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Is the induction of H2O2-detoxifying antioxidant enzyme
activities sufficient to protect barley cultivars from

oxidative stress by UV-B irradiation alone or pretreatment
with high temperature and NaCl?

Hüsnü ÇAKIRLAR, Nuran ÇİÇEK, Yasemin EKMEKÇİ
Hacettepe University, Faculty of Science, Department of Biology, Beytepe, 06800 Ankara - TURKEY

Received: 30.04.2009

Abstract: Ultraviolet B (UV-B) irradiation has an adverse effect on plant cells because it causes the generation of reactive
oxygen species (ROS). This is scavenged by some endogenous defense systems. In this study, the activities of H2O2-
detoxifying antioxidant enzymes in 4 barley cultivars pretreated with high temperature or NaCl before UV-B irradiation
were investigated. The stress response in the seedlings was determined by measuring the photosynthetic performance
index (PI), which significantly decreased in all barley cultivars under almost all treatments compared to their controls.
Activities of 3 H2O2-detoxifying antioxidant enzymes (ascorbate peroxidase, glutathione reductase, and peroxidase)
significantly increased as a result of all treatments. The results may suggest that UV-B irradiation induces major H2O2-
detoxifying enzyme activities, and pretreatments, especially with 200 mM of NaCl, enhance the response of enzyme
activities in these 4 barley cultivars. Changes in the PI responses could indicate that the induction of antioxidant enzymes
might not be enough to protect from oxidative stress induced by UV-B radiation in the barley cultivars investigated in
the study. 

Key words: Ascorbate peroxidase, barley, glutathione reductase, high temperature, NaCl, peroxidase, photosynthetic
performance index, UV-B irradiation

Arpa çeşitlerinin yalnız veya yüksek sıcaklık ve NaCl ön uygulamalı UV-B
ışımasıyla oluşan oksidatif stresten korunmak için H2O2 detoksifiye eden

antioksidan enzim aktivitelerinin indüksiyonu yeterli midir?

Özet: Ultra viyole-B ışıması, reaktif oksijen türleri (ROS) oluşturması nedeni ile bitki hücrelerinde olumsuz bir etkiye
sahiptir. Bu oluşum bazı içsel savunma sistemleri ile ortadan kaldırılmaktadır. Çalışmada, UV-B ışımasından önce yüksek
sıcaklık ve NaCl ön uygulamasına maruz bırakılan dört arpa çeşidinde H2O2 detoksifikiye eden antioksidan enzimlerin
aktiviteleri araştırılmıştır. Fidelerdeki stres zararı, fotosentetik performans indeksi (PI) ölçümleriyle belirlenmiştir ve PI
tüm arpa çeşitlerinde hemen hemen tüm uygulamalarda önemli derecede azalmıştır. PI’nin aksine, çalışmada araştırılan
üç H2O2 detoksifiye eden antioksidan enzimlerin (askorbat peroksidaz, glutatyon redüktaz ve peroksidaz) aktiviteleri
genellikle tüm uygulamalarda önemli düzeyde artmıştır. Elde edilen sonuçlar, UV-B ışımasının önemli H2O2 detoksifiye
eden enzimleri indüklediğini ve özellikle 200 mM NaCl olmak üzere, ön uygulamalar bu dört arpa çeşidinde cevabı
artırdığını ortaya koyabilir. Ancak PI cevaplarına göre, H2O2 detoksifiye eden antioksidan enzimlerin indüksiyonunun
çalışmada araştırılan arpa çeşitlerinde UV-B ışımasının teşvik ettiği oksidatif stresten korunmak için muhtemelen yeterli
olmadığı sonucuna varılabilir. 

Anahtar sözcükler: Askorbat peroksidaz, arpa, glutatyon redüktaz, yüksek sıcaklık, NaCl, peroksidaz, fotosentetik
performans indeks, UV-B radyasyonu
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Introduction
Continuous climate change may induce several

stress factors, such as drought, high temperature,
salinity, and enhanced UV-B radiation,
simultaneously (1,2). In nature, the plant encounters
stress combinations concurrently or at different times
through the growing season (3) and must present an
integrated response to them (4). Consequently, the
acclimation of plants to a combination of different
abiotic stresses would require an appropriate response
customized to each of the individual stress conditions
involved, as well as tailored to the need to compensate
or adjust for some of the antagonistic aspects of the
stress combination (5). Mittler (6) has suggested that
it is logical to assume that the simultaneous exposure
of a plant to different abiotic stress conditions will
result in the coactivation of different stress response
pathways. These might have a synergistic or
antagonistic effect on each other. In addition to that,
there are cases where the plant organism subjected to
a single stress agent is capable of increasing its
resistance to subsequent unfavorable impacts (7),
which is called cross-acclimation. For example, heat
stress was found to silence the UV-B response of
parsley (8), whereas salt pretreatment mitigates UV-B
adverse effects in barley (9-12).

It has been claimed that the amount of solar
ultraviolet-B radiation (UV-B, 280-320 nm) at the
earth’s surface has been increasing because of
stratospheric ozone depletion (1,13). Responses to
UV-B radiation exhibit variations in the higher plant
species (14). It has been reported that UV-B radiation
can alter the redox state of plants through the
increased production of reactive oxygen species
(ROS) (15-18), causing oxidative stress in cells.

A major part of the injury to plants exposed to
stress is related to oxidative damage at the cellular
level (19). Although under normal metabolic
processes the low amounts of ROS are metabolic by-
products of plant cells (20,21), the release of radicals
into the cytosol can be enhanced under certain stress
conditions (22), producing oxidative stress in cells.
O2

•- radicals are immediately converted into O2 and
hydrogen peroxide (H2O2). Therefore, production of
these radicals results in an increase of H2O2 in the cell
(22). The generation of H2O2 is increased in response
to various stresses, implicating it as a key factor

mediating the phenomena of acclimation and cross-
tolerance, in which previous exposure to one stress
can induce tolerance of subsequent exposure to the
same or different stresses (23,24). 

Although the precise intracellular concentrations
of H2O2 that are likely to be toxic will vary, high rates
of H2O2 production are normally balanced by very
efficient antioxidant systems (25). If there is a serious
imbalance in any cell compartment between the
production of ROS and antioxidant defense, oxidative
stress and damage occur (6). Abiotic stresses such as
dehydration, low and high temperatures, and excess
irradiation can disturb this balance in such a way that
increased H2O2 initiates signaling responses, including
enzyme activation, gene expression, programmed cell
death, and cellular damage. 

Plants have developed ROS scavenging systems,
which are categorized as enzymatic and nonenzymatic
(26,27). When ROS increases, the chain reactions
start, i.e. superoxide dismutase (SOD) catalyzes the
dismutation of O2

·ˉ radicals to molecular O2 and H2O2
(28). H2O2 is then detoxified in the ascorbate-
glutathione cycle (6,29), which involves the oxidation
and rereduction of ascorbate and glutathione through
the APX and GR action (25). 

The activities of antioxidant enzymes like SOD,
APX, and GR are enhanced by treatment with UV-B in
some plants (30,31), and salt-tolerant plant species
increased their antioxidant enzyme activities and
antioxidant contents in response to salt treatment (32).

The objective of this study was to clarify the effect
of pretreatment with high temperature (45 °C for 45
min) or NaCl (200 mM) before UV-B irradiation on
the H2O2-detoxifying antioxidant enzymes responses
in 4 barley cultivars at the seedling stage and to
determine whether there would be cross-acclimation
to UV-B.

Materials and methods 
Plant materials
The seedlings of 4 barley (Hordeum vulgare L.)

cultivars (Bülbül-89, Kalaycı-97, Tarm-92, and Tokak-
157/37) were used in this study. They were grown in
the southern and southwest regions of Turkey, where
the climate is warmer. 
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UV-B treatment
UV-B was artificially provided by UV-B (312 ± 25

nm) fluorescent tubes (G15T8E, USHIO). The
distance between the top of the plants and the UV-B
lamp was 30 cm. The lamp irradiation gave a photon
flux density of 2.88 kJ m-2 day-1. During UV-B
treatment, no white light was applied. The biological
effectiveness of UV-B radiation (UV-BBE) was
calculated using the plant action spectrum of Caldwell
(33), normalized to unity at 300 nm.

High temperature pretreatment
Plants were grown in a controlled growth chamber

at 25/20 ± 0.2 °C day/night temperature, with a 16 h
photoperiod under fluorescent white light (200 μmol
m-2 s-1 PPFD) and a relative humidity of 60 ± 5%. Six-
day-old plants were subjected to 45 °C for 45 min.
After 24 h, the seedlings were exposed to UV-B
irradiation for 5 h (UV-B1).

Salt pretreatment
Plants were grown in water culture in a growth

chamber as described in the previous section. Two-
day-old plants were supplied with 200 mM NaCl for 4
days, which was enough to induce salt stress in these
barley cultivars (12). The seedlings were then exposed
to UV-B for 1 h on each of 2 consecutive days (UV-B2). 

Sampling for measurements was conducted 24 h
after UV-B treatment for the 2 experiments. 

Chlorophyll a fluorescence measurements
Fluorescence measurements were made at room

temperature with a Handy-PEA fluorometer
(Hansatech Instruments Ltd., King’s Lynn, Norfolk,
UK). Dark-adapted leaves (at least 60 min) were
illuminated homogeneously over an area of 4 mm in
diameter with an array of 3 red LEDs (3000 μmol
photons m-2 s-1), and chlorophyll a fluorescence
signals were received by a high performance PIN
photodiode detector associated with an amplifier
circuit. Based on the theory of energy fluxes in
biomembranes in a photosynthetic sample, the
performance index on an absorption basis, PIabs, has
been calculated using the experimental values of the
polyphasic rise of chlorophyll fluorescence transients
provided from the JIP-test (34,35). The performance
index (PI) is one of the chlorophyll fluorescence
parameters that provide useful and quantitative

information about the state of plants and their vitality
(36). After the fluorescence measurements, the leaves
were harvested to use for the measurements of
enzyme activities.

Assays of antioxidant enzyme activities
Leaves (0.3 g) from control and treated plants were

ground with liquid nitrogen and suspended in specific
buffer and pH for each enzyme extraction. The
homogenates were centrifuged at 14,000 rpm for 20
min at 4 °C, and the resulting supernatants were used
for enzyme assay. The protein concentrations of the
leaf crude extract were determined according to the
method of Bradford (37).

The APX activity was determined according to the
method of Wang et al. (38). APX extraction was
performed in a suspension solution including 50 mM
Tris-HCl (pH 7.2), 2% PVP, 1 mM Na2EDTA, and 2
mM ascorbate. The assay solution contained 50 mM
potassium phosphate buffer (pH 6.6), 2.5 mM
ascorbate, 10 mM H2O2, and an enzyme extract
containing 100 μg of protein. The enzyme activity was
calculated from the initial rate of the reaction using
the extinction coefficient of ascorbate (ε = 2.8 mM
cm-1 at 290 nm).

The GR activity was assayed following the method
of Sgherri et al. (39). GR extraction was performed in
a suspension solution containing 100 mM potassium
phosphate buffer (pH 7.0), 1 mM Na2EDTA, and 2%
PVP. The assay mixture contained 200 mM potassium
phosphate buffer (pH 7.5), 0.2 mM Na2EDTA, 1.5
mM MgCl2, 0.5 mM GSSG, 50 μM NADPH, and an
enzyme extract containing 100 μg of protein.
Correction was made for the nonenzymatic oxidation
of NADPH by recording the decrease at 340 nm
without adding GSSG to the assay mixture. The
enzyme activity was calculated from the initial rate of
the reaction after subtracting the nonenzymatic
oxidation using the extinction coefficient of NADPH
(ε = 6.2 mM cm-1 at 340 nm).

The POD activity was based on the determination
of guaiacol oxidation (ε = extinction coefficient 26.6
mM cm-1) at 470 nm by H2O2. The reaction mixture
contained 100 mM potassium phosphate buffer (pH
7.0), 20.1 mM guaiacol, 12.3 mM H2O2, and 100 μL of
enzyme extract (40).
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The SOD activity was assayed according to the
method of Beyer and Fridovich (41). The reaction
mixture of 30.25 mL was composed of 50 mM
potassium phosphate buffer (pH 7.8), 9.9 mM
methionine, 57 μM nitroblue tetrazolium (NBT), and
an appropriate volume of the plant extract. One unit
of SOD was defined as the amount of enzyme that
caused a 50% decrease of the SOD-inhibited NBT
reduction. 

Statistical analysis 
The experiment was performed using a

randomized block design. Data presented are the
averages of at least 3 replicates, obtained from 3
independent experiments. SPSS was used to establish
the differences between the cultivars and treatments.
Statistical variance analysis of the data was performed
using ANOVA and compared with the least
significant differences (LSD) at the 5% level. 

Results and discussion
Photosynthetic performance index
Photosynthesis is a major process in plant

physiology, and its functional state has been
considered a significant physiological activity to assess
the responses of plants to environmental parameters
(42). The photosynthetic performance index (PI),
giving information about the state of plants and their
vitality, was seriously decreased by UV-B irradiation
in all barley cultivars. The seedlings pretreated with
high temperature (45 °C for 45 min) and NaCl (200
mM for 4 days) before UV-B irradiation also showed
very low PI values (Table). The lowest decrease was

determined in Tarm-92 under UV-B1 and UV-B2
radiation alone, whereas the highest decrease was in
Tokak-157/37 under UV-B1 and Kalaycı-97 under
UV-B2, compared to their controls. High temperature
treatment alone decreased the PI by 9%, 17%, and
44% in the Bülbül-89, Tarm-92, and Tokak-157/37
cultivars, respectively, and increased the PI of Kalaycı-
97 by 16% (Table). Pretreatment with high
temperature significantly alleviated the adverse effect
of UV-B on PI in Bülbül-89 and Kalaycı-97 compared
to UV-B1 radiation alone. This treatment aggravated
the negative UV-B effect in Tarm-92 (Table). Salt
treatment alone also decreased the PI of all cultivars,
but to a lesser extent in comparison to UV-B and
pretreatment with high temperature and salt (Table).
UV-B2 decreased the PI of all barley cultivars
compared to their controls in NaCl pretreated plants
(Table). Similar to high temperature pretreatment, salt
pretreatment also aggravated the damaging effect of
UV-B in Tarm-92. In the present research, UV-B
treatment significantly affected photosynthetic
performance. Decreased PI may indicate the
imbalance of the electron transport chain in the
photosynthetic process and suggest an oxidative stress
formation in all cultivars under almost all treatments.
In terms of photosynthetic performance, these results
showed that pretreatment with 45 °C for 45 min or
200 mM NaCl for 4 days did not elicit any cross-
tolerance to UV-B in the seedlings of the 4 barley
cultivars studied.

Antioxidant enzymes activities
It is known that UV-B irradiation causes oxidative

stress (17,43-47). Xu et al. (47) reported that several
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Table. Changes in photosynthetic performance index (PI)* of 4 barley cultivars exposed to UV-B alone or pre-treated with high
temperature (45 °C for 45 min) and NaCl (200 mM for 4 days). UV-B was applied for 5 h only 1 day (UV-B1) and 1 h for 2
consecutive days (UV-B2) to the seedling treated with high temperature and NaCl, respectively.

Treatments
Cultivars

Control UV-B1 45 °C 45 °C+UV-B1 UV-B2 NaCl NaCl+UV-B2

Bülbül-89 1.000 0.0812 0.9087 0.2424 0.0849 0.6457 0.1179
Kalaycı-97 1.000 0.0752 1.1643 0.1259 0.0594 0.4087 0.0691  
Tarm-92 1.000 0.1183 0.8278 0.0223 0.1385 0.8049 0.0726  
Tokak-157/37 1.000 0.0514 0.5587 0.0597 0.0657 0.4955 0.0564

* Data were normalized by the value of their own control plants for every barley cultivar using Biolyzer software.



antioxidant pools and activities of several key
enzymes involved in ROS metabolism were affected
by UV-B. In the present study, UV-B generally
increased antioxidant enzyme activities, and
pretreatments with high temperature or salt enhanced
the effect of UV-B on the investigated enzymes in all
cultivars (Figures 1-3). In addition, superoxide
dismutase activity (SOD) was measured according to
the method of Beyer and Fridovich (41), but its
activity was not changed by UV-B (data not shown).
Our findings were consistent with the data of Mazza
et al. (15), which determined that UV-B did not affect
the SOD activity in barley. Rao et al. (30) also
indicated that UV-B exposure preferentially induces
peroxidase-related enzymes instead of SOD.

Therefore, we focused on H2O2-detoxifying enzyme
activity in the present study.

When subjected to UV-B radiation alone or
pretreated with high temperature and salt, different
responses in H2O2-detoxifying enzyme activities were
observed in the 4 barley cultivars (Figures 1-3). APX
that is one of the most important enzymes in the
ascorbate-glutathione cycle, and H2O2 detoxification
showed variations in the cultivars and treatments
(Figure 1). UV-B treatment alone significantly
increased the APX activity in all cultivars compared
with their controls. The APX activities of Kalaycı-97
and Tokak-157/37 were slightly affected by high
temperature treatment (Figure 1a), whereas the
activities of Bülbül-89 and Tarm-92 were slightly
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Figure 1. Effects of UV-B radiation on the APX activity in pre-treated with high
temperature (a) and NaCl (b) of barley cultivars. See Table for
explanation of UV-B application.



affected by salt treatment (Figure 1b). A temperature
of 45 °C and UV-B treatment also increased the
activity in all cultivars by approximately 3.0-3.6 times
compared to the control, except Kalaycı-97 (Figure
1a). Salt and UV-B treatment increased the APX
activity in the 4 barley cultivars (Figure 1b).
Furthermore, the APX activities of Bülbül-89 and
Kalaycı-97 were nearly 9.3 and 13.3 times higher than
those of the controls, respectively. Pretreatment with
NaCl before UV-B exposure enhanced APX activity
much more than pretreatment with high temperature,
especially in Kalaycı-97 and Bülbül-89 (Figures 1a and
1b). High temperature and salt alone or UV-B
irradiation of pretreated cultivars with high

temperature did not change the activity much. These
results suggest that APX had an important role in the
control of endogenous H2O2 content in the seedlings
pretreated with NaCl before UV-B irradiation.
According to some research (48,49), the stimulation
of APX activity by salt stress was much higher in salt-
tolerant cultivars. Our findings are also in agreement
with Takeuchi et al. (50), who have found that UV-B
enhanced APX activity in cucumber cotyledons. 

The activity of glutathione reductase, the other
enzyme of the ascorbate-glutathione cycle, was variable
among both cultivars and treatments (Figure 2). UV-B
treatment alone markedly increased the GR activity
in all cultivars compared with the controls, except in
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Figure 2. Effects of UV-B radiation on the GR activity in pre-treated with high
temperature (a) and NaCl (b) of barley cultivars. See Table for
explanation of UV-B application.



the Kalaycı-97 exposed to high temperature
pretreatment. High temperature alone increased the
GR activity of Bülbül-89 and Tarm-92 and decreased
the GR activity of Kalaycı-97 (Figure 2a), while salt
alone significantly increased the activity in all
examined cultivars (Figure 2b). A temperature of 45
°C and UV-B treatment increased the activity in
Bülbül-89 and Tokak-157/37, but decreased the
activity in Kalaycı-97 and did not significantly change
the activity in Tarm-92, compared with their controls
(Figure 2a). Salt and UV-B treatment significantly
increased the GR activity in the 4 barley cultivars
(Figure 2b). The GR activity levels of the cultivars
were approximately 4-7 folds higher than those of
controls except for Tarm-92. Noctor and Foyer (25)
reported that the major substrate for reductive

detoxification of H2O2 via APX reaction, ascorbate,
must be continuously regenerated from its oxidized
forms via the ascorbate-glutathione cycle.
Accordingly, GR activity was also increased by almost
all treatments, except in Kalaycı-97 (Figure 2). This
result may indicate that GR could work adequately
and the ascorbate-glutathione cycle might be active in
the investigated barley cultivars. It was shown that salt
treatment had little effect on the activity of
glutathione reductase (51), and it was suggested that
its lower activity in the stressed roots could be due to
some acclimation or an inability to maintain a high
GSH/GSSG ratio (48,52). 

The results of peroxidase activity, one of the H2O2
detoxification pathway enzymes, are presented in
Figure 3. All treatments significantly increased the
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Figure 3. Effects of UV-B radiation on the POD activity in pre-treated with
high temperature (a) and NaCl (b) of barley cultivars. See Table
for explanation of UV-B application.
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POD activity of barley cultivars. The highest increase
in the POD activity was found in the seedlings
exposed to UV-B irradiation alone (UV-B1 and UV-
B2) and pretreated with high temperature or salt,
except for the Bülbül-89 and Kalaycı-97 cultivars in
the salt experiment (Figures 3a and 3b).

It has been assumed that increased UV-tolerance
correlates with increased peroxidase activity (53,54).
If so, we could suggest that the salt pretreatment
enhanced UV-B tolerance in the 4 barley cultivars
more than the temperature pretreatment. In the
present study, POD increased in all barley cultivars as
a result of all treatments. POD activity was the highest
in the plants pretreated with either high temperature
(Figure 3a) or NaCl (Figure 3b) before UV-B
irradiation. Results are consistent with those of
Tekchandani and Guruprasad (55). Similarly, Hideg
et al. (56) reported that reversible drought stress
improved the tolerance of plants against subsequent
UV-B irradiation and that the link between 2 stresses
was at the level of ROS scavenging, possibly in the
provocation of the antioxidant system by the
preceding water stress. 

Borisova et al. (57) proclaimed that the data of the
interaction of excess heat and UV-B irradiation in
plants were contradictory. They found that a
preliminary heat treatment (45 °C, 1 h) considerably
attenuated the adverse effect of UV-B irradiation. In
the present study, heat pretreatment decreased APX
and GR activities in Kalaycı-97 cultivars (Figures 1a
and 2a) and had no effect on the other cultivars. 

In conclusion, UV-B irradiation decreased
photosynthetic performance, whereas it increased
APX, GR, and POD activities in the seedlings of 4
barley cultivars. This is in accordance with the

findings of Mishra et al. (58), which showed that the
seedling stage is the most vulnerable stage of plant
development. These results may imply that the
induction of antioxidant enzyme activities might not
be enough to protect the barley cultivars investigated
in this study from oxidative stress caused by UV-B
irradiation. The results of the present study show that
pretreatment with high temperature (45°C, 45 min)
did not provide an acclimation to UV-B, as NaCl did.
Moreover, induction of the H2O2-detoxifying
antioxidant enzyme activities of barley cultivars
subjected to UV-B irradiation alone or after
pretreatments cannot prevent UV-B stress due to
increased ROS formation in the leaves. To clarify the
mechanism of cross-acclimation as a result of
pretreatment with high temperature or NaCl before
UV-B irradiation, further investigations are needed
on the physiological and biochemical responses and
the recovery process.
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