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Abstract: In this short paper we present a generalization of the Hahn–Banach extension theorem for A -linear operators.

Some theoretical applications and results are given.

Key words: Riesz space, positive operator, A -linear operator, Hahn–Banach extension theorem

1. Introduction

We assume the reader to be familiar with the elementary theory of Riesz spaces and order bounded operators.

In this regard, we use [1, 3, 7] as sources of unexplained terminology and notation. Moreover, all Riesz spaces

under consideration are assumed to be Archimedean.

We denote by Lb(E,F ) the class of all order bounded operators from the Riesz space E into F and by

Lb(E) the order bounded operators from E into itself. Recall that π ∈ Lb(E) is called an orthomorphism of E

if x ⊥ y in E implies that π(x) ⊥ y . Orthomorphisms of E will be denoted by Orth(E). The principal order

ideal generated by the identity operator I in Orth(E) is called the ideal center of E and is denoted by Z(E).

Let A be a Riesz algebra (lattice ordered algebra), i.e. A is a Riesz space that is simultaneously an associative

algebra with the additional property that a, b ∈ A+ implies that a · b ∈ A+ . An f -algebra A is a Riesz algebra

that satisfies the extra requirement that a ∧ b = 0 implies a · c ∧ b = c · a ∧ b = 0 for all c ∈ A+ . If A is

an Archimedean f -algebra, then A is necessarily associative and commutative. The collections Orth(E) are,

with respect to composition as multiplication, Archimedean f -algebras with the identity mapping I as a unit

element. Another well-known example of f -algebras is C(K) of all real continuous functions on a topological

space K.

Let A be an f -algebra and E be a Riesz space. E is said to be a left o-module (order module) over A

if there exists a map A× E → E : (a, x) → ax satisfying the following:

1. E is a left module over A ,

2. for each a ∈ A+ and x ∈ E+ we have ax ∈ E+ .

An o -module over A is called f -module if it has the following property:

3. if x ⊥ y in E , then for each a ∈ A we have ax ⊥ y .

If A has a unit element e,

4. ex = x for each x ∈ E ,
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and then E is said to be a unitary f -module. A right f -module over A is defined similarly. We shall only

consider left f -modules from now on and these will simply be referred to as f -modules. If E is an f -module

over A , then there exists a map p : A → Orth(E) defined by p(a) = πa where πa(x) = ax for each x ∈ E . p

is a unital algebra and Riesz homomorphisms. Conversely, if there exists such a map p : A → Orth(E) then

the map (a, x) → ax = p(a)(x) of A× E → E defines an f -module structure on E over A .

Example 1 (a) A Riesz space E is an f -module over A = R , the f -algebra of the real numbers. The embedding

p : A → Orth(E) is the identification of R with the subalgebra of Orth(E) consisting of the multiples of the

identity.

(b) A unital f -algebra A is an f -module over itself in a natural way. The mapping p : A → Orth(A)

is the well-known identification (surjective algebra and Riesz isomorphism) of a ∈ A with the orthomorphism

p(a) = πa where πa(b) = a · b , for each b ∈ A [1, 7].

(c) Let E be an f -module over A . The mapping p : A → Orth(E) is a positive algebra homomorphism

and hence p is a Riesz homomorphism [4].

Definition 2 Let E and F be two modules over A . A mapping Γ : E → F will be called A-linear if

Γ(x+ y) = Γ(x) + Γ(y) and Γ(ax) = aΓ(x) for each a ∈ A and x, y ∈ E. A mapping q : E → F will be called

A-sublinear if q(x+ y) ≤ q(x) + q(y) and q(ax) = aq(x) for each a ∈ A+ and x, y ∈ E.

The set of order bounded and A-linear maps will be denoted by Lb(E,F ;A). Order properties of the

space of A -linear operators were given by Turan in [5].

Example 3 (a) Let E be a Riesz space. The bilinear map Z(E) × E → E : (π, x) → πx = π(x) shows that

E is an f -module over its center. As E is assumed to be Archimedean, Orth(E) is also Archimedean and

therefore commutative. Thus, we have:

Orth(E) ⊆ Lb(E,E;Z(E)) ⊆ Lb(E).

(b) Let E be a Riesz space of all continuous piecewise linear functions on [0, 1] .Then Z(E) = {λI : λ ∈ R}
and so Lb(E,E;Z(E)) = Lb(E).

(c) Let E be a Riesz space. If E has the principal projection property, then Lb(E,E;Z(E)) = Orth(E)

[1, Theorem 8.3].

(d) Let A = l∞, E = lp; 1 ≤ p < ∞ ; then Lb(E,E;A) = Orth(E).

Many versions of the Hahn–Banach theorem have been given. In this work, we shall gather an extension

theorem for A -linear operators and we shall give some applications of the extension theorem.

2. Generalization of the Hahn–Banach theorem

The following theorem is a general version of what is known as the Hahn–Banach extension theorem.

Theorem 4 Let E be a module over unital Dedekind complete f -algebra A , F an Archimedean Dedekind

complete o-module over A , and q : E → F an A-sublinear map. If N is a submodule of E and Φ : N → F
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is an A-linear map satisfying Φ(x) ≤ q(x) for all x ∈ N , then there exists an A-linear map Γ from E to F

such that Γ(x) = Φ(x) for all x ∈ N and Γ(x) ≤ q(x) for all x ∈ E.

Proof The proof of the one-step extension is different from the other proof of Hahn–Banach theorems. If

this is done, then an application of Zorn’s lemma guarantees an extension of Φ to all of E with the desired

properties. Let N be a submodule of E. If N = E holds, then the proof is trivial. Assume that N ̸= E and

take z ∈ E\N. Let N1 be the submodule of E generated by N and z , i.e. N1 = {x+ az : x ∈ N, a ∈ A} .
This representation is not unique, since it is possible that az ∈ N for some nonzero a in A . This leads to

difficulties in showing the “one-step extension”. It is clear that for each y, u ∈ N we have

Φ(y)− q(y − z) ≤ q(u+ z)− Φ(u).

This inequality couplet with the Dedekind completeness of F guarantees that both

k = sup {Φ(y)− q(y − z) : y ∈ N}

and
t = inf {q(u+ z)− Φ(u) : u ∈ N}

exist in F , and they satisfy k ≤ t . Now, for any w ∈ F satisfying k ≤ w ≤ t (for instance, w = k ), let us

define
Γ1 : N1 → F ; (x+ az) → Γ1(x+ az) = Φ(x) + aw.

We shall now show that Γ1 is well defined. As A is Dedekind complete, A is e-uniform complete [3, Theorem

42.6]. If 0 ≤ a in A then (a + 1
ne)

−1 is in A for all n ( n = 1, 2, 3, ...) by [2, Theorem 11.1]. For all n , we

have

w ≤ t ≤ q

[
(a+

1

n
e)−1x+ z

]
− Φ

[
(a+

1

n
e)−1x

]
and it follows that

Φ(x) + (a+
1

n
e)w ≤ q

[
x+ (a+

1

n
e)z

]
≤ q(x+ az) +

1

n
eq(z).

As F is Archimedean, we have

Φ(x) + aw ≤ q(x+ az).

For general a ∈ A , write a = a+ − a− . Let u : A → Ba+ be the order projection, where Ba+ is the band

generated by a+ . We have u ∈ Orth(A), u2 = u , u(a) = a+ . Since A is Riesz and algebra isomorphic to

Orth(A) [7, Theorem 141.1], there exists 0 ≤ b ∈ A such that b2 = b , ba = a+ , ba+ = a+, ba− = 0, and

(b− e)a = a−. From the first case we have

Φ(x) + a+w ≤ q(x+ a+z)

and hence

b(Φ(x) + a+w) = bΦ(x) + b(a+w) = bΦ(x) + (ba+)w = bΦ(x) + a+w

≤ bq(x+ a+z) = q(bx+ b(a+z)) = q(bx+ b2(az)) = bq(x+ az).

Similarly, since k ≤ w we get

(e− b)(Φ(x)− a−w) ≤ (e− b)q(x+ az).
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Adding these inequalities, we obtain

Φ(x) + aw ≤ q(x+ az) (1)

for all a ∈ A . We suppose x, y ∈ N and a, c ∈ A are such that x+ az = y + cz . Then, from (1), we have

Φ(x− y) + (a− c)w ≤ q((x− y) + (a− c)z) = q(0) = 0

and

Φ(y − x) + (c− a)w ≤ q((y − x) + (c− a)z) = q(0) = 0,

and therefore Γ1(x+az) = Γ1(y+cz). Evidently, Γ1 is dominated by q and is an A -linear map. An application

of Zorn’s lemma guarantees an extension of Φ to all of E with the desired properties. 2

Let K be an extremally disconnected compact Hausdorff space (sometimes called a Stonian space). Then

C(K) is a Dedekind complete f -algebra. Taking A = C(K), we can get the following result that was proved

by Vincent-Smith as Theorem 1 in [6].

Corollary 5 Let E be a module over Dedekind complete A = C(K) and q : E → A be an A-sublinear map.

If N is a submodule of E and Φ : N → A is an A-linear map satisfying Φ(x) ≤ q(x) for all x ∈ N , then

there exists some A-linear map Γ on E that extends Φ and is such that Γ(x) ≤ q(x) for all x ∈ E.

If we take A = R, then we obtain the following corallary that was given as Theorem 83.13 [7] or Theorem

2.1 [1].

Corollary 6 Let E be a (real) vector space, F a Dedekind complete Riesz space, and q : E → F a sublinear

map. If N is a vector subspace of E and Φ : N → F is an operator satisfying Φ(x) ≤ q(x) for all x ∈ N ,

then there exists some linear map Γ on E that extends Φ and is such that Γ(x) ≤ q(x) for all x ∈ E.

It is known that there are many applications of the Hahn–Banach extension theorem. Some of these

applications were given for linear positive operators in [1]. Similar applications of Theorem 1 can be given for

A -linear positive operators. Two of them will be given below. Let E be a unitary module over A. Then every

submodule of E is a vector subspace of E. A submodule N of a unitary module E is called a Riesz submodule

whenever N is closed under the lattice operations of E (i.e. whenever N is a Riesz subspace of E).

Corollary 7 Let E be a unitary f -module over unital Dedekind complete f -algebra A , F an Archimedean

Dedekind complete o-module over A , and Γ : E → F a positive A-linear operator. If N is a Riesz submodule

of E and Φ : N → F is a positive A-linear map satisfying Φ(x) ≤ Γ(x) for all x ∈ N+ , then there exists

some positive A-linear map H on E that extends Φ and is such that H(x) ≤ Γ(x) for all x ∈ E+ .

Proof It is similar to the proof of Theorem 2.2, which is given in [1]. 2

Corollary 8 Let E be a unitary f -module over unital Dedekind complete f -algebra Aand F an Archimedean

Dedekind complete o-module over A . If N is a Riesz submodule of E and Φ : N → F is a positive A-linear

map, then the following statements are equivalent:
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1. Φ extends to a positive A-linear map.

2. Φ extends to an order bounded A-linear map.

3. There exists a monotone A-sublinear mapping q : E → F satisfying Φ(x) ≤ q(x) for all x ∈ N.

Proof The proof is the same as the proof of Theorem 2.3 [1] with a slight difference. 2
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