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1. Introduction
The common name for the red-colored soils developed 
under the Mediterranean climate has been assigned as “red 
Mediterranean soils (RMs)” or “terra rossa soils (TRs)” 
for those that develop either along with the fractures of 
the limestones and dolomites in the karstic terranes or 
as a red stratum on and between the transported parent 
materials (Yassoglou et al., 1997; Durn, 2003; Miko et al., 
1999; Torrent, 2005; Merino et al., 2006; Priori et al., 2008; 
Vingiani et al., 2018). According to the soil nomenclature, 
these soils are mostly classified as Rhodoxeralfs (USDA, 
1994) and Chromic Luvisol (WRB, 2015). Two main 
pedogenic processes; rubification (Boero and Schwertmann, 
1989) and clay illuviation are suggested to be critical for 
the development of special characteristics of TRs (Yaalon, 
1997; Torrent, 2005; Fedoroff and Courty, 2013). Reddening 
is proposed to be due to the presence of Fe-oxide minerals 
(hematite/goethite) (Eren and Kadir, 2013; Feng et al., 2018). 

Some studies suggest that TRs develop widely from 
the insoluble residues of carbonate rocks (Moresi and 
Monghelli, 1988; Atalay, 1997; Wei et al., 2013); some 
others recommend the contribution of external materials, 
e.g., aeolian dust, volcanic debris, clastic sedimentary 
fragments, etc. (Muhs et al., 2012; Sandler et al., 2015). 
However, the widely accepted theory is the polygenetic 
nature of TRs which comprises all mentioned pedogenetic 
formations (Bronger and Bruhn-Lobin, 1997; Durn et al., 
1999; 2014; Lucke, 2008).

RMs or TRs across Anatolia through the karstic 
terranes have also been studied (e.g., Özbek et al., 
1976; Kapur et al., 1993; Kubilay et al., 1993; Eren and 
Kadir,1999; Aydınalp and Cresser, 2008; Aydinalp and 
Fitzpatrick, 2009; Bolca et al., 2012). Although the karstic 
depressions in southwest Turkey have been recognized 
for the occurrences of TRs, a limited number of studies 
have been carried out to understand the genesis and the 
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composition of such soils. Muğla Polje, one of these karstic 
depressions, includes two different occurrences of red 
soils: (1) TRs developed on hard and permeable carbonate 
rocks and (2) the soils formed the matrix of the transported 
sediments (alluvium-ALs and colluvium-CLs). TRs being 
the soils of a more mature and stable paleoenvironment, 
and ALs-CLs representing the young land surfaces (flood 
plains, landslide debris) have comparable features that can 
help to reveal the effect of parent rock compositions on 
the soil formations. Therefore, the main goal of this study 
is to compare the effect of weathering on hard carbonate 
rocks (limestone and dolomite) and dynamic young land 
surfaces (floodplain and landslide debris) in Muğla Polje 
in terms of mineralogical and geochemical compositions.

2. Materials and methods
2.1. Field descriptions
Muğla Polje with a 40 km2 area at an elevation between 
618 and 653 m is a very typical karstic depression located 
in southwest Turkey (Figure 1A). According to the Muğla 
weather station-17292 of the Turkish State Meteorological 
Service, the mean annual temperature is 15.1 °C with the 
warmest month being August (33.5 °C) and the coldest 
month being January (1.6 °C). Additionally, the annual 
rainfall is 1208.3 mm with a maximum in November 
(265.5 mm) and a minimum in July (11.7 mm). Based on 
the Köppen classification, the climate of the study area is 
of humid Mediterranean climate (Csa) with long, hot, and 
dry summers and cool and wet winters. 

Muğla Polje is filled with colluviums-slope debris 
and alluvial fan deposits at the margins, especially on the 
northern side, and alluvial deposits at the polje interiors. 
The oldest unit exposed around the polje is the Permo-
Carboniferous schist which has an outcrop at the south 
of the study area (Figure 1B). To the southeast, the Mid-
Triassic-Liassic dolomite, red-colored basal conglomerate; 
metasandstone, metasiltstone, and dolomitic limestone 
are followed by Jurassic-Lower Cretaceous limestone and 
Upper Cretaceous-Paleocene cherty limestone and end with 
sandstone-limestone-shale (Figure 1B) (Göktaş, 1998). The 
Liassic limestone-dolomite are the most widespread units 
exposed in the study area (Figure 1B) (Göktaş, 1998; Gül, 
2015). Younger units are the Oligocene(?)-Lower Miocene 
clastics (Göktaş, 1982, 1998; Göktaş et al., 1982) and the 
Upper Miocene-Pliocene red-colored limestone fragments 
with conglomerate, sandstone, and mudstone alternations 
(Figures 1B; Gül et al., 2013). Quaternary deposits are 
dominantly of colluviums-alluvial fan deposits-alluviums 
(Figure 1B; Atalay, 1980; Göktaş et al., 1982; Konak et al., 
1987; Aktimur et al., 1996; Göktaş, 1998; Gül, 2015; Gül et 
al., 2021). 

The sampling locations were determined based on the 
significance and accessibility of the sites and the sampling 

was mostly undertaken along the wall/floor of the road 
cuts. The surfaces were cleaned prior to field observations 
and sampling. The horizon/section depths of the water-
laid deposits were recorded from zero datum at the ground 
surface; while the sampling from the fractures/cracks was 
reported as the depth of the sample point from the surface 
(Schoeneberger et al., 2012). The profiles and the sampling 
points are dominantly covered with maquis and pine trees. 

Information about the sampling sites, their 
environmental settings, and types of parent and bedrocks 
are provided in Table 1. Soils developed from the parent 
rocks of alluvium enriched in clastic components are 
specifically named as ALsc. In addition, one paleosol 
(buried soil) sample within 1st location of ALs is symbolled 
as Pls in this study. ALs refer to all alluvium-derived 
soils including ALsc and Pls unless they are specifically 
mentioned in the paper. A total of 12 representative sites 
within the study area were selected to investigate. In 
particular, TRs samples (2nd, 4th, 10th, and 14th sites) 
were obtained from the fractures of parent rocks or as a red 
stratum over the Liassic limestone and the Middle Triassic-
Liassic dolomite (Figure 2). ALs samples were taken from 
the profiles having bedrocks of alluviums; more specifically 
defined as ALs fed by the Liassic limestone (1st, 7th, 8th, 
and 13th sites) and ALsc (11th and 12th sites) originated 
from the Oligocene (?)-Lower Miocene conglomerate 
– sandstone and to a lesser extent Liassic limestone and 
Campanian-Maastrichtian cherty limestone. CLs samples 
(6th and 9th sites) lay down along a colluvial wedge on 
the Liassic limestone (Aktimur et al., 1996; Göktaş, 1982, 
1998; Göktaş et al., 1982; Gül, 2015; Konak et al., 1987) 
(Figure 2). 
2.2. Laboratory analysis
Thin sections of the parent rocks were prepared 
at Mineralogy-Petrography Laboratory at General 
Directorate of Mineral Research and Exploration (MTA)  
to describe mineralogical and petrographical properties 
under a polarizing microscope.

Soil samples were dried at room temperature and then 
gently crushed and sieved through a 2-mm sieve. The grain 
size distribution of the samples was determined using soil 
hydrometer 152H based on the ASTM D7928 method, and 
cation exchange capacity (CEC) of <63 μm fraction of each 
sample was measured by methylene blue test according to 
the method of Jones (1964) at Clay Mineralogy Laboratory 
at Muğla Sıtkı Koçman University. 

Soil samples were analyzed mineralogically by a 
Panalytical Expert Pro diffractometer equipped with 
a Cu tube at 40kV voltage and 30mA current with a 
scanning rate of 2°/min at Mineralogy-Petrography 
Laboratory at MTA. The clay fraction of the samples was 
separated with sedimentation followed by centrifugation. 
The diffractograms of whole-rock samples were plotted 
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between 4° and 70° (2θ) and that of oriented samples for 
the fine fraction (<2 µm) were taken between 2°and 42° 
2θ upon air-drying, ethylene glycol solvation, and heating 
to 300 and 550 °C. Mineral identification was based on 
the combined methods by Thorez (1976); Chen (1977) and 
Moore and Reynolds (1989); semiquantitative abundances 
of minerals in bulk compositions were determined using 
the method by Brindley (1980). 

Whole-rock chemical analysis of the parent rocks and 
the soil samples was performed at Analytical Chemistry 
Laboratory at MTA by Thermo ARL X-ray fluorescence 
on powder pellets. The degree of total weathering was 
quantified using the Chemical Index of Alteration (CIA) 
equation of Nesbitt and Young (1982) [CIA = 100×(Al2O3/
Al2O3 + CaO* + Na2O + K2O)] and that of Maynard 
(1992) [CIA-K=100×(Al2O3/Al2O3 + CaO* + Na2O)]. 
CaO* in the silicate fraction was corrected based on the 
method of McLennan (1993). The climofunction of CIA-K 
is also used to quantify the mean annual precipitation 
(MAP) values in mm year–1 with an equation of MAP = 
14.265 (CIA-K) –37.632 (Sheldon et al., 2002). Degree 
of salinization (K2O + Na2O)/Al2O3, calcification (CaO 
+ MgO)/Al2O3), clayeyness (Al2O3/SiO2), and base loss 
(Base/Ti) were calculated and compared with the reference 

values according to the given equations in Retallack (2001), 
Retallack et al. (2002), Sheldon (2006), and Sheldon and 
Tabor (2009).

3. Results
3.1. Petrography of the parent rocks
The petrographical study was carried out on the parent 
rocks of the samples. Thin sections prepared from the mid-
Triassic-Liassic parent rock (10-D-K) indicate the presence 
of fine-medium-grained calcite and vein infillings (Figures 
3A and 3B). According to Folk (1962) and Dunham 
(1962) classifications, the parent rock of TRs sample (10-
D-K) was defined as dismicrite and crystalline limestone, 
respectively. Thin sections of the TRs parent rocks (2-, 4-, 
14-D-K) show that they contain fine-medium crystalline 
calcite, rarely fossil remnants and stylolites (Figures 3C 
and 3D). Thus, they are classified dominantly as dismicrite 
and to a lesser extent biomicrite in terms of Folk (1962) 
classification; crystalline limestone and to a lesser extent 
wackestone according to Dunham (1962). Petrographical 
investigation on the Oligo-Miocene sandstone (12-D-K) 
reveals the presence of dominantly fine-medium grained 
quartz in association with muscovite and opaque minerals 
(Figures 3E and 3F). 

Figure 1. A) Location of the study area in Turkey; B) Geological map of Muğla Polje (Göktaş et al. 1982; Konak et al. 1987; Aktimur et 
al. 1996; Göktaş 1998). 
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3.2. Soil properties
The cation exchange capacity of TRs samples ranges 
between 13 and 16.8 meq/100 g, while ALs and CLs 
samples have a wider range from 2 to 11.6 and from 
7 to 11.6 meq/100g (Table 2). The results show that the 
dominant clay minerals of all samples have low cation 
exchange capacities (Grim, 1968). Textural analysis of the 
soil samples based on USDA (1975) reveals that TRs are 
classified as clay (with clay greater than 65%) while the 
texture classes of ALs range between clay to sandy loam 
(that of ALsc between silty loam and clay) and that of CLs 
vary from silty clay loam to silty loam (Table 2). 

3.3. Mineralogical determinations
Minerals of Pls, TRs, ALs, ALsc, and CLs are identified by 
using diffraction patterns of bulk samples and clay fractions. 
Representative diffractograms for each group are given 
in Figures 4 and 5. Semiquantitative analysis of the bulk 
compositions and the presence/absence of clay minerals 
for all samples are listed in Table 3. Quartz is observed in 
all samples with its prominent peaks at 3.34, 4.26, 2.28, 
and 1.81 Å as very clear and sharp reflections (Figure 4). 
It is most abundant (20%–47%) in ALs. Feldspars are the 
other nonclay components of the samples. Plagioclase is 
detected by its 3.18–3.21 Å reflections in Pls, ALsc, and 

Table 1. Environmental settings of each sampling site in the study area.

Map 
location

Sample
no

Depth
(cm) Coordinates  Parent

material Bedrock Soil

2 2-D 90 35 61 80 63 E-41 19 454 N Limestone Liassic carbonates Terra rossa

4 4-D 120 35 61 73 31 E-41 20 901 N Limestone Liassic carbonates Terra rossa

10 10-D 70 35 62 84 31 E-41 16 088 N Dolomitic 
Limestone Middle Triassic-Liassic carbonates Terra rossa

14 14-D 65 35 59 22 74 E-41 33 544 N Limestone Liassic carbonates Terra rossa

1

1-2-D
1-3-D
1-4-D
1-D-PAL

20-40
40-58
58-128
128-

35 61 98 76 E-41 17 500 N Alluvium
Liassic Carbonates

Alluvium soil

7

7-1-D
7-2-D
7-3-D
7-4-D

0-70
70-110
110-145
145-185

35 62 54 31 E-41 18 707 N Alluvium Liassic Carbonates
Late Miocene-Pliocene Clastics Alluvium soil

8

8-1-D
8-2-D
8-3-D
8-4-D

0-40
40-60
60-90
90-130

35 62 71 50 E-41 17 153 N Alluvium Liassic Carbonates
Late Miocene-Pliocene Clastics Alluvium soil

11 11-D 60 35 62 46 36 E-41 14 601 N Alluvium Lower Miocene-Oligocene 
Clastics, Liassic Carbonates Alluvium soil

12 12-1-D
12-2-D

0-50
50-130 35 62 48 30 E-41 13 761 N Alluvium Lower Miocene-Oligocene 

Clastics, Liassic Carbonates Alluvium soil

13

13-1-D
13-2-D
13-3-D
13-4-D

0-25
25-85
85-140
140-230

35 62 20 13 E-41 15 555 N Alluvium Liassic Carbonates Alluvium soil

6 6-D 340 35 62 45 17 E-41 19 306 N Colluvium Liassic Carbonates
Late Miocene-Pliocene Clastics Colluvium-soil

9
9-1-D
9-2-D
9-3-D

0-30
30-100
100-350

35 62 84 42 E-41 17 427 N Colluvium Liassic Carbonates
Late Miocene-Pliocene Clastics Colluvium-soil
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CLs (Figure 4). The characteristic peak of K-feldspar at 
3.24 Å is only observed in Pls. The total abundance of 
feldspars is not more than 10% for any sample (Table 
3). Calcite appears in the diffractograms of ALs and CLs 
(32%–97%) as sharp and relatively intense reflections at 
3.03 Å while weaker in ALsc (Figure 4). However, it is 
not determined in Pls and TRs samples. Weak reflection 
at 2.89 Å is characterized as dolomite for Pls. Hematite 
is defined in all samples with 2.56 and 2.69 Å peaks 
with different intensities (Figure 4). Its semiquantity is 
determined as 5%–7% for TRs; 1%–6% for ALs and CLs 
(Table 3). Diffractograms of the bulk compositions host 
wide and weak peaks around 14, 10, and 7 Å associated 
with the presence of clay minerals. The series of 14, 7, 4.7, 
and 3.53 Å reflections refer to the presence of chlorite 
possibly interfering with vermiculite (?). The reflections 
at 10, 5, and 3.38 Å are characteristic of illite/mica for 
all samples (Figure 4). The broad 7 Å peak shows more 
than one mineral sharing the same reflections. d(060) 
reflections at 1.54 Å refer to the presence of trioctahedral 
chlorite and vermiculite (?) while 1.49 Å peak points to 
dioctahedral kaolinite (Figure 4). Total clay content is 
highest for TRs at 53%–75% followed by Pls with 62%, 
which reaches 52% max for ALs and 18% max for CLs. 
Its semiquantity is between 37% and 63% for ALsc. Mica 
minerals also appear in ALsc samples with an abundance 
of 7%–12% (Table 3). 

Illite is unaffected by ethylene glycol solvation and 
heating treatments. The characteristic peaks of illite are 
observed at around 10, 5, and 3.38 Å for Pls, TRs, ALs, 
ALsc, and CLs (Figures 5A–5E). Basal series of d(002) 

and (004) for chlorite overlap with (001) and (002) of 
kaolinite; 002 reflection of kaolinite is observed at around 
24.9° 2θ with 3.58 Å while 004 reflection of chlorite 
shows up at nearly 25.1° 2θ with 3.55 Å. Additionally, 
001 and 003 peaks of chlorite are very weak implying its 
low concentration in all types of samples except ALsc at 
which both reflections appear more strongly (Figure 5D). 
Heating chlorite to 550 °C intensifies the 001 reflection and 
weakens the 002, 003, and 004 peaks (Figures 5B and 5C). 
At this temperature, kaolinite becomes amorphous and its 
all reflections disappear (Figures 5A–5E). Since chlorite 
is mixed with possibly vermiculite, their 001 reflections 
interfere and create an asymmetrical peak at around 14 
Å (Figures 5A–5E). Heating samples to 300 °C causes 
vermiculite structure to collapse to 10 Å by removing 001 
interferences and appears similar to reflections of illite/
mica (Figures 5A–5E). 
3.4. Geochemical analysis
Major oxide compositions of the samples and the parent 
rocks (given with a suffix K) are listed in Table 4. The 
parent rocks of TRs samples are CaO rich (54.3%–55.1%) 
but SiO2 (0.4%–0.8%), Al2O3 (0.1%–0.4%) and Fe2O3 
(0.1%) deficient. In contrast, the TRs samples are enriched 
in SiO2 (45.9%–55.7%), Al2O3 (18.5%–24.3%), and Fe2O3 
(9%–12.5%). 

The representative parent rock of an ALsc sample (12-
D-K) has very similar major oxide values to their soils 
in that SiO2 content ranges between 73.3% and 77.6%, 
the compositions of Al2O3 and Fe2O3 have a very narrow 
variation in the ranges of 9%–11.8% and 4.6%–5.7 %, 
respectively. Other ALs which have mostly parent rocks 

Figure 2. Field photographs of the studied samples and profiles of TRs, CLs, ALs, and ALsc. 
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of carbonate origin have a very low content of SiO2 and 
Al2O3 (<10%) and Fe2O3 (<4.1%) with moderate CaO 
compositions (33.9%–50.7%). 

The same condition exists between CLs and their 
parent rocks in terms of CaO in that the parent rocks of 

CLs (6-, 9-D-K) have CaO content between 54.5% and 
54.9%, that of CLs also has a moderate value and a very 
narrow range (34.9%–41.1%). The composition of SiO2 is 
very low (0.5%–1.1%) for the parent rocks (6 and 9-D-K) 
and could reach up to 17.9% max for CLs. Very low Al2O3 

Figure 3. Photomicrographs of the parent rocks A) the Middle Triassic-Liassic limestone showing coarse-crystalline calcite (Ica) 
filling irregular veins (PPL), B) the Middle Triassic-Liassic limestone with fine-medium- crystalline calcite (Mca) (PPL), C) the Liassic 
limestone comprising fine-medium- crystalline calcite (Mca) and rhombohedral dolomite (Do) (PPL), D) cross-polarized view of the 
image c, E) quartz (Q), muscovite (M) and opaque (Op) minerals of the Oligocene?-Lower Miocene clastics (PPL) and f) cross-polarized 
view of the image.
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C D
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and Fe2O3 contents are also marked as <8% and <4%, 
respectively. The weight percentages of MgO (<1.7), NaO 
(<0.7), K2O (<1.7), and MnO2 (<0.5) are very low for TRs, 
ALs, CLs and their parent rocks. 

The molecular weathering ratios based on the major 
oxide compositions of the soil samples are given in Table 5. 
CIA and CIA-K values of TRs are greater than 83%. ALsc 
samples have CIA between 80.5% and 82.5% while their 
calculated CIA-K values reach up to 93%. The chemical 
weathering degrees of the rest of the ALs and CLs samples 
are very low (<22%). The paleosol is very similar to TRs 
samples with very high degrees of CIA (93%) and CIA-K 
(93%). The calculated MAP values for TRs, Pls, and ALsc 
range between 1230 and 1288 mm year–1. However, MAP 
for ALs is between 6 and 270 mm year–1 while for CLs 
it is in the range of 111–197 mm year–1. The molecular 
weathering ratio of salinization is very low (0.1–0.2) for 
all soil samples. ALs and CLs samples have moderate to 
high calcification; however, TRs samples are decalcified 
(0.1–0.2). Clayeyness is not more than 0.7 for all soils 
samples; however, base loss varies; it appears as a low ratio 
(3.2–3.8) for TRs, buried soils (3.2) and ALsc (3–4.4). 
Calculated base loss ratios for ALs and CLs are 72–522, 
73–141, respectively.

4. Discussion 
Based on the weathering degree, three major classes of 
soils—TRs, ALs, and CLs—are compared mineralogically 
and geochemically. The dominant clay mineral for all soils 
has the property of low CEC. In terms of field occurrences 
and the particle size, the intensity of leaching decreases 
in the polje from TRs being the well-drained soil towards 
ALs and CLs.

Munsell hue shows similar distinctions from TRs (the 
reddest) with 2.5 YR to ALs and CLs with a range of 2.5–
7.5 YR. The soils of this study, TRs, ALs, and CLs include 
dominantly kaolinite and illite associated with chlorite and 
vermiculite as the clay minerals of the soils in Muğla Polje. 
Leaching of Ca+2 from top of the profiles towards the lower 
horizons causes very strong attraction between clay surfaces 
(Altunbaş and Sarı 2009; Sarı et al., 2018). The exchange 
between Ca+2 released from carbonates and K+ from the 
weathering of mica (for ALsc) enhances the transformation 
of mica to vermiculite (Bassett, 1959). In this respect, the 
clay mineralogical compositions of TRs, ALs, and CLs are 
found to be compatible with the compositions of terra 
rossa developed under Mediterranean climate (Durn et al., 
1999; Boero et al., 1992; Macleod, 1980; Garcia-Gonzales 
and Recio, 1988; Katipoğlu et al., 2015; Altunbaş and Sarı, 

Table 2. Sample depth, CEC, particle size distribution of TRs, ALs, ALsc, Pls, and CLs.

Profile
no

Sample
no

Depth 
(cm) Soil CEC 

(meq/100g)
Clay
(%)

Silt
(%)

Sand
(%)

Texture
class

2 2-D 90 TRs 13.8 67 22.4 10.6 Clay
4 4-D 120 TRs 16.8 85 11.4 3.6 Clay
10 10-D 70 TRs 16.4 81 17.4 1.7 Clay
14 14-D 65 TRs 13 65 23.0 12.0 Clay
1 1-Pal 128 Pls 14.2 72 25 3 Clay
1 1-4 58-128 ALs 6 43.7 47.8 8.5 Silty clay
7 7-1-D 0-70 ALs 9.7 34 35.9 30.6 Clayey loam
7 7-3-D 110-145 ALs 11.6 35 33.6 31.4 Clayey loam
7 7-4-D 145-185 ALs 10.5 35 32.7 32.3 Clayey loam
11 11-D 60 ALsc 2 20 51.3 28.7 Silty loam
12 12-1-D 0-50 ALsc 3 25 57.9 17.1 Silty loam
12 12-2-D 50-130 ALsc 5.2 45 39.1 15.9 Clay
13 13-1-D 0-25 ALs 7.8 47 28 25 Clay
13 13-2-D 25-85 ALs 5.6 32 31 37 Clayey loam
13 13-3-D 85-140 ALs 3 17 27.6 55.4 Sandy loam
13 13-4-D 140-230 ALs 5.6 25 29 46 Loam
6 6-D 340 CLs 11.6 40 40.4 19.6 Silty-clay loam
9 9-2-D 30-100 CLs 7 39 50.4 10.6 Silty-clayey loam
9 9-3-D 100-350 CLs 8.6 17.5 63.3 19.2 Silty loam
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2009; Cengiz and Kuşcu, 2010). Hematite, the source of 
red color is found in all soil occurrences within the polje. 

Al is selected as the reference phase due to its stability 
under weathering; therefore, binary plots of selected 
major oxides were plotted with respect to Al2O3 in weight 
percentages (Figure 6). All binary plots reveal that ALs 
and CLs plot in very close proximity or along the same 
line; while TRs and Pls show very similar variations and 
plot closely. Al2O3 in the bulk composition of TRs shows 
a positive correlation with Fe2O3 and K2O; a negative 
correlation with Si2O and CaO, and no change with respect 
to Na2O and TiO2. As weathering intensity increases, only 
CaO is depleted in the composition of ALs while SiO2, 

Fe2O3, K2O, Na2O, and TiO2 show a positive correlation 
with Al2O3 (Figure 6). In terms of Al2O3 in CLs; Fe2O3, 
K2O, and TiO2 are positively correlated while CaO and 
SiO2 are reversely changed. MgO plots scattering for TRs, 
ALs, and CLs (Figure 6). 

Weathering trends of TRs, ALs, and CLs are also 
displayed on A-CN-K triangular plot of Nesbitt and Young 
(1984) (Figure 7). Along the line I, the weathering of ALs 
samples form a parallel trend to A-CN side of the diagram 
explaining the initial stage of weathering. Lines II and III 
show offset from the weathering trend and conversion of 
kaolinite to illite by K+ addition. Along line II, CIA does 
not change remarkably due to the balance between loss 

Figure 4. X-ray diffractogram of bulk compositions of Pls, TRs, ALs, ALsc, and CLs (abbreviations of mineral 
names after Whitney and Evans, 2010).
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of alkalis and K+ addition; it marks the conversion of 
plagioclase to K-feldspar; while line III marks lower CIA 
values with greater loss of Ca++ and Na+ but enrichment of 
K+. Line III shows mixing lines representing the conversion 
of aluminous clay minerals to illite (Fedo et al., 1995). TRs 
reveal advanced weathering with marked loss in K+ with 
the compositional shift towards the Al apex of the diagram 
(Figure 7).

Molecular weathering ratios of the studied soils are 
consistent with the soil properties, clay minerals that exist 
in the composition, and the presence of hematite as a 
reddening agent for all soils. The low degree of salinization 
(<1) and calcification (<2), high degree of clayeyness 
(>0.3), and intense hydrolysis are the characteristics of TRs. 
All of these molecular weathering ratios are compatible 
with very high CIA and CIA-K percentages (83.5%–88.4% 
and 88.9%–92.7%) which hereby point to very high MAP 
(1230–1285 mm year–1). This, in turn, results in low CEC, 
low CaCO3, and low alkali-alkaline earth cations, and in 
situ formation of kaolinite for TRs. 

ALsc have very similar properties to TRs in that 
low degree of salinization (<1) and calcification (<2) 
with intense leaching (>0.2) associated with very high 
CIA (>80%) and CIA-K (>90%), all of which favor the 
clayeyness degree greater than that of ALs developed from 
carbonate dominant parent rocks. For CLs, moderate to 
high calcification, very high base amounts, and low degree 
of leaching are all compatible with low CIA and CIA-K 
(<17%) and MAP (<200 mm year–1). 

The buried soil (Pls/1-D-Pal) that is found in the 1st 
ALs profile carries much stronger hydrolysis fingerprints 
than TRs. Low degree of salinization (<1) and calcification 
(<2), high degree of base loss, and clayeyness (>0.3) are the 
remarkable molecular weathering ratios for the paleosol. 

5. Conclusion
This study classifies the soils of Muğla Polje into three: 
the first class is terra rossa (TRs) which refers to highly 
clayey, red-colored soil developed on hard and permeable 
limestone under very high precipitation leading to 

Figure 5. X-ray diffractograms of clay fractions of A) Pls, B) TRs, C) ALs, D) ALsc, and E) CLs (AD: air-
dried; EG: ethylene glycol solvated; 300° and 550° C: heated samples; abbreviations of mineral names after 
Whitney and Evans, 2010).
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high chemical alteration and leaching. TRs can also be 
named the soils of high lands in the polje. The soils of 
lowlands are the second and third classes that form the 
matrix of transported sediments as alluvium-derived 
soils (ALs) and colluvium-derived soils (CLs). These low 

to moderately drained soils are defined by their variable 
grain sizes, red colors, and moderate calcification ratios 
developed under low chemical alteration and leaching. 
Furthermore, two distinct soils developed within the 
same dynamics of ALs but having more Si-enriched 

Table 3. Semiquantitative mineralogical analyses of Pls, TRs, ALs, ALsc, and CLs.

Soil Sample no Minerals of bulk composition Minerals of clay fraction

Qz Cal Fsp Hem Mca Dol Clay Kln Ilt Chl+Vrm

TRs 2-D 37 1 2 7 - - 53 + + +

TRs 4-D 15 1 3 6 - - 75 + + +

TRs 10-D 27 3 2 5 - - 63 + + +

TRs 14-D 30 1 10 6 - 1 53 + + +

ALs 1-2-D-A 7 70 2 2 - - 19 + + +

ALs 1-3-D-B 8 38 1 1 - - 52 + + +

ALs 1-4-D-E 13 68 - 1 - - 18 + + +

ALs 1-D-Pal* 27 - 4 3 - 2 62 + + +

ALs 7-1-D 19 56 7 3 - - 15 + + +

ALs 7-2-D 7 70 2 2 - - 19 + + -

ALs 7-3-D 6 71 3 - - 1 19 + + +

ALs 7-4-D 9 75 - - - - 16 + + +

ALs 8-1-D 13 65 3 2 - - 18 + + +

ALs 8-2-D 1 87 - - - - 12 + +

ALs 8-3-D 3 84 2 - - - 11 + + +

ALs 8-4-D 3 97 - - - - - - - -

ALsc 11-D 32 1 4 1 12 1 49 + + +

ALsc 12-1-D 47 1 6 - 10 - 37 + + +

ALsc 12-2-D 20 5 2 1 8 1 63 + + +

ALs 13-1-D 8 32 2 6 7 1 45 + + +

ALs 13-2-D 6 69 2 4 - 1 18 + + +

ALs 13-3-D 1 84 3 2 - 3 7 + + -

ALs 13-4-D 1 83 - 1 - - 16 + + -

CLs 6-D 14 62 3 3 - - 18 + + +

CLs 9-1-D 1 85 - 2 - - 12 + + -

CLs 9-2-D 9 80 1 2 - - 8 + + +

CLs 9-3-D 9 79 - - - 1 11 + - -

+ refers to the presence of mineral; - refers to either absent or undetected.
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Table 4. Whole rock major oxide compositions of TRs, ALs, and CLs and some parent materials (*P1-parent rock of TRs/2-, 4-, 10- and 
14-D; **P2-parent rock of ALsc/12-D; ***P3-parent rock of CLs/6- and 9-D).

Soil/
bedrock Sample SiO2 Al2O3 TiO2 CaO Fe2O3 K2O MgO MnO Na2O P2O5 LOI Sum

TRs 2-D 51.2 20.8 1.5 2.3 9.0 1.5 1.4 0.2 0.3 0.2 11.2 99.1

P1* 2-D-K 0.5 0.2 <0.1 54.7 0.1 <0.1 0.4 <0.1 0.2 <0.1 43.7 99.9

TRs 4-D 45.9 24.3 1.3 1.6 9.6 1.3 1.1 0.1 0.3 0.2 14.0 99.2

P1* 4-D-K 0.6 0.2 <0.1 54.3 0.1 <0.1 0.6 <0.1 0.2 <0.1 43.8 99.9

TRs 10-D 48.0 21.8 1.2 1.9 12.5 1.3 1.0 0.1 0.3 0.1 11.2 99.0

P1* 10-D-K 0.8 0.4 <0.1 54.7 0.1 <0.1 0.3 <0.1 0.2 <0.1 43.4 100.0

TRs 14-D 55.7 18.5 1.4 1.8 9.4 1.2 1.2 0.5 0.3 0.2 9.7 99.4

P1* 14-D-K 0.4 0.1 <0.1 55.1 0.1 <0.1 0.4 <0.1 0.2 <0.1 43.7 100.0

ALs 1-2-A 14.8 6.2 0.4 38.3 2.6 0.5 1.0 0.1 0.3 0.2 35.3 99.2

ALs 1-3-B 15.8 6.6 0.5 36.9 2.8 0.6 0.8 0.1 0.3 0.2 35.4 99.5

ALs 1-4-E 11.0 4.6 0.3 43.2 1.9 0.4 0.9 <0.1 0.2 0.1 37.3 99.7

Pls 1-D-Pal 50.1 22.4 1.5 1.4 9.6 1.7 1.4 0.2 0.3 0.2 11.1 99.4

ALs 7-1-D 17.8 6.2 0.4 37.9 2.8 0.6 0.6 0.1 0.3 0.1 33.0 99.4

ALs 7-2-D 20.0 7.7 0.5 34.1 3.1 0.7 0.7 0.1 0.3 0.2 32.2 99.1

ALs 7-3-D 15.1 5.5 0.4 40.8 2.5 0.5 0.5 <0.1 0.3 0.1 34.1 99.5

ALs 7-4-D 16.5 6.1 0.4 39.2 2.6 0.6 0.6 <0.1 0.3 0.1 33.5 99.6

ALs 8-1-D 11.6 5.0 0.3 42.9 2.2 0.3 0.5 <0.1 0.3 0.1 36.5 99.4

ALs 8-2-D 5.7 2.3 0.2 49.5 1.0 0.1 0.3 <0.1 0.1 0.1 40.5 99.7

ALs 8-3-D 4.8 1.6 0.1 50.7 0.7 0.1 0.3 <0.1 0.2 0.1 41.4 99.8

ALs 8-4-D 5.5 1.8 0.1 49.8 0.9 0.1 0.4 <0.1 0.2 0.1 41.0 99.7

ALsc 11-D 74.4 11.8 1.1 0.2 5.8 1.6 0.8 0.1 0.7 0.1 3.4 99.2

ALsc 12-1-D 76.5 10.2 0.9 0.4 5.7 1.3 0.8 0.1 0.5 0.1 3.2 99.1

ALsc 12-2-D 77.6 9.9 0.7 0.4 5.4 1.4 0.7 0.1 0.6 0.1 3.0 99.2

P2** 12-D-K 73.3 9.0 1.2 3.5 4.6 1.2 1.7 0.1 0.3 0.1 4.8 99.4

ALs 13-1-D 18.6 9.4 0.5 33.9 4.1 0.8 1.0 0.1 0.3 0.1 30.8 99.2

ALs 13-2-D 10.3 5.3 0.3 43.7 2.2 0.4 0.6 <0.1 0.3 0.1 36.8 99.7

ALs 13-3-D 3.7 1.7 0.1 51.5 0.8 0.1 0.4 <0.1 0.2 <0.1 41.3 99.7

ALs 13-4-D 11.6 4.8 0.3 43.7 2.0 0.4 0.5 <0.1 0.2 0.1 36.3 99.7

CLs 6-D 16.3 4.8 0.3 41.1 2.3 0.4 0.5 0.1 0.2 <0.1 33.9 99.7

P3*** 6-D-K 0.5 0.1 <0.1 54.9 0.1 <0.1 0.5 <0.1 0.2 <0.1 43.7 100.0

CLs 9-1-D 11.8 7.9 0.5 40.4 3.3 0.4 0.5 0.1 0.2 0.1 34.7 99.6

CLs 9-2-D 17.9 6.9 0.5 34.9 3.0 0.6 0.7 0.1 0.2 0.2 34.8 99.4

CLs 9-3-D 14.3 7.2 0.4 40.0 2.8 0.4 0.5 0.1 0.2 0.1 34.0 99.7

P3*** 9-D-K 1.1 0.2 <0.1 54.5 0.1 <0.1 0.4 <0.1 0.2 <0.1 43.4 100.0

*P1-bedrock of TRs (2-. 4-. 10- and 14-D); **P2-bedrock of ALsc (12-D); ***P3-bedrock of CLs (6- and 9-D).
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parent rocks (ALsc) reveal very similar properties to 
TRs. Mineralogically, the same mineral assemblages 
with different percentages occur in all weathering suites; 
geochemically, on the other hand, molecular weathering 
ratios reveal different weathering intensities progressing 

on different parts of the polje. It can be concluded that 
intense and profound weathering on the carbonate rocks 
of more stable environments leads to the formation of 
TRs while the low to moderately intense weathering on 
dynamic lowlands in Muğla Polje triggers the formation 

Table 5. Molecular weathering ratios, chemical index of alteration, and mean annual precipitation values of TRs, ALs, and CLs. 

Soil Sample CIA (%) CIA-K 
(%)

MAP
(mm year–1) Salinization* Calcification* Clayeyness* Base loss*

TRs 2-D 83.5 88.9 1230 0.1 0.2 0.4 3.7

TRs 4-D 88.4 92.7 1285 0.1 0.1 0.5 3.3

TRs 10-D 86.2 90.8 1258 0.1 0.1 0.5 3.8

TRs 14-D 84.9 89.8 1243 0.1 0.2 0.3 3.2

ALs 1-2-A 13.7 13.8 160 0.1 6.3 0.4 100.3

ALs 1-3-B 14.9 15.1 177 0.1 5.7 0.4 77.2

ALs 1-4-E 9.5 9.6 99 0.1 9.6 0.4 149.0

Pls 1-D-Pal 86.8 92.9 1288 0.1 0.1 0.4 3.2

ALs 7-1-D 13.8 14.0 162 0.1 6.2 0.3 98.5

ALs 7-2-D 18.0 18.3 223 0.1 4.5 0.4 71.6

ALs 7-3-D 11.7 11.8 131 0.1 7.5 0.4 105.3

ALs 7-4-D 13.2 13.4 153 0.1 6.5 0.4 101.8

ALs 8-1-D 10.3 10.4 110 0.1 8.7 0.4 146.7

ALs 8-2-D 4.4 4.4 26 0.1 21.7 0.4 250.0

ALs 8-3-D 3.0 3.0 6 0.2 31.9 0.3 513.0

ALs 8-4-D 3.5 3.5 12 0.2 27.9 0.3 505.0

ALsc 11-D 82.5 92.9 1288 0.2 0.1 0.2 3.0

ALsc 12-1-D 82.3 91.9 1273 0.2 0.1 0.1 3.3

ALsc 12-2-D 80.5 90.8 1258 0.2 0.1 0.1 4.4

ALs 13-1-D 21.2 21.6 270 0.1 3.7 0.5 72.0

ALs 13-2-D 10.7 10.8 116 0.1 8.4 0.5 150.0

ALs 13-3-D 3.2 3.2 8 0.2 30.5 0.5 522.0

ALs 13-4-D 9.8 9.9 103 0.1 9.2 0.4 149.3

CLs 6-D 10.3 10.4 111 0.1 8.7 0.3 140.7

CLs 9-1-D 16.2 16.3 195 0.1 5.2 0.7 83.0

CLs 9-2-D 16.2 16.4 197 0.1 5.2 0.4 72.8

CLs 9-3-D 15.1 15.2 179 0.1 5.6 0.5 102.8

*salinization, calcification, clayeyness, and base loss are unitless. 
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Figure 6. Binary plots of selected major oxides versus Al2O3 based on the bulk chemical composition of 
TRs, ALs (ALsc specifically labeled where it plots separately), CLs samples and Pls

Figure 7. A-CN-K ternary diagram of molecular proportions of Al2O3-(CaO*+Na2O)-K2O for TRs, ALs, CLs, and Pls (Nesbitt & Young, 
1984) together with the CIA scale along A-CN join. Dashed line I shows the predicted weathering trend; dashed line II refers to the 
replacement of plagioclase by K-feldspar; dashed line III points to the addition of K+ to the weathered residues (Fedo et al., 1995).
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of ALs and CLs. TRs, being the mature soils of the study 
area together with the parent rocks, are suggested to be 
the possible sources of the soils forming the matrix of the 
transported sediments in lowlands of the polje. Further 
research on trace element geochemistry of these soils 
would unlock the relationship between dust contribution 
and the formation of terra rossa. 
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