitudinal, and longitudinal cross sections is seen in 
Figure 8. The earthquake depth ranges from 0 to 29 km. 
The zero-depth earthquakes seen in (Figure 8b) are due to 
the sea level height that we have chosen for the inversion. 
The selected stations that were used during inversion are 
listed in Table 1.

The initial velocity model is critical for the linearized 
inverse problem (Kissling, 1988; Thurber, 1992; Kissling 
et al., 1995a). Calculating a minimum 1-D model is a 
trial-and-error process starting with a wide range of 
velocity models as initial guesses, which allows all possible 
velocities to be considered. We have built 100 trials of 
different velocity models. P-wave velocities range between 
0.5 and 4 km/s for shallow layers and 7–8.5 km/s for deep 
layers. Layer thicknesses were established with a constant 
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Figure 5. Earthquake and station distribution of all events after Van Earthquake with a magnitude 
range between 1 and 7. Earthquakes within the rectangular area are selected for this study. Dark-blue 
rectangular outlines the study area selected for the current study. Gürpınar and Edremit Fault zones are 
compiled from Özalp et al. (2015). Beyüzümü Fault is compiled from Ateş et al. (2007). Other faults are 
from Emre et al. (2013).

thickness of 1 km, whereas the depth range was selected 
from –3 km to 45 km, as shown in Figure 9.

Damping factors for the hypocentral parameters, 
station delays, and velocity parameters were selected to 
optimize parameter resolution and data misfit reduction. 

An iterative simultaneous inversion was run for 
100 initial models, each comprising nine iterations. We 
calculated velocity and hypocenter locations together 
with station delays.  Each RMS value is obtained by the 
inversion. Since the lowest RMS value would give the most 

reliable model, we compared the RMS values obtained 
during the inversion. The average root mean square 
(RMS) of traveltime residuals of each inversion process is 
compared, and the 66th model with a minimum RMS of 
0.18 is selected as an initial trial model for the inversion 
process, as seen in Figure 10.

For the next step, we ran the inversion for the selected 
data set (1193 events), using a damping coefficient of 
0.01 for hypocentral parameters and station delays, and 
a damping coefficient 1.0 for velocity parameters, as 
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Figure 8. The selected earthquakes and stations that were used for VELEST software (a). Depth distributions 
are shown both by longitude (b) and latitude (c). Red circles are earthquakes, triangles are stations, and the 
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Beyüzümü Fault is compiled from Ateş et al. (2007). Other faults are from Emre et al. (2013).

No Code Latitude
(degrees)

Longitude
(degrees)

Elevation 
(m) Location Seismometer 

type
Station 
owner 

Station 
opening date

Station 
closing date

1 ADCV 38.80 42.72 1774 Adilcevaz Broadband AFAD 10.28.2011    Active
2 AKDM 38.32 42.98 1662 Akdamar Acceleration KOERI 11.29.2012 Active
3 ERCV 39.01 43.33 1679 Erciş Acceleration NEW 10.25.2011 Active
4 GEVA 38.31 43.05 1672 Gevaş Broadband AFAD 11.02.2008 Active
5 GOLV 38.81 43.01 1663 Göldüzü Broadband NEW 10.26.2011 05.10.2011
6 GURO 38.55 42.03 1387 Güroymak Broadband NEW 10.26.2011 Active
7 MOLV 38.67 43.18 1742 Mollakasım Broadband NEW 10.26.2011 05.10.2011
8 OCAV 38.74 43.42 2019 Ocaklı Broadband NEW 10.24.2011 05.10.2011
9 TATV 38.58 42.26 1831 Bitlis Broadband AFAD 10.21.2006 11.12.2011
10 TVAN 38.52 43.403 2008 Van Broadband AFAD 10.20.2001 Active
11 ULUV 38.88 43.732 1754 Uluşar Broadband NEW 10.27.2011 05.10.2011
12 UNSV 38.99 43.584 1723 Ünseli Acceleration NEW 10.27.2011 05.10.2011
13 VANB 38.50 43.40 1227 Van Broadband KOERI 08.10.2000 Active
14 VMUR 38.98 43.571 1717 Van Broadband AFAD 11.29.2010 Active
15 YALV 38.57 43.564 1981 Yalınağaç Broadband NEW 10.25.2011 05.10.2011
16 YAYV 38.81 43.367 1684 Yaylıada Broadband NEW 10.25.2011 05.10.2011
17 TASB 39.98 44.238 844 Taşburun Broadband NEW 10.25.2011 Active

Table 1. Station list.
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suggested in VELEST user manual. We used nine iterations 
for each inversion. This step is repeated 19 times using 
updated velocities with new station delays and hypocenter 
locations. The number of layers was reduced by combining 
adjacent layers with similar velocities (Figure 11). This 
step was run until we observed locations, station delays, 
and velocity values did not significantly change. This trial-
and-error approach allowed us to establish a reasonable 
geometry of the crustal model, velocity parameters, and 
station delays and to obtain an “updated a priori 1D model 
with corresponding station residuals” displayed by dark 
blue color in Figure 11. 

We relocated all events using an updated 1-D model 
with station residuals with VELEST in the single-event 
mode. We selected 1214 events applying the same 
criteria defined previously. The trial-and-error approach 
is repeated in this step until locations, station delays, 
and velocity values do not significantly change. After 10 
inversion steps, we obtained a “minimum 1-D model” for 
the region, as seen in Figure 10.

After the inversion process, the best solution is 
represented by a minimum 1-D velocity model. The final 
minimum 1-D P-wave velocity model (dark blue) and 
updated models (light blue) are shown in (Figure 12). The 
minimum 1-D model satisfies the following features: 1) 
Earthquake locations, station delays, and velocity values 

do not change significantly. 2) The RMS value of all events 
is reduced compared to the initial calculations, and a 
minimum RMS value is obtained. 

5. S-wave velocity model
The usage of S-wave arrivals will provide unique 
information on hypocenter parameters. Gomberg et al. 
(1990) showed that a correctly picked S-phase recorded 
within approximately 1.4 times the focal depth’s distance 
from the epicenter can serve as a potent constraint on the 
focal depth. Due to the frequent masking of S-arrivals by 
P-wave coda, there is a risk of erroneously picking the 
wrong S-wave arrivals. Therefore, critical quality control 
is necessary.

To calculate the S-wave velocity model, a new relocation 
process was carried out with the VELEST single-event 
location mode by using the final 1-D P-model P- and S-wave 
traveltimes and the final station corrections. New data set 
selection criteria are applied, and events with an azimuthal 
gap smaller than 180°, along with a minimum of 10 good 
P-wave arrivals and five S-wave arrivals, were selected. We 
finally checked errors in the data set by plotting P-wave 
arrivals and S-P wave arrivals in a Wadati diagram (Figure 
13a). We eliminated the phases from the diagram to avoid 
the use of erroneous S-wave readings (Figure 13b). The 
final data set for the P-and S-wave inversion consists of 
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855 events with 9167 P-wave arrivals and 5753 S-wave 
arrivals. The average VP/VS ratio for the eliminated data 
before inversion is 1.73. S-phases are generally included 
in the location procedure by assuming a constant VP/VS 
ratio. One hundred different VP/VS values from 1.2 to 2.2 
were utilized as initial S-wave velocity models for the joint 
P- and S-wave velocity inversion. 

During the 1-D P and phase velocity inversion 
processes, the final 1-D velocity model of each iteration 
was kept constant by applying a high damping value for 
P-wave velocities. This allowed only S-wave velocity 
perturbations during inversion without constraints on the 
layers. 

The initial and final P- and S-wave velocities, along 
with their corresponding VP/VS ratios for the initial 
models in Figure 14, are listed in Table 2. For depths 
shallower than 3 km, the VP/VS ratio remains close to its 
initial values. Below a depth of 39 km, VP/VS ratios could 
not be calculated due to a limited number of events within 
this depth range. 

6. Station corrections  
Station delays are considered unknown parameters during 
the inversion process. These delays are expected to reflect 
the averaged basic features of local surface geology and 
crustal structure (Kissling, 1988; Husen et al., 1999). Early 

arrivals are caused by higher velocities, such as those found 
in volcanic rocks, whereas sedimentary rocks exhibit low 
velocities resulting in positive station delays (Husen et al., 
2003). Station delays represent deviations from the 1-D 
model due to the 3-D structure of the Earth concerning 
a reference station (Kissling, 1988). Large models can 
be affected by mixed site effects, such as near-surface 
(sediments), and mantle phases from Moho, owing to the 
limited range of back azimuth at the network’s edge (Diehl, 
2008).  

Station corrections are computed during the inversion 
to account for local geological changes and station 
elevations (Figure 15). VANB station is selected as the 
reference station due to its continuous recording of events 
towards the center of the network without extreme site 
conditions, resulting in less residual error. Corrections 
were computed relative to this reference station, with its 
delays (or corrections) defined as zero. Positive station 
correction values concerning relative to the reference 
station indicate local low-velocity anomalies, while 
negative values of station corrections correspond to high-
velocity anomalies near the recording station. 

In Figure 15, circles represent negative arrivals  
indicating higher velocities than those at reference 
stations, while crosses represent positive corrections 
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indicating lower velocities. The general pattern of 
station corrections indicates the consistency of the 
phase data. Station delays increase with distance from 
the reference station as the difference between modeled 
and unmodelled structures accumulates with longer ray 
paths (Husen et al., 2011). This effect can be observed in 
a 1-D model of the Lake Van region in the western part. 
The final P-wave and S-wave station corrections relative 
to the reference station VANB, close to the center of the 
network, exhibit negative delays in TATV and GURO, 
but show high positive delays in the eastern part. The 
station correction values range between –2.57 and 0.23 s. 

7. Stability tests of the final 1-D P-and S-wave velocity 
models
To assess the stability of the final P- and S-wave minimum 
1-D velocity model, two tests involving the random and 
systematic shifting of hypocenters were conducted. In 
the first test, all hypocenters were randomly shifted in 
all directions by 6-7 km before the velocity-hypocentral 
parameter inversion, aimed at identifying possible 
biases in their locations and evaluating the stability 
of the solution. Randomization was achieved using a 
Gaussian distribution with a zero mean. If the new 1-D 
velocity model yields a reliable minimum value within 

Layer depth (km) VP (km/s) VS (km/s) VP/VS

–3.0 3.88 2.09 1.86
3.0 4.86 2.77 1.75
6.0 5.22 2.94 1.77
7.0 5.34 3.09 1.73
8.0 5.45 3.13 1.74
12.0 5.55 3.19 1.74
24.0 6.38 3.54 1.80
33.0 6.65 3.65 1.82
39.0 6.67 3.65 1.83

Table 2. The 1-D P- and S-wave velocity models and VP/VS ratios in the Lake Van area.
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the solution space, significant changes in velocity and 
hypocenter locations are not expected.

In the second test, all hypocenter locations were 
systematically shifted 10 km in East, North, and Z 
(depth) directions. After systematically shifting all 
events by 10 km, two inversions were performed: one 
with slightly damped (damped velocities) and one with 
strongly overdamped velocities (fixed velocities). The 
results are shown in Figures 16 and 17, respectively. 
Figure 18 shows the differences in focal depth, latitude, 
and longitude between the hypocenters obtained 
through inversion and those randomly shifted by 5–7 
km before the inversion. We observed that all events are 
relocated close to their original position, indicating that 
the hypocenter locations obtained by inversion are not 
systematically biased. Two inversions were performed by 
fixing the velocities, with one using low damping values 
and the other using high damping values for velocities. 
In the first inversion, the minimum velocity model was 
allowed to invert with low damping values, while in 
the second inversion, a high damping value was used 

with fixed velocities. In Figure 17, the difference in focal 
depth, latitude, and longitude between the hypocenters 
obtained by inversion and those systematically shifted 
by 10 km before the inversion is seen. The blue line 
depicts a 10-km hypocenter shift, and the dark blue dots 
represent the new positions of the hypocenters  after 
inversion.

8. Results and discussion
This paper has focused on simultaneously determining 
the 1-D P- and S-wave velocity models and the aftershock 
locations associated with the Van earthquake on October 
23, 2011, in eastern Türkiye, using the traveltime 
inversion algorithm VELEST (Kissling et al., 1994; 
Akkoyunlu, 2019). The importance of this study lies in our 
determination of a 9-layer 1-D velocity model of Lake Van 
region obtained through the VELEST software, utilizing 
an extensive and reliable data set. We have presented a new 
1-D velocity model for the region. Our study represents 
the first application of a 1-D velocity model covering the 
Lake Van region, computed through the VELEST software, 
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Figure 17. Results of the hypocentral systematic shifting test by 10 km with damped velocities on the left 
and fixed velocities on the right for minimum 1-D P-and S-wave velocity models. Light blue lines denote the 
systematic shift of hypocenter locations before inversion, and dark blue dots denote hypocenters relocated close 
to their original positions after the inversion. 

utilizing an extensive dataset sourced from local stations. 
We have identified the first 1-D P- and S-wave velocity 
models with enhanced accuracy and stability. These 
models result in updated aftershock locations, exhibiting 
minimal errors in RMS values and station corrections. 
The 2011 Van earthquake increased the seismic activity 
of the eastern part of the Lake Van region, resulting in 
over 7000 aftershocks. The arrival times of P- and S-waves 
for the inversion process were determined by analyzing 
three distinct datasets focused on aftershocks: KOERI, 
AFAD, and temporary stations deployed shortly after the 
earthquake. Events recorded by a minimum of 10 seismic 
stations with an azimuthal gap of less than 180° were 
selected from this dataset. This improved dataset, with an 
enhanced azimuthal distribution, enabled the generation 
of stable 1-D P- and S-wave velocity models with minimal 
RMS value errors and precise aftershock locations. Zor et 
al. (2003) calculated the seismic velocities of the crustal 
structure of the Eastern Anatolian Plateau using receiver 
functions and found the shear velocity for the region to be 

between 3.5 and 3.8 km/s. Özacar et al. (2008) calculated 
the P-wave velocity (Vp) in the crust between 0 and 40 km 
beneath the Eastern Anatolian Plateau as 6.30 km/s in their 
study investigating uppermantle discontinuities. Tezel et 
al. (2013) investigated the Moho thickness and shear-wave 
velocity structure in the uppermantle beneath Türkiye 
using data from 120 broadband stations. The findings 
revealed a low-velocity layer situated at depths between 
20 and 40 km, attributed to the presence of volcanic 
structures. Govers and Fichtner (2016) studied regional 
full-waveform tomography for imaging both the crust and 
uppermantle of Anatolia. Ultraslow velocities (≤4.3 km/s) 
are observed beneath parts of western and central Anatolia, 
and below most of eastern Anatolia. In eastern Türkiye, the 
Moho depth ranges between 34 and 52 km, consistent with 
the findings of Vanacore et al. (2013). Notable references 
include Zor et al. (2003), Angus et al. (2006), Özacar et 
al. (2008), Salah et al. (2011), Gökalp (2012), Tezel et al. 
(2013), Vanacore et al. (2013), Pasyanos et al. (2014), 
Schildgen et al. (2014), Delph et al. (2015), and Toker 
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and Şahin (2019). Zor et al. (2003) calculated the seismic 
velocities of the crustal structure of the Eastern Anatolian 
Plateau using receiver functions and determined the shear 
velocity for the region to be between 3.5 and 3.8 km/s. In 
their study on uppermantle discontinuities, Özacar et al. 
(2008) calculated the P-wave velocity (Vp) in the crust 
at the depths of 0–40 km beneath the Eastern Anatolian 
Plateau as 6.30 km/s. Tezel et al. (2013), using data from 
120 broadband stations, investigated the Moho thickness 
and shear-wave velocity structure in the uppermantle 
beneath Türkiye.  Their findings revealed a low-velocity 

layer situated at depths between 20 and 40 km, attributed 
to the presence of volcanic structures. In eastern Türkiye, 
the Moho depth varies between 34 and 52 km, consistent 
with the findings of Vanacore et al. (2013). 

Govers and Fichtner (2016) conducted a study on 
regional full-waveform tomography to image  the crust 
and uppermantle of Anatolia. They observed ultraslow 
velocities (≤ 4.3 km/s) beneath parts of western and central 
Anatolia, as well as beneath most of eastern Anatolia. Oruç 
and Sönmez (2017) investigated the lithospheric structure 
of Eastern Anatolia and its adjacent areas, encompassing 
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the northern portion of the Arabian platform. Through 
a comprehensive analysis and modelling of Bouguer 
anomalies, their findings indicate that the average depths 
of key geological features in the study area are constrained 
as follows: the volcano-sedimentary layer at 7 km and the 
Moho depth at 39 km. The outcomes of this study closely 
align with the findings of the referenced investigation. 
Specifically, in our study, we repositioned the mainshock 
of the 2011 Van earthquake, adjusting its initially recorded 
depth range from 6-7 km to a revised depth of 21 km. 
This finding aligns with a coseismic surface deformation 
analysis conducted through interferometric synthetic 
aperture radar (InSAR), indicating the potential for 
rupture down to a depth of 25 km within the middle crust. 
This affirmation underscores that the Turkish–Iranian 
Plateau in this region possesses sufficient strength to 
experience rupture in large earthquakes despite extensive 
volcanism with elevated crustal temperatures and an 
unusually hot uppermost mantle, as noted by Fielding et 
al. (2013).

9. Conclusion
The analysis reveals that the newly established 1-D velocity 
model for Lake Van includes an upperlayer of the volcano-
sedimentary basin around 6 km in thickness, exhibiting 
P-wave velocities ranging from 3.88 km/s to 4.86 km/s (see 
Table 2). Between depths of 6 km and 12 km, there is a 
gradual increase in velocity, ranging from 5.22 km/s to 5.55 
km/s at 12 km. These values align with seismic velocities 
commonly associated with the crystalline uppercrust. At 
depths of 12 km and 24 km, there is a notable change in Vp 
seismic velocities, ranging from 5.55 km/s to 6.38 km/s. 
Between depths of 24 km and 39 km, there is a gradual 
increase in seismic velocities, ranging from 6.38 km/s to 
6.67 km/s. Additionally, the volcano-sediment thickness 
spans from 0 to 6 km, aligning with values comparable 
to the global sediment map determined by seismic data 
(Laske et al., 2013). Our observations reveal a Moho depth 
of approximately 39 km, a measurement consistent with 
the documented range of crustal thicknesses in Eastern 
Anatolia. Previous studies employing receiver function 
and seismic tomography methods have reported crustal 
thicknesses spanning from 30 to 55 km in this region.  The 
computed station corrections and the depth distribution 
of the new aftershock locations, derived from the updated 
crustal velocity model, validate the improvement in the 
accuracy of aftershock locations (Figure 18). Our analysis 
led to the conclusion that the seismogenic zone in this 
region does not extend beyond a depth of 25 km. After 
conducting numerous tests and trial solutions, a 1-D 
S-wave velocity model was obtained by optimizing the VP/
VS ratio (Table 2). In the uppermost layer, the high values 
may suggest the presence of fluids, while the deeper high 

VP/VS ratios may be attributed to the influence of magma. 
For a further analysis of VP/VS ratios, other complementary 
data and analyses, such as 3-D seismic tomography studies, 
may be necessary to obtain.  The main contribution of our 
study is the establishment of a reliable 1-D velocity model of 
the Lake Van region. This model is essential for improving 
the accuracy of earthquake location assessments. The 
recently developed 1-D velocity model will enable the 
determination of accurate earthquake locations in this 
region and serve as a foundational velocity model for 
future 3-D seismic tomography studies.
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