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Abstract: The Poisson upward continuation of gravity field functionals, typically given on the Earth’s irregular topography with limited
spatial extent, necessitates some proper treatments due to the theoretical requirements. This study reviews the Poisson theory and
investigates a more rigorous methodology for the numerical solution of the spherical integral equation by addressing many issues such
as spherical-Earth model implementation, far-zone effect, Poisson kernel modification, and suitable ground data reduction scheme. We
first explore the far-zone effect and search for an optimal near-zone spherical cap radius above which the truncation error is negligible.
We then compare different variants of remove-restore technique with a modified Poisson kernel to upwardly continue the ground gravity
field data to predefined height levels close to the Earth’s surface. Different combinations of long- and short-wavelength contributions are
studied extensively. Numerical experiments have been performed using simulated ground gravity anomaly and gravity disturbance data
synthesized from ultrahigh-degree global geopotential model (GGM). Numerical results show that the far-zone contribution may reach
up to several milligal levels and should be taken into consideration when the cap size radius is less than 1° for the upward continuation
height levels between 3000 m and 5000 m above the sea level. Among the various solutions, the best agreement between the Poisson
upward-continued ground data and its synthetic counterpart has been obtained when the gravity field data input directly into the
Poisson integral is reduced both for GGM and residual terrain model (RTM).

Key words: Upward continuation, spherical Poisson integral, kernel modification, ground gravity anomaly, far-zone effect, remove-

restore

1. Introduction

Recent advances in many engineering fields have enabled
geoscientists to measure the Earth’s gravity field with
unprecedented accuracy from crust to exosphere using
modern instruments such as ocean floor, borehole,
shipborne, land, airborne and satellite gravimeters
(Smith, 1950; Jageler, 1976; Torge, 1989; Sasagawa et al.,
2003; Hinze et al., 2013; Sandwell et al., 2014; Vanicek
and Kingdon, 2015). Because the gravity information is
generally not required at the measurement locations in
most phases of the data processing, upward or downward
continuation is applied to compute corresponding gravity
values at different height levels in order to compare or
merge distinct types of gravimetry data or to smooth/
enhance the regional gravity field (Courtillot et al.,1978;
Blakely, 1995, Fedi et al., 1999; Kern, 2003).

There are various deterministic and stochastic
numerical approaches in the literature to upward/
downward continue or combine heterogeneous potential
field data at varied height levels, such as least-squares
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collocation (Hwang et al., 2007; Yildiz et al., 2017; Simav
et al., 2020; Willberg et al., 2020), least-squares spectral
combination (Sjoberg, 1981; van Gelderen and Rummel,
2001; Kern etal., 2003), spherical harmonic analysis (Smith
etal., 2013; Qu et al., 2021), radial basis functions (Li et al.,
2022), analytical upward/downward continuation (Moritz,
1980; Huang, 2002), and Poisson’s integral methods (Cruz
and Laskowski, 1984; Novak and Heck, 2002; Alberts and
Klees, 2004; Guo and Tao, 2020).

Continuation problem is the solution of the well-
known first boundary value problem of the potential
theory, named also Dirichlet’s problem, which simply
takes the Earth’s gravity field data on the boundary surface
as input and predicts the corresponding values outside the
surface. If the shape of a boundary is a spherical surface,
then the Dirichlet’s problem can be solved by means of
spherical harmonics. Alternatively, an explicit solution of
Dirichlet’s problem for the exterior of the sphere can be
expressed in terms of Poisson’s integral. Given a harmonic
function V(R,Q') =V(R,¢',A") on the surface of a
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geocentric sphere with radius R, the values of the function
outside the sphere V(r, Q) = V(r, ¢, 1) can be computed
by Poisson’s upward continuatign integral formula as
follows with an abbreviation T dQ’ representing the
integration over the sphere (Heiskanen
and Moritz, 1967)

whole *¥

1 1
V(r,Q) =EL, K(r,,R)V(R,Q)dQ = .

/2 21
f K(r, Y, R)V(R,Q)cos p'dp'dA
@'=—m/2 A'=0

where () and ' are the solid angles denoting the
spherical latitudes and longitudes of computation (¢, 4)

and integration points (¢’,1"), respectively. r is the
geocentric radius of the computation point outside the
sphere, i.e., r>R. The well-known Poisson kernel
function K(r,y,R) is expressed as (Heiskanen and
Moritz, 1967):

K(rp,R) = 20 @)
where L and 1 are the Euclidean and angular distances,
respectively, between a computation point outside the
sphere and integration point on the sphere.

When the function is known above the surface and its
corresponding values on the sphere are sought, we face
the problem of inverse Poisson or Poissons downward
continuation. By definition, upward continuation behaves
like a low-pass filter and tends to smooth the details
of potential field data. In exploration geophysics, this
transformation reduces the effect of shallow bodies and
accentuates anomalies caused by deep sources. On the
other hand, downward continuation clearly amplifies
the shortest wavelengths of measured data. It enhances
small-scale sources and improves their spatial resolutions.
From computational point of view, the Poisson’s upward
continuation is a direct or forward problem in contrast to
Poisson’s downward continuation, which is one of the ill-
posed inverse problems of potential theory whose solution
may not be unique and stable (Courtillot et al., 1978;
Schwartz, 1978; Blakely, 1995).

While the basic theory behind Poisson’s upward
continuation is relatively simple and straightforward
compared to the downward continuation procedure, there
are some issues that need be considered in implementing
the integral formula. According to Eq. (1), potential field
data, e.g., gravity anomaly or gravity disturbance, should
be given on the level surface of a geocentric sphere and
integration should be extended over the entire globe.
However, gravity measurements are typically performed
on the undulating surface of Earth’s visible and irregular

topography. Moreover, gravity measurements are often
limited in their spatial extentand not continuously provided
over the entire Earth. Therefore, some assumptions
and approximations have to be applied for the practical
implementation of Poisson’s upward continuation.

In most geoscience applications regarding the potential
field continuation, the field data given on an undulating
surface are first preprocessed to somehow meet the
horizontal level surface condition. The preprocessing
methods include smoothing, filtering or detrending in
frequency or spatial domains. Moreover, the anomalous
data are usually reduced for high-frequency topographic
variations by simple or refined Bouguer correction since
it is distorted by the surrounding terrain. Afterward, the
Poisson upward continuation formula is applied using
filtered and/or reduced data, generally relying on flat-
Earth or planar approximation in space domain, as well as
in spectral domain based on Fourier techniques (Schwarz
et al., 1990; Forsberg, 1998). The far-zone contribution or
truncation error is mostly ignored, at least for local and
regional studies (Guo and Tao, 2020).

In this study, point-to-point discrete Poisson’s upward
continuation ofground datahasbeenrevisited to investigate
a more rigorous methodology for the numerical solution
of the spherical integral equation by addressing spherical-
Earth model implementation, far-zone effect, Poisson
kernel modification, and suitable ground data reduction
scheme. Discretization of the integral formula in the near-
zone, far-zone contribution and kernel modification,
remove-restore procedure, i.e., reducing the ground gravity
field data of the long- and high-frequency gravity field
variations using global geopotential and digital elevation
models has been reviewed. Different combinations of
long- and short-wavelength contributions are studied
extensively. Three topographic reduction techniques, i.e.,
spherical Bouguer, residual terrain model (RTM), and
Helmerts second method of condensation, are applied to
model the short-wavelength topographic gravity effects.
Synthetic grid data with a resolution of I’ x 1" at various
height levels close to the Earth’s surface are generated
from an ultrahigh-resolution global geopotential model
(GGM) complete to degree and order (d/o) 5540 within a
test region covering one of the roughest parts of Tiirkiye.
The upward-continued synthetic ground gravity field data
are compared to the spherical harmonic model to identify
the best discretization methodology and to assess the
performance of kernel modification. Some freely available
computer programs are developed for the evaluation of
the abovementioned computations. Section two of the
manuscript reviews the methodology and presents the
expressions for point-to-point discrete spherical Poisson’s
upward continuation of ground gravity anomalies and
disturbances. Section three describes the study region and
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explains the data used in the numerical investigations.
Section four presents and evaluates the results. Finally, the
summary and conclusions are provided in the last section.

2. Review of the basic theory

The Poisson upward continuation integral for any
harmonic function expressed in Eq. (1) is replaced by
summation when it is to be discretized in practice but with
two further modifications due to the lack of global data
coverage. In the first modification, the integration domain
is divided spatially into near- and far-zones. The near-zone
is the area where local or regional data that contribute the
dominant part of the integral value are available. It is
routinely chosen as spherical cap with an angular radius of
Yo The far-zone is the region over the remainder of the
sphere, merely accounting for a small part of the integration
value. In the second modification, the local or regional
gravity data inside the near-zone is split into low-,
medium-, and high-frequency spectrum where the
remove-restore step together with the Poisson kernel
modification is applied.

2.1.Near-zone contribution: discrete Poisson integral
The integral equation in Eq. (1) can be rewritten for the
gravity anomaly data Ag(R,Q') given on a geocentric
sphere and further developed for the near- and far-zone
contributions as follows (Huang, 2002; Alberts and
Klees,2004; Li et al., 2022):

R
Ag(T,Q) = m

(3)
<f K(r,y,R) Ag(R,Q")dQ" + f
2

Q!

K(@r, ¥, R) Ag(R, Q’)dQ’)

where ()¢ and Q' — Q) represents the near- and far-zone
regions, respectively. The same equation is also valid for
the gravity disturbance §g by altering the terms Ag(R, Q")
and Ag(r,Q) with §g(R,Q') and &g (r, Q), respectively.
For brevity, equations will only be provided for the
gravity anomaly hereinafter, as the formulas for gravity
disturbance are analogous. The first integration on the
right-hand side of Eq. (3) is the near-zone contribution
where the Poisson upward continuation integral is applied.
The integral equation has no analytical solution; therefore,
numerical evaluation of the upward continuation requires
the discretization of the problem.

Given angular grid of points at the surface of a
geocentric sphere and the near-zone cap size Yo, it remains
to evaluate the system of linear equations.

M (i=12-,N)
Ag(r, Q) = Z By Ag(R, ) 4)
= G =12-,M)
where the entries of the matrix B are explicitly derived
in Martinec (1996). However, for completeness, it is
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given in the below equation. While the upper limit of
the summation M represents the total number of roving
points within the near-zone, N stands for the number of
computation points.

R , A
s K(ri,lpi,-,R) cos p;ApAL if Yij<yPoandi #j

R ] L
(S)Bij = r_idl(rirlpOJR) - Z;’I=1,j¢iBij if Yy <Poandi=j

0 if ¥ij > o

d'(ry o, R) = 5[5 (1 - 25| ©

i L(ripo,R)

2.2. Far-zone contribution: truncation error

The second integration on the right-hand side of Eq. (3)
is the far-zone contribution also called truncation error
that will be hereinafter referred to as Fyq (7, Q). The far-
zone contribution can be evaluated from a GGM using
the harmonic expansion technique given below (Huang,
2002):

FAg(rr Q) = %2%’:2(” - 1)Qn(H' lpO) Zn =-n Tn,myn,m(ﬂ)’ (7)

where Y;, ;,, (Q) and Ty represent the surface spherical
harmonic functions and their fully normalized coeflicients
with even degree zonal reference values are subtracted,
respectively. V is the average value of gravity that can be
computed using a simple approximation GM /R? where
G M isthe geocentric gravitational constant. The coefficients
Q,(H,) are denoted as truncation coefficients which
can be written as (Heiskanen and Moritz, 1967):

Qn(H, o) = J,, K(r,p, R)Py(cos¥) sinyp dyp. (®)

In the above equation, H represents the point height
above the reference sphere, ie,, H= r — R, and Py is
the Legendre polynomial of degree n. The truncation
coefficients can be computed either by a numerical
integration or using some recursive algorithms (Paul,
1973).

2.3. Remove-restore and Poisson kernel modification

It has been a common practice to use a frequency division
model in the gravity field modelling based on the remove-
restore technique (Forsberg and Tscherning, 1981). The
approach involves three consecutive steps. In the first
step, i.e., the remove step, the ground gravity anomaly
data are reduced by long-wavelength gravity field signal.
Because the satellite gravimetry provides homogenous
long-wavelength information, the low-frequency part
of the gravity field data is derived from a satellite-only
model. High-frequency part due to the topography and
the atmospheric effects can also be removed from the
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terrestrial data in this step. The remove step results in
residual gravity field data, which are then input directly
into the discrete Poisson integral in Eq. (4). In the second
step, the residual gravity field data are upward-continued.
In the final step, i.e., the restore step, the removed part is
recomputed at the upward continuation level and added
back to the output computed in the second step.

The residual gravity anomaly data are band-limited
from the spectral point of view. However, the standard
Poisson kernel in Eq. (2) contains full spectrum; therefore,
it should be modified before the computation of near-
zone contribution. The standard Poisson kernel can be
expanded into the spherical harmonic series as follows
(Heiskanen and Moritz, 1967):

K, R) = Sio@n+ 1) (5 Bueosy) ©)

Frequency division can also be applied to the kernel
function to obtain the low-frequency part K; and the
medium- to high-frequency part Kmnn. Both kernel
functions can be expressed as follows, where Ls represents
the maximum degree of expansion and/or modification.

K(T;w; R) = KI(TJ/J; R) +K‘mh(r' lpl R) (10)
KGR = 25,2+ 1) (2)" By (cos ) (11)

K (9, R) = Sipga@n 4 1) (5) RaCeos) = K, R) —Kirp, ) (12)

The kernel function Kmn is called spheroidal Poisson
kernel (Wong and Gore, 1969) which can act as a filter to
eliminate the long-wavelength effects in the residual
gravity field data. However, among various stochastic and
deterministic kernel modifications proposed in the
literature (Featherstone et al., 1998; Featherstone, 2003),
the modified spheroidal Poisson kernel using Vani¢ek and
Kleusberg’s (1987) modification method is one of the most
commonly applied in practice. It is clear from the above
equations that the far-zone effect from degree Ls + 1 to oo
is still missing in the solution. The modified kernel can
minimize this by introducing the coefficients tn(H,%0)
(Vanicek et al.,, 1996). The modified spheroidal Poisson
kernel is written as:

K (e, R) = K(r, i, R) = 550 22 £, (H, o) Pa(cos ) (13)

where the modification coefficients t,,(H,1,) are obtained
by minimizing Eq. (14), which can be rewritten as a system
of linear equations as given in Eq. (15) (Novak et al., 2001).

min {fl;JT() [K(r,%,R)]?siny dw} (14)

TrLo 5 [y Pa(cos ¥) Pr(cos)singy dp to(H,po)=Qu(H, o) (15)

The modified spheroidal Poisson kernel K3 is used
in this study instead of the standard Poisson kernel K
to evaluate the near-zone contribution when the long-
wavelength reduction is applied (see Sections 4). The d*
function given in Eq. (6) for the standard Poisson kernel
can be rewritten as follows for the modified spheroidal
Poisson kernel.

d"MS(ry, o, R) = %[T’:R ( - L(:_i;R R)) - —tO(Hz'w") (1 —cospy) +

13 Yo, (16)
ey 25 6 (H, o) Ry (cos o)
R (€05 ) = 57— [Prs1(cos o) = P (cos 1ho)] 17)

2.4. Effect of topographic masses

After removing the long-wavelength gravity field signal
from the terrestrial gravity anomaly data, there remains
medium- to high-frequency signals in the residual
data. The high-frequency part due to the surrounding
topography can also be removed from the residual data to
smooth the field. The removed effects of the topographic
masses are then added back at the upward continuation
levels in the restore step.

Ground gravity anomalies or disturbances are given
on the Earth’s surface. However, the Poisson geometry
requires that the data to be upward-continued refer to
points on the surface of a geocentric sphere. It is a well-
known fact that the difference between the undulating
surface gravity anomaly and the level surface anomaly
on the sphere increases as the roughness of the field
increases; in other words, the rougher the field, the larger
the difference. Conceptually, the ground gravity anomalies
would be analytically continued to the surface of sphere to
obtain level surface anomalies which requires the vertical
gradients of the field. However, downward continuation
of surface gravity anomalies to a level surface has some
theoretical problems. The downward continuation is
classified as an ill-posed problem due to the fact that
a comparatively smooth function of the gravity field is
utilized to obtain a more detailed and rougher function.
A small high-frequency error in the input gravity field
data will be amplified, which will intrinsically lead to a
large output error when continued downwards. However,
the problem of high-frequency irregularities in the field
reduces in the case of a smooth anomaly field. If the Earth’s
visible topography is physically regularized in some way
in which the high-frequency components of the gravity
signals are smoothed and dampened by compensating
the topographical masses, the field can then be upward or
downward continued less problematically by the Poisson
integral (Martinec, 1996).

There are several reduction techniques in the literature,
each treating the topography in a different manner. They
differ from each other depending on how the topographical
masses outside the reference sphere are dealt with (Tziavos
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and Sideris, 2013). Among them, we will study the spherical
Bouguer (Vanicek et al., 2004) reduction, RTM reduction
(Forsberg and Tscherning 1981; Forsberg, 1984), and
Helmert’s second method of condensation (Vanic¢ek and
Martinec, 1994).

The Bouguer reduction removes all the topographic
masses above the geoid or the reference sphere. On the
other hand, the RTM reduction scheme introduced by
Forsberg (1984) uses a mean elevation surface as a reference
instead of geoid. This mean elevation can be computed
by low-pass filtering the local terrain heights or from the
spherical harmonic expansion of Earth’s topography using
the fully normalized height coefficients. The topographical
masses above this mean elevation surface are removed and
masses are filled up below this surface. The topographical
effect on gravity at a computation point A*(7, Q) for both
types of reduction methods can be expressed as follows
with a slight change in the lower limit of the innermost
integration:

¢ _ /2 27 T2
A (T, Q) =-G f(p’:—n/z fl’:() J‘r’='r1 (18)

pt((l)', AI' r/) 3L_1;1;,-1/),T’) r’ZCOS (p'd(p'd)l'dr'

where G is the Newton’s gravitational constant and
pt(e", A, r") = pt(Q/,r") is the topographic density
at the integration point generally assumed to be constant
pt =2670 kgm_3. The L™ 1(r,y,7')/0r term represents
the radial derivative of the reciprocal spatial distance.
The lower limits of the innermost integration are equal
tor; = Rand 1 = R+ H, (') for the spherical
Bouguer and RTM reductions, respectively. The upper
limit 7 is equal to the sum of reference sphere radius and
the integration point height, i.e., 7, = R + H(Q") for both
reduction schemes.

The volume integral in Eq. (18) can be evaluated in
space domain by mass discretization using elementary
geometrical bodies such as polyhedra, prisms, tesseroids
and point masses (Nagy et al., 2000; Wild Pfeiffer, 2008;
Tsoulis, 2012; D’Urso, 2013; Grombein et al., 2013; Uieda
et al., 2016). The superposition principle can be applied
to sum up the effects of all individual mass bodies.
Alternatively, the triple integral can also be evaluated
numerically using the quadrature methods (Novak, 2000;
Simav and Yildiz, 2021).

The Helmert’s second method of condensation is one
of the most common gravimetric reduction schemes
used in geodesy. In this scheme, the topographical
masses are condensed on the geoid surface as a surface
layer. The direct topographical effect (DTE) on gravity
in this reduction method is computed by subtracting the
attraction of condensed topographical masses A (r,()
from the attraction of spherical topographical shell
At (r, Q) (Vanicek and Martinec, 1994) as follows:
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DTE(r,Q) = A(r,Q) — A% (r,Q) (19)
- AL (r, P, R
A% (r,Q) = GR? [ ot =SB cospragrar @)
@'=—m/21'=0

The 0 (@', ') term in the above equations represents
the surface density of the topographical condensation
layer. It should be noted that the attraction of spherical
topographical shell At(r, Q) is a volume integral, whereas
its corresponding condensed version A (r, () is a surface
integral.

3. Study area and data description

Numerical investigations have been carried out in a test
region on the southwestern coast of Tiirkiye bounded by
a quadrangle area between 36°N-37°N and 29°E-30°E.
It embodies both land and sea parts containing diverse
topography of hills, mountains, and low-lying deltas, as
well as relatively deep-sea trench where the topographic
and gravity field variations are highly complex. Figure 1
shows the surrounding topography of the study area, as
well as the boundaries of computation points and the near-
zone (see Section 2.1).

The ultrahigh-degree XGM2019¢ combined GGM
represented through spherical harmonics up to d/o
5540 (Zingerle et al., 2020) has been utilized to generate
synthetic grid of 1’ x 1’ resolution gravity anomaly and
disturbance data on the geoid and Earth’s surfaces as well
as at four different height levels close to the Earth’s surface,
i.e., 3000 m, 3500 m, 4000 m, and 5000 m above sea level.
While the ground gravity field data are used as inputs to
discrete Poisson upward continuation computation, the
gravity anomalies and disturbances at aforementioned
height levels are employed to verify the performances of
upward continuation results. The synthetic gravity field
data on the Earth’s surface and four height levels have
been computed applying the standard series expansion of
spherical harmonic synthesis based on the extended-range
arithmetic (Bucha and Janak, 2014). Figure 2 displays
the synthetic gravity anomalies on the geoid and Earth’s
surfaces, respectively, within the near-zone of 5° x 5°
quadrangle area bounded by 34°N-39°N and 27°E-32°E.
The synthetic gravity anomalies of the computation
points at the four height levels are shown in Figure 3. The
descriptive statistics of the synthetic gravity anomaly (Ag)
and gravity disturbance (8g) data distributed at a constant
spacing of 1’ x 1’ within the computation and near-zone
areas are presented in Table 1.

One of the latest releases of satellite-only GGM, namely
GOCOO06s (Kvas et al. 2021), has been used in the remove-
restore procedure to reduce the long-wavelength gravity
field signal and to evaluate the far-zone contribution of
Poisson’s upward continuation (see Section 2.2). Both
combined and satellite-only GGMs can be obtained
from the International Centre for Global Earth Models
(ICGEM) website at http://icgem.gfz-potsdam.de.
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Figure 1. Topography of the study area. While the red quadrangle bounded by
36°N-37°N and 29°E-30°E represents the computation area, the black quadrangle
bounded by 34°N-39°N and 27°E-32°E covers the near-zone.
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Figure 2. The synthetic gravity anomalies within the near-zone derived from xGM2019e ultrahigh-
resolution GGM (a) on the geoid surface, (b) on the Earth’s surface. Units are in mGal.
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Figure 3. The synthetic gravity anomalies at four exterior height levels close to the Earth’s surface. (a) 3000 m above
the geoid, (b) 3500 m above the geoid, (c) 4000 m above the geoid, (d) 5000 m above the geoid. Units are in mGal.

We exploit three freely available terrain data throughout
the study to determine the heights of ground points
above the sea level within the study area and to evaluate
the terrain gravity effects (see Section 2.4). The high-
resolution multi-error-removed improved terrain digital
elevation model (MERIT DEM) with spatial resolution of
3” x 3” without bathymetry information (Yamazaki et al.,
2017) has been used to define ground point heights and
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to compute topographic effects close to these points. The
second terrain data we have employed is the SRTM15+
global bathymetry and topography model (Tozer et al.,
2019). While the MERIT DEM model has no global
coverage and is limited to +60° latitudes, the SRTM15+
covers the whole globe with a spatial resolution of 15”7 x
15”. The original SRTM15+ data is resampled to 15’ x 15’
by box averaging method and then the resulting data is



SIMAV et al. / Turkish J Earth Sci

Table 1. Descriptive statistics of the synthetic gravity anomaly (Data Type: Ag) and gravity disturbance (Data Type: 8g) data distributed
at constant spacing of 1’ x 1" arc-min. The superscripts (1) and (2) in the first column denote the spatial extend of the data coverage.
While (1) covers 5° x 5° quadrangle area bounded by 34°N-39°N and 27°E-32°E (e.g., near-zone area), (2) covers 1° x 1° quadrangle
area bounded by 36°N-37°N and 29°E-30°E (e.g., computation area). Units are in mGal.

Data

Location of gravity field data type Min Max Mean Std

Ag -237.36 454.12 -17.29 91.43
' On the geoid surface (mean sea level)

og -234.10 462.65 -10.20 94.86

Ag -237.36 233.95 -18.62 87.72
' On the Earth’s surface (ground data)

og -234.10 242.12 -11.54 91.22

Ag -145.24 227.94 40.41 62.67
3000 m above the geoid

og -141.24 236.17 47.80 63.86

Ag -143.15 209.22 39.51 61.11
23500 m above the geoid

og -139.12 217.41 46.90 62.31

Ag -141.12 193.23 38.63 59.76
24000 m above the geoid

og -137.08 201.38 46.01 60.96

Ag -137.26 167.48 36.93 57.48
25000 m above the geoid

og -133.17 175.58 44.29 58.69

employed to compute topographic gravity effects of the
farther zone. The third terrain dataset utilized in the study
is the DTM2006.0 spherical harmonic expansion of Earth’s
topography made available by the EGM2008 development
team (Pavlis et al. 2007). It comprises fully normalized
height coefficients up to d/o 2190. The DTM2006.0 model
is used for the determination of reference topography to
compute RTM reduction.

4. Numerical investigations

We have performed several numerical analyses on
the evaluation of discrete spherical Poisson upward
continuation integration in the test region. We first
investigate the optimal degree of GGM and angular radius
of the near-zone boundary by quantifying the maximum
far-zone contribution. We then test our in-house software
by continuing the gravity field data given on the geocentric
sphere (~geoid surface) to four exterior height levels
close to the Earth’s surface and compare the results with
their synthetic counterparts obtained from ultrahigh-
resolution xGM2019e model. We finally study the effect of
the remove-restore procedure for the continuation of the
ground data which comprises the removal and restoring of:
(i) long-wavelength information together with the Poisson
kernel modification, (ii) long- plus the high-frequency

parts due to the topography based on spherical Bouguer
reduction, (iii) long- plus the high-frequency parts based
on RTM reduction, and finally (iv) long- plus the high-
frequency parts based on the Helmert’s second method of
condensation. The flowchart of the employed reduction/
restoring methodology is shown in Figure 4.

4.1. Optimal cap size determination of near-zone

It has been previously stated that the far-zone contribution
or the truncation error is routinely evaluated through a
GGM. Its magnitude changes depending on the spherical
radius of the near-zone cap, upward continuation height
level, maximum degree, and corresponding accuracy
of GGM (see Section 2.2). The truncation error is small
enough to be discardable provided that the cap radius is
sufficiently large. However, the cap size is generally chosen
to be as small as possible in practice due to the lack of
available data outside the study area and to reduce the
computational cost.

We determine the optimal angular radius of the near-
zone experimentally by computing maximum Fag (7, Q)
with monotonically increasing cap radius and degree
of GGM. Eight different cap radii from 0.25° to 2° with
an increment of 0.25° have been tested. The spherical
harmonic coefficients of GOCOO06s satellite-only GGM
are used up to degrees of 20, 40, 60, ..., 260, 280, 300 with
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Figure 4. Flowchart of the remove-restore methodology.
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an increment of 20. For each cap radius and maximum
degree of GGM, we compute the far-zone contribution
at each upward computation point at 3000 m height level
above the sea level using the Egs. (7) and (8). We then
determine the maximum value of FAg (r,£)) and plot its
value in the corresponding color map cell (Figure 5). We
perform the same computations and produce similar color
maps for the other upward continuation height levels, e.g.,
3500 m, 4000 m, and 5000 m.

It is clear from Figure 5 that the far-zone contribution
must be taken into consideration when the cap radius is
chosen less than 1° for the upward continuation height
levels considered in this study. It could reach up to 12
mGal when the cap size is about 0.25° for the height level
of 5000 m. Moreover, the maximum degree of the GGM
should not be less than 220 for Yo = 0.25°. It should be
at least 120 for the radius of 0.50°, and at least 80 between
0.75° < Yo < 1°. The far-zone effect is negligibly small for
the near-zone cap size radius of more than 1.5°. We decide
to use Yo = 2° for our further analysis to reduce the
computation time and to ignore the far-zone effect.

H=3000 m

© 180t

—_
o]
(=]

Max. Degree

D
(e}

20

025 05 075 1 125 15 1.75 2
H = 4000 m

025 05 075 1 125 15 1.75 2
Near-Zone Cap Radius [°]

4.2. Upward continuation of unreduced gravity field data
on the geoid and on the Earth’s surfaces

The unreduced synthetic gravity anomaly and disturbance
data on the geoid surface and on the Earth’s topography
derived from xGM2019e ultrahigh-resolution GGM
within the near zone of g =2° has been spherically
upward-continued to exterior height levels based on Egs.
(4-6) to test the performance of the in-house software and
to verify the Poisson’s theory of the continuation.

The first data columns (#1) of Tables 2 and 3 present the
descriptive statistics of the differences between the Poisson
upward-continued gravity field data on the geoid surface
and its synthetic counterparts for the gravity anomaly
(Ag) and for the gravity disturbance (8g), respectively.
It is clear that the agreement is highly satisfactory
considering the commission and omission errors implied
by the xGM2019e model. The standard deviation of the
differences at four upward continuation height levels is
around 0.05 mGal for both gravity field data with extreme
values never exceeding 0.63 mGal. The comparison results
can successfully prove the theoretical expression in Eq. (1)
and confirms the effectiveness of the in-house software.

H=3500m
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Figure 5. The maximum far-zone effects in the study region depending on the near-zone cap size
radius, maximum degree of GGM, and upward continuation height levels. Units are in mGal.
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Table 2. Descriptive statistics of the differences between Poisson upward continued gravity anomaly (Ag) data and their synthetic
counterparts obtained from ultrahigh-resolution xGM2019e model. #1: Unreduced Ag on the geoid surface, #2: Unreduced Ag on the
Earth’s surface, #3: GGM™ Reduced, #4 Spherical Bouguer Reduced, #5: GGMY + Spherical Bouguer Reduced, #6: GGM* + RTM
Reduced, #7: GGM® + DTE (Helmert 2" Cond.) Reduced. Units are in mGal. (S: Standard Poisson Kernel, M: Modified Poisson Kernel).

Input data to Poisson Integral:  #1 #2 #3 #4 #5 #6 #7
Upward cont.
height level Poisson kernel applied: N N M S M M M

Min: -0.31 -73.15 -69.31 0.75 1.03 -9.28 -36.73

Max: . 2 10. . . 26. 10.2
3000 m above ax 0.09 5.20 0.09 37.08 37.68 6.60 0.27
the geoid surface

Mean: -0.13 -5.50 -3.64 6.63 7.49 0.75 0.71

Std: 0.04 8.49 7.88 3.93 3.88 2.37 5.01

Min: -0.34 -63.32 -59.91 0.98 1.21 -5.88 -30.62
3500 m above Max: 0.04 2.69 7.53 25.27 25.97 14.66 9.51
the geoid surface

Mean: -0.15 -5.48 -3.64 6.75 7.75 0.74 0.70

Std: 0.05 7.57 7.00 3.59 3.54 1.79 4.44

Min: -0.39 -55.32 -52.33 1.12 1.39 -3.81 -30.62
4000 m above Max: 0.00 1.38 6.21 18.97 19.77 8.41 9.51
the geoid surface

Mean: -0.17 -5.46 -3.63 6.86 8.01 0.72 0.70

Std: 0.05 6.83 6.32 3.42 3.37 1.48 4.44

Min: -0.48 -43.33 -41.11 1.41 1.65 -2.44 -22.12
5000 m above Max: -0.05 -0.27 5.10 13.40 15.34 5.32 7.90
the geoid surface

Mean: -0.22 -5.41 -3.60 7.07 8.50 0.68 0.66

Std: 0.06 5.74 5.36 3.24 3.23 1.20 3.59

On the other hand, the original unreduced synthetic
ground gravity field data (for example, see Figure 2b for
gravity anomaly) upward-continued to the same exterior
height levels produce the worst comparison results. The
second data columns (#2) of Tables 2 and 3 present similar
descriptive statistics to that in case #1. Figure 6 shows the
spatial variations of differences between Poisson upward-
continued unreduced ground gravity anomaly data and
its synthetic counterpart. If the ground anomalous data
is to be input directly in the Poisson integral without any
reduction applied, then the upward values is systematically
biased with a mean of about 5.5 mGal in our experiment.

Maximum differences are observed particularly above
the rugged terrains on the central part. The differences for
the lowest continuation height level can reach up to 73
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mGal, while they are close to zero above the flat parts of
the study region, especially directly above the sea surface.
Not surprisingly, it can easily be inferred from the results
that the higher the upward continuation height level, the
lower and better the statistics and variability we have. We
can conclude that long- and short-wavelength gravity
signals must be accounted for when upward continuing
the ground anomalous gravity field data.

4.3. Upward continuation of reduced ground gravity
field data

Several combinations of long- and short-wavelength
reductions have been applied to the ground gravity field
data, used as input to the evaluation of the Poisson integral,
to produce various solutions for comparison purposes.



SIMAV et al. / Turkish J Earth Sci

37.0°N 10

36.0° N
29.0'E

37.0°N |

365 N |

36.0° N
29.0°E

[mGal]
30.0 E

295 E

37.0° N

[mGal]

295 E 300 E

10

-60

-70

[mGal]
30.0 E

36.0 N
29.0'E

295 E

Figure 6. Spatial distribution of the differences between Poisson upward continued unreduced ground gravity
anomaly data and its synthetic counterpart (see the data column #2 of Table 2). (a) 3000 m above the geoid, (b) 3500
m above the geoid, (c) 4000 m above the geoid, (d) 5000 m above the geoid. Units are in mGal.

In the first analysis, we have reduced the input ground
anomalous data only for long-wavelength effects computed
on the Earth’s surface (ES), i.e., GGM®™ term in Tables 2
and 3. We have then upward continued the reduced or
residual data to the corresponding height levels, restored
the removed effects at the new levels, and compared
the solutions with the synthetic gravity field data. The

GOCOO06s satellite-only GGM has been used to compute
the removed and restored long-wavelength gravity field
signals. Several options for the maximum degree of
GGM have been evaluated, (e.g., nG25096S € [20, 40,
60, ..., 260, 280, 300]), but the best results are obtained
with nG9C0065= 300. We have also employed both the
standard and modified spheroidal Poisson kernels (see
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Section 2.3. The statistics of the differences are presented
Tables 1 and 2 (see the data column #3). Although
the contribution of long-wavelength remove-restore
procedure is not clearly distinguishable with those of the
unreduced ground data (see the data column #2 in Tables
2 and 3), the implementation can merely reduce the mean
bias and the standard deviation, but the range between the
extreme values stays similar. It should also be noted that
the differences between the statistics are negligible when
standard or modified Poisson kernel is applied. It is evident
that the sole long-wavelength reduction is not adequate
when upward continuing the ground gravity anomaly or
disturbance data over the rugged terrain.

In the second and third analyses, we have employed
spherical Bouguer topographic reduction. The spherical
terrain effect on gravity from mean sea level to Earth’s
surface has been computed at the locations of near-zone
ground points for reduction purposes and at the locations
of upward continuation points for restoring purposes by
numerically integrating the Eq. (18) using constant density
of 2670 kgm™. To reduce computational costs, cascading
grid resolutions of DEM data have been utilized with
3” x 3”7 in the close proximity of a computation point
up to an extension of 1.5° and coarser resolution of 15’
x 15 for the remainder to the full globe. We have first
reduced the ground anomalous gravity field data only
by spherical Bouguer effect and performed the upward
continuation. While Tables 2 and 3 present the statistics
of the comparisons (see the data column #4), Figure
7 displays the spatial distributions of the differences
regarding the gravity anomalies. There is no doubt that
the application of spherical Bouguer reduction improves
the agreement remarkably. The main variability measures
such as range and standard deviation reduce by an amount
of approximately 50% when compared with those of the
unreduced data. While the minimum values are observed
above the sea and low-lying coastal areas, the maximums
are spotted on relatively higher central and northeast part
of the study area. However, the implementation results
in positively biased solutions with a mean of about 7
m@Gal despite the restoring process. This can be attributed
to the indirect effect introduced by the removal of the
full topographic effect which causes the gravity field to
change due to the mass shifting. The inclusion of the long-
wavelength reduction computed on the geoid surface (GS),
i.e., GGM® term in Tables 2 and 3, does not contribute to
the former solutions. We have added the related statistics
in Tables 2 and 3 (see the data column #5) for the sake of
completeness.

We have tested the GGM® plus RTM mass reduction
scheme in our fourth analysis. For this, we computed the
GGM® from GOCOO06s up to maximum d/o 300, i.e.,

nG0L006S = 300. Subsequently, the reference topography
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surface has been built using DTM2006.0 model again up
to maximum d/o 300. Finally, the RTM effect on gravity
has been calculated by numerically integrating the Eq.
(18) similar to the derivation of the spherical Bouguer
effect, but this time, the lower limit of the innermost
integration has been set to r,=R + Href ({)). The ground
anomalous gravity field data on the Earth’s surface within
the near-zone have been reduced by GGM™ plus RTM,
then upward continued to exterior height levels, and the
removed effects have been restored at the computation
points. Comparisons with the synthetic data exhibit the
best agreement of all the reduction schemes we have
evaluated so far. The data column #6 in Tables 2 and 3
present the comparison statistics and Figure 8 shows the
spatial distribution of the differences. The mean biases are
now reduced below 1 mGal level with standard deviations
of around 1-2 mGal.

The last mass reduction scheme evaluated in the study
is Helmerts second method of condensation. Contrary
to the spherical Bouguer reduction which removes all
terrain masses above the mean sea level, this model
principally replaces the Earths topographical masses
with an infinitesimal condensation layer on the geoid.
This results in the generation of a new gravity field that
closely resembles the original field. Therefore, the indirect
effect stemming from the change in the gravity field is
supposed to be smaller in this reduction scheme compared
to spherical Bouguer. To use this model, the real field
quantities have been first transformed into corresponding
quantities in Helmert space which requires the derivation
of DTE expressed in Eq. (19). We have followed the similar
computational methodology already applied for the
spherical Bouguer and RTM calculations in evaluating Eq.
(18). The so-called Helmertised ground gravity anomaly
and disturbance data also reduced for the long-wavelength
effects have upward continued and compared with the
synthetic data. The last data column #7 in Tables 2 and 3
presents the comparison statistics. It is no surprise that the
mean biases between the Poisson upward continued and
the synthetic reference are the smallest we have obtained
so far due to the modest indirect effect, but the variability
measures are higher than those of spherical Bouguer and
RTM reductions.

We have also attempted to figure out whether the
variability or smoothness of the ground gravity field as
well as its correlation with topographic variations is related
with the obtained upward continuation results. Table 4
presents the variability of the input data used in the discrete
Poisson upward integral in terms of standard deviation and
its correlation with point heights. The unreduced gravity
anomaly or gravity disturbance data on the geoid surface
possesses the highest variability and has the strongest
positive correlation with topographic variations among
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Figure 7. Spatial distribution of the differences between Poisson upward continued reduced-restored ground gravity
anomaly by spherical Bouguer and its synthetic counterpart (see the data column #4 of Table 2). (a) 3000 m above
the geoid, (b) 3500 m above the geoid, (c) 4000 m above the geoid, (d) 5000 m above the geoid. Units are in mGal.

the other input datasets, but the upward continued version
of this data gives the best agreement with the synthetic
data. While the GGM®S reduced data (see data column
#3) or GGM®® + DTE reduced data (see data column #7)
has the least variability and relatively lower correlation

with topography, their upward continued versions are not

compatible with GGM® + RTM reduced data which has
close standard deviation and correlation coefficient to that
of unreduced data on the geoid surface. We could not find
any evidence that smoothing the variability of input data
or eliminating its correlation with topography produce

better results.
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Figure 8. Spatial distribution of the differences between Poisson upward continued reduced-restored ground gravity
anomaly by GGM™ plus RTM and its synthetic counterpart (see the data column #6 of Table 2). (a) 3000 m above
the geoid, (b) 3500 m above the geoid, (c) 4000 m above the geoid, (d) 5000 m above the geoid. Units are in mGal.

5. Summary and conclusion

Discrete spherical Poisson’s upward continuation of ground
gravity field data to the exterior continuation levels close
to the Earth’s surface has been revisited. We have reviewed
the theory and literature, then performed experimental
investigations in the southwest of Tiirkiye using synthetic
data derived from an ultrahigh-degree GGM and using an
in-house software developed in MATLAB environment.
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Because the gravity field data are often limited in
spatial extent in practice, we have first studied the far-zone
effect or truncation error caused by masses outside the
data area. It is concluded that the far-zone contribution
should be taken into account when the near zone cap size
radius is less than 1° for the upward continuation height
levels close to the Earth’s surface. Should the far-zone
effect be incorporated in the upward continuation process,
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Table 3. Descriptive statistics of the differences between Poisson upward continued gravity disturbance (8g) data and their synthetic
counterparts obtained from ultrahigh-resolution xGM2019e model. #1: Unreduced 8g on the geoid surface, #2: Unreduced dg on the
Earth’s surface, #3: GGM™ Reduced, #4 Spherical Bouguer Reduced, #5: GGMY + Spherical Bouguer Reduced, #6: GGM* + RTM
Reduced, #7: GGM® + DTE (Helmert 2" Cond.) Reduced. Units are in mGal. (S: Standard Poisson Kernel, M: Modified Poisson Kernel).

Input data to poisson integral: #1 #2 #3 #4 #5 #6 #7
Upward cont.
height level
Poisson kernel applied: S S M S M M M
Min: -0.40 -73.39 -69.41 0.56 0.94 -9.31 -36.87
Max: -0.01 5.06 10.11 36.88 37.57 26.59 10.25
3000 m above
the geoid surface
Mean: -0.22 -5.62 -3.65 6.51 7.46 0.74 0.68
Std: 0.04 8.51 7.89 391 3.86 2.37 5.02
Min: -0.45 -63.56 -60.00 0.87 1.21 -5.90 -30.76
Max: -0.08 2.53 7.54 25.05 25.87 14.64 9.50
3500 m above
the geoid surface
Mean: -0.26 -5.62 -3.64 6.61 7.73 0.73 0.68
Std: 0.05 7.59 7.01 3.57 3.52 1.79 4.46
Min: -0.51 -55.57 -52.41 1.00 1.39 -3.84 -26.97
Max: -0.13 1.20 6.23 18.75 19.68 8.39 8.86
4000 m above
the geoid surface
Mean: -0.30 -5.61 -3.63 6.70 7.98 0.72 0.66
Std: 0.05 6.85 6.33 3.40 3.36 1.48 4.08
Min: -0.63 -43.59 -41.18 1.25 1.64 -2.46 -22.23
Max -0.21 -0.42 5.11 13.15 15.29 5.31 7.88
5000 m above
the geoid surface
Mean: -0.38 -5.60 -3.61 6.88 8.48 0.67 0.63
Std: 0.06 5.76 5.37 3.22 3.21 1.20 3.60
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Table 4. Variability of the data input to Poisson integral and its correlation with corresponding topographic height. Standard deviations

are given in mGal unit.

Data Column Tables 2 and 3 Description Data Type Std Corr. Coeft.
1 Unreduced data on the geoid Ag 91.43 0.78
surface (Reference data) 8¢ 94.86 0.78
# Unreduced data on the Earth’s Ag 87.72 0.76
surface 8g 91.22 0.76
Ag 31.70 0.25
# GGM®™ reduced data on the
Earth’s surface 8g 31.82 0.25
Ag 58.68 0.13
Spherically Bouguer reduced
#4 5
data on the Earth’s surface 8¢ 61.23 017
GGM® + spherically Bouguer A8 60.50 -0.86
#5 reduced data on the Earth’s
surface og 60.56 -0.86
‘ Ag 74.42 0.61
6 GGM?™ + RTM reduced data on
the Earth’s surface Sg 7754 0.62
Ag 30.45 0.29
7 GGM®® + DTE reduced data on
the Earth’s surface 8g 30.56 0.29

the maximum degree of the GGM should not be less than
220, 120, and 80 for the cap radii of 0.25°, 0.50°, and below
1°, respectively.

In order to prove the standard theory experimentally
and test our in-house software, we have spherically upward
continued the anomalous gravity field data given on the
geocentric sphere, which approximates the geoid surface,
to four exterior height levels and compare the results with
their synthetic counterparts. We have found out very good
agreement between the upward continued and synthetic
datasets, which proves the theory and confirms the
effectiveness of the in-house software.

We have finally attempted to upward continue the
gravity field data given on the complex and irregular
topography of the Earths surface. We have applied the
well-known remove-compute-restore procedure by
incorporating many reduction schemes for the long- and
short-wavelength effects. Moreover, we have assessed the

240

contribution of modified Poisson kernel over the standard
kernel. Numerical results have showed that the GGM
plus the RTM reduction scheme outperforms different
combinations of GGM and topographic gravity reductions.
Smoothing the variability of input data entered into the
Poisson upward continuation integral or eliminating
its correlation with topography does not yield better
continuation results. It is also shown that the contribution
of the modified Poisson kernel is negligible compared to
the standard kernel.
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