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Abstract: In this paper, we develop an efficient technique in the framework of multiplicative calculus and suggest a new

class of numerical methods for solving multiplicative nonlinear equations g(x ) = 1. We also develop the convergence

criteria of the proposed methods. We solve the population growth model and minimization problem, which demonstrate

the implementation and efficiency of the new techniques. We also show that these techniques perform much better as

compared to the similar ordinary methods for solving ordinary nonlinear equations f (x ) = 0.
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1. Introduction

In ordinary calculus, the commonly used integral and differential operators are the generalization of basic

operations subtraction and addition of numbers. The concept of this differential and integral calculus was

introduced in the seventeenth century. In the 1970s, Grossman and Katz [13] introduced a different definition

of differential and integral operators that is based on multiplication and division rather than addition and

subtraction. This idea guides the development of the new multiplicative calculus. In recent years, much interest

has been given to developing the theory and applications of multiplicative calculus; see [1–6, 8–13, 16–18, 24–

27, 29] and the references therein. Bashirov et al. [3] provided the theoretical surroundings of multiplicative

calculus. In [12] the authors initiated the applications of multiplicative calculus in the biomedical analysis of

images. Filip and Piatecki [11] connected multiplicative calculus in the developments in economics and finance.

Applications of multiplicative calculus in actuarial science, finance, and demography were shown in [4]. Other

different applications of multiplicative calculus in the structure of abstract writings and in biology were also

considered in [2, 10].

There is a broad range of applications of multiplicative nonlinear equations g(x) = 1, almost in every

field of life, especially in engineering and science. In this paper, we develop a variational iteration technique in

the multiplicative calculus framework and suggest a new class of numerical methods for solving multiplicative

nonlinear equations. The base of the variational iteration technique is linked back to Inokuti et al. [15], but it

was He [14] who identified the significance and importance of the variational iteration method for solving various

kinds of nonlinear problems. Noor [19], Noor and Shah [21], and Noor et al. [23] have used the variational
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iteration technique to develop several iterative methods for solving some nonlinear problems. By using the idea

of Noor [19], we develop the said technique for multiplicative nonlinear equations. We prove the convergence

analysis of the proposed methods. We perform some numerical tests to show the efficiency and performance of

the new methods. We solve the population growth model and minimization problem using the new multiplicative

techniques and compare the results with the ordinary iterative methods. We remark that using multiplicative

methods one can obtain the solution of nonlinear equations in very few iterations instead of using the similar

ordinary techniques.

2. Development of iterative methods

In this section, first we describe some basic results in the field of multiplicative calculus and then, using those

results, construct a new class of iterative methods.

Multiplicative derivative [3]. The function f : D ⊂ R → R is said to be *differentiable at x or on

D if it is positive and differentiable, respectively, at x or on D, and the multiplicative derivative (denoted by

*derivative or f∗ ) satisfies the following limit:

f∗(x) =
d∗f

dx
= lim

h→0

(
f(x+ h)

f(x)

) 1
h

. (1)

Using (1) one can calculate the *derivatives [3] of the function f(x) as:

f∗(x) = e
f′(x)
f(x) = e(ln of)′(x), (2)

where (ln o f)(x) = ln f(x).

f∗∗(x) = e(ln of∗)′(x) = e(ln of)′′(x), (3)

and in general

f∗(n)(x) = e(ln of)(n)(x), n = 0, 1, . . . . (4)

Note that in formula (4) the case n = 0 means no multiplicative derivative and it represents the original function

f(x) = e(ln of)(x).

2.1. Some rules of *differentiation [3]

Let c be a positive constant, f, and g be *differentiable, and h be differentiable; then the following results

holds:

(i) (c)∗ = 1,

(ii) (cf)∗(x) = f∗(x),

(iii) (fg)∗(x) = f∗(x)g∗(x),

(iv)
(

f
g

)∗
(x) = f∗(x)

g∗(x) ,

(v)
(
fh
)∗

(x) = f∗(x)h(x) · f(x)h′(x),

(vi) (f o h)
∗
(x) = f∗(h(x))h

′(x).


(5)

For more detail, see [3, 27]. Now we develop the iterative methods using the above results.
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2.2. Multiplicative nonlinear equation

Consider g : D ⊂ R → R+ to be a positive nonlinear function. Then, in the framework of multiplicative

calculus, the solution of the following nonlinear equation:

g(x) = 1, (6)

exists and the equation is known as a multiplicative nonlinear equation. We remark that (6) is a nonlinear

equation in the framework of multiplicative calculus. The aim of this text is to develop methods for (6).

Suppose that α is the solution of multiplicative nonlinear equation (6).

Consider the following relation in the framework of multiplicative calculus:

ex = G(x), (7)

with

G(x) = ex (g(x))
λϕ(x)

, (8)

where ϕ(x) ̸= 0 is an arbitrary function and λ ̸= 0 is a parameter. By applying the natural log to both sides

of (7) and using (8), we get the following fixed point problem:

x = x+ λϕ(x) ln (g(x)) . (9)

Now, by taking the first *derivative of G(x) in (8) by applying the rules (iii) and (v) of (5), we have

d∗G(x)

dx
= e ·

(
(g∗(x))

λϕ(x) · (g(x))λϕ
′(x)
)
. (10)

To find the minimum of a function using the ordinary derivative we use f ′(x) = 0, which is the optimality

criterion [7] in ordinary calculus. Generalizing this concept to multiplicative calculus, the optimality condition

for finding the minimum of function G(x) is given by

d∗G(x)

dx
= 1. (11)

By using the optimality criterion (11) in (10), we obtain

1 = e ·
(
(g∗(x))

λϕ(x) · (g(x))λϕ
′(x)
)
. (12)

Now, applying the natural log to both sides of (12), we get

λ =
−1

[ϕ(x) ln (g∗(x)) + ϕ′(x) ln (g(x))]
. (13)

By using the value of λ in the fixed point problem (9), we have

x = x− ϕ(x) ln (g(x))

ϕ(x) ln (g∗(x)) + ϕ′(x) ln (g(x))
. (14)
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From the fixed point problem (14), we suggest the following iterative scheme for solving the multiplicative

nonlinear equation g(x) = 1:

xn+1 = xn − ϕ(xn) ln (g(xn))

ϕ(xn) ln (g∗(xn)) + ϕ′(xn) ln (g(xn))
. (15)

Iterative scheme (15) is the main recurrence relation for the multiplicative iterative methods. By taking different

values of arbitrary function ϕ(xn) in (15), we infer numerous multiplicative iterative methods for solving

multiplicative nonlinear equations (6) and this is the core aim of this article.

Now consider an individual case of the arbitrary functions ϕ(xn) in (15).

Let ϕ(xn) = eβxn . Then ϕ′(xn) = βeβxn and, accordingly from (15), we obtain the following iterative

method for solving multiplicative nonlinear equation g(x) = 1:

Method 2.1 For a given initial value x0, approximate solution xn+1 of multiplicative nonlinear equation

g(x) = 1 by the following iterative scheme:

xn+1 = xn − ln (g(xn))

ln (g∗(xn)) + β ln (g(xn))
, for n = 0, 1, 2, . . . , (16)

where β is a parameter and a suitable selection of β makes the method more rapidly convergent. Other different

choices of ϕ(xn) can be taken, for example ϕ(xn) = e
β

g∗(xn) , ϕ(xn) = e
βg(xn)
g∗(xn) , etc., which gives different new

methods. The convergence and numerical efficiency of these methods may be different from each other.

For β = 0 in (16), it reduces to the following iterative scheme:

Method 2.2 For a given initial guess x0, approximate the solution xn+1 of multiplicative nonlinear equation

g(x) = 1 by the scheme:

xn+1 = xn − ln (g(xn))

ln (g∗(xn))
, for n = 0, 1, 2, . . . . (17)

Method 2.2 is the multiplicative Newton method for solving the multiplicative nonlinear equation (6). We would

like to mention that Method 2.2 was derived in [25].

Now, for β = − ln(g∗∗(xn))
2 ln(g∗(xn))

in (16), it lessens to the following method for g(x) = 1:

Method 2.3 For a given initial guess x0, approximate the solution xn+1 of multiplicative nonlinear equation

g(x) = 1 by the iterative method:

xn+1 = xn − 2 (ln g(xn)) ln (g
∗(xn))[

2 (ln (g∗(xn)))
2 − ln (g(xn)) ln (g∗∗(xn))

] , for n = 0, 1, 2, . . . . (18)

Method 2.3 is the modified Halley method (see [20] for the ordinary Halley method) for solving (6) in the

framework of multiplicative calculus.
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Similarly, by suitable and apposite selection of β in (16) one can acquire a variety of various iterative

methods. Now we propose the following two-step method by taking (16) as a predictor and the identical as a

corrector, but with frozen denominator:

Method 2.4 For a given initial guess x0, approximate the solution xn+1 of multiplicative nonlinear equation

g(x) = 1 by the following iterative scheme:

yn = xn − ln (g(xn))

ln (g∗(xn)) + β ln (g(xn))
,

xn+1 = yn − ln (g(yn))

ln (g∗(xn)) + β ln (g(xn))
, for n = 0, 1, 2, . . . . (19)

Method 2.4 is also a new predictor-corrector iterative scheme for solving the multiplicative nonlinear equation

(6).

3. Convergence analysis

In this section, first we describe the multiplicative Taylor theorem for one variable.

Multiplicative Taylor theorem [3]. Let D be an open interval and let f : D → R be n + 1 times

*differentiable on D. Then for any x, x+ h ∈ D, there exists a number θ ∈ (0, 1) such that

f(x+ h) =

(
n∏

m=0

(
f∗(m)(x)

)hm

m!

) (
f∗(n+1)(x+ θh)

) hn+1

(n+1)!

. (20)

Now we study the convergence criteria of the methods proposed in the previous section.

Theorem 3.1 Consider g : D → R+ to be a positive function. Let g be a sufficiently *differentiable and

differentiable function for all x ∈ D. Assume that there exists a solution α ∈ [a, b] ⊂ D of nonlinear equation

(6) such that g(α) = 1. Then there exists a δ > 0, such that the iteration scheme defined by Method 2.4

converges to the solution α for any initial approximation x0 ∈ [α− δ, α+ δ] and its rate of convergence is

three.

Proof Consider the iteration defined by Method 2.4:

xn+1 = yn − ln (g(yn))

ln (g∗(xn)) + β ln (g(xn))
, (21)

where

yn = xn − ln (g(xn))

ln (g∗(xn)) + β ln (g(xn))
. (22)

From (21), by taking xn − α = en, yn − α = e∗n and xn+1 − α = en+1, we have

en+1 − e∗n = − ln (g(yn))

ln (g∗(xn)) + β ln (g(xn))
. (23)
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From (23), after some simplification, we get

ln

[(
g∗(xn) (g(xn))

β
)(en+1−e∗n)

(g(yn))

]
= 0. (24)

By applying natural exponential on both sides of (24), we obtain

(
g∗(xn) (g(xn))

β
)en+1

(
g∗(xn) (g(xn))

β
)−e∗n

g(yn) = 1. (25)

From (25), we get

(
g∗(xn) (g(xn))

β
)en+1

=

(
g∗(xn) (g(xn))

β
)e∗n

g(yn)
. (26)

Similarly, from (22), we obtain

(
g∗(xn) (g(xn))

β
)e∗n

=

(
g∗(xn) (g(xn))

β
)en

g(xn)
. (27)

Now, by expanding g(xn) using the multiplicative Taylor theorem (20) about α, up to the first 4 factors, we

have

g(xn) ≈ g(α)g∗(α)(xn−α)g∗∗(α)
(xn−α)2

2! g∗∗∗(α)
(xn−α)3

3! . (28)

Using g(α) = 1, we get

g(xn) ≈ g∗(α)eng∗∗(α)
e2n
2! g∗∗∗(α)

e3n
3! . (29)

From (29), we have the result

(g(xn))
β ≈ g∗(α)βeng∗∗(α)

βe2n
2! g∗∗∗(α)

βe3n
3! . (30)

Similarly, by expanding g∗(xn) using (20) about α, up to the first 4 factors, we have

g∗(xn) ≈ g∗(α)g∗∗(α)eng∗∗∗(α)
e2n
2! g∗(iv)(α)

e3n
3! . (31)

By using (29)–(31), we obtain

(
g∗(xn) (g(xn))

β
)en

g(xn)
=

(
g∗(α)βg∗∗(α)(

1
2!+

βen
2! )g∗∗∗(α)

(
2en
3! +

βe2n
3!

))e2n

, (32)

and similarly, using (30) and (31), we get

(
g∗(xn) (g(xn))

β
)e∗n

=

(
g∗(α)(1+βen)g∗∗(α)

(
en+

βe2n
2!

)
g∗∗∗(α)

(
e2n
2! +

βe3n
3!

))e∗n

. (33)
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Thus, using (32) and (33) in (27), we obtain the following result:(
g∗(α)(1+βen)g∗∗(α)

(
en+

βe2n
2!

)
g∗∗∗(α)

(
e2n
2! +

βe3n
3!

))e∗n

=

(
g∗(α)βg∗∗(α)(

1
2!+

βen
2! )g∗∗∗(α)

(
2en
3! +

βe2n
3!

))e2n

. (34)

By applying the natural log on both sides of (34), we have

e∗n ln

(
g∗(α)(1+βen)g∗∗(α)

(
en+

βe2n
2!

)
g∗∗∗(α)

(
e2n
2! +

βe3n
3!

))

= e2n ln

(
g∗(α)βg∗∗(α)(

1
2!+

βen
2! )g∗∗∗(α)

(
2en
3! +

βe2n
3!

))
. (35)

From (35), we have the following result:

e∗n = λ1e
2
n, (36)

where λ1 > 0, is given by

λ1 =

ln

(
g∗(α)βg∗∗(α)(

1
2!+

βen
2! )g∗∗∗(α)

(
2en
3! +

βe2n
3!

))

ln

(
g∗(α)(1+βen)g∗∗(α)

(
en+

βe2n
2!

)
g∗∗∗(α)

(
e2n
2! +

βe3n
3!

)) . (37)

Now, by expanding g(yn) using the multiplicative Taylor theorem (20) about α, up to the first 4 factors, we

have

g(yn) ≈ g(α)g∗(α)(yn−α)g∗∗(α)
(yn−α)2

2! g∗∗∗(α)
(yn−α)3

3! . (38)

Using g(α) = 1, we get

g(yn) ≈ g∗(α)e
∗
ng∗∗(α)

(e∗n)
2

2! g∗∗∗(α)
(e∗n)

3

3! . (39)

By using (30), (31), and (39), and also using the value of e∗n from (36), we obtain(
g∗(xn) (g(xn))

β
)e∗n

g(yn)

=

[
g∗(α)βg∗∗(α)(1+

βen
2! −λ1en

2! )g∗∗∗(α)

(
en
2! +

βe2n
3! −λ2

1e3n
3!

)]λ1e
3
n

, (40)

and similarly, by using (30) and (31), we get(
g∗(xn) (g(xn))

β
)en+1

=

(
g∗(α)(1+βen)g∗∗(α)

(
en+

βe2n
2!

)
g∗∗∗(α)

(
e2n
2! +

βe3n
3!

))en+1

. (41)

685



WASEEM et al./Turk J Math

Thus, by using (40) and (41) in (26), we obtain the following result:

[
g∗(α)(1+βen)g∗∗(α)

(
en+

βe2n
2!

)
g∗∗∗(α)

(
e2n
2! +

βe3n
3!

)]en+1

=

[
g∗(α)βg∗∗(α)(1+

βen
2! −λ1en

2! )g∗∗∗(α)

(
en
2! +

βe2n
3! −λ2

1e3n
3!

)]λ1e
3
n

. (42)

By applying the natural log on both sides of (42), we have

en+1 ln

[
g∗(α)(1+βen)g∗∗(α)

(
en+

βe2n
2!

)
g∗∗∗(α)

(
e2n
2! +

βe3n
3!

)]

= λ1e
3
n ln

[
g∗(α)βg∗∗(α)(1+

βen
2! −λ1en

2! )g∗∗∗(α)

(
en
2! +

βe2n
3! −λ2

1e3n
3!

)]
. (43)

Finally, we have the following error condition:

en+1 = λ2e
3
n, (44)

where λ2 > 0 is given by

λ2 = λ1

ln

[
g∗(α)βg∗∗(α)(1+

βen
2! −λ1en

2! )g∗∗∗(α)

(
en
2! +

βe2n
3! −λ2

1e3n
3!

)]

ln

[
g∗(α)(1+βen)g∗∗(α)

(
en+

βe2n
2!

)
g∗∗∗(α)

(
e2n
2! +

βe3n
3!

)] . (45)

It is clear from the error condition (44) that Method 2.4 converges to the solution α with a convergence rate of

the third order. 2

Similarly, using the above technique one can easily prove the convergence of Methods 2.1–2.3.

4. Numerical examples

In this section, we consider some numerical examples to demonstrate the efficiency and performance of newly

developed methods; see Tables 1–3 and Figures 1–3. We compare our new methods (16) (*VIM), (17) (*Halley),

and (19) (*VIM2) with (*NM) [25], (18), and the following methods:

(i) Ordinary variational iteration method [19] (VIM):

xn+1 = xn − f(xn)

f ′(xn) + βf(xn)
.

(ii) Ordinary Newton method [7] (NM):

xn+1 = xn − f(xn)

f ′(xn)
.
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(iii) Ordinary Halley method [20] (Halley):

xn+1 = xn − 2f(xn)f
′(xn)[

2 (f ′(xn))
2 − f(xn)f ′′(xn)

] .
(iv) Two-step third-order method [28] (TR):

xn+1 = yn − f(yn)

f ′(xn)
, where yn = xn − f(xn)

f ′(xn)
.

Note that the main problem of this paper is to solve g(x) = 1. For the ordinary method we use f(x) = g(x)−1 =

0. We use an Intel Core 2 Duo CPU 2 GHz computer (32 bit Windows XP) with 1 GB of RAM. We use Maple

for all computational work with 150 digits floating point arithmetic (digits: 150). For the computer programs,

we employ the stopping criteria |g(xn)− 1| < ϵ for multiplicative methods and |f(xn)− 0| < ϵ for ordinary

methods, where ϵ = 10−40. We approximate the computational order of convergence (COC) (see [22]) using the

following formula:

COC ≈ ln (|xn+1 − xn| / |xn − xn−1|)
ln (|xn − xn−1| / |xn−1 − xn−2|)

.

Example 4.1 [20] Consider the following multiplicative nonlinear equation:

g(x) = ex
2+7x−30 = 1.

The solution of this problem is x = 3. We take x0 = 3.5 as an initial approximation for the computer programs.

We also chose β = −0.1 for multiplicative and ordinary VIM methods. The computational results for this

problem are shown in Table 1. The results of this example show that the multiplicative methods are very efficient

as compared to the ordinary methods. The multiplicative methods converge to the solution in a few iterations

with high accuracy as compared to the other methods. This fact is also clear from Figure 1. One can see that

the ordinary VIM and NM methods approximate the solution in 13 iterations, whereas *VIM and *NM provide

the same solution in only 5 iterations. A similar situation can be seen in the comparison of the ordinary Halley

and *Halley methods.

Table 1. Computational results for Example 4.1.

Method IT xn+1 Rel. err. COC

*VIM 5 3.000000000000000 4.29e-59 2.00000

*NM 5 3.000000000000000 2.66e-44 2.00000

*Halley 4 3.000000000000000 1.94e-114 2.99999

*VIM2 3 3.000000000000000 2.57e-45 3.00619

VIM [19] 13 3.000000000000000 1.47e-49 2.00000

NM [7] 13 3.000000000000000 1.52e-47 2.00000

Halley [20] 7 3.000000000000000 2.56e-44 3.00032

TR [28] 9 3.000000000000000 4.04e-45 2.99572
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Figure 1. Log of residuals for Example 4.1.

Example 4.2 (Application to population growth model) [7]. Consider the multiplicative nonlinear equa-

tion that arises in mathematical modeling of the growth of population over short periods of time:

g(x) =
1000

1564
ex +

435

1, 564x
(ex − 1) = 1,

where x denotes the constant birth rate of the population and whose value needs to be found. We use x0 = 1

as an initial guess for the computer programs. We also chose β = −0.01 for the multiplicative and ordinary

VIM methods. The solution of this problem approximated to 15 decimal digits is x = 0.100997929685750. The

numerical results for this problem are given in Table 2. Figure 2 shows the fall of residuals for this example. It

is clear from the results of this problem that new multiplicative methods are outstanding in their performance

as compared to the ordinary methods. It is clear that number of iterations of *VIM, *NM, *Halley, and *VIM2

methods is very lower as compared to the ordinary VIM, NM, Halley, and TR methods.

Example 4.3 (Application to minimization problem) [16, 24]. Consider the following Lenard–Jones

Table 2. Computational results for Example 4.2.

Method IT xn+1 Rel. err. COC

*VIM 5 0.100997929685750 2.29e-51 2.00000

*NM 5 0.100997929685750 4.89e-47 2.00000

*Halley 4 0.100997929685750 4.70e-91 2.99989

*VIM2 4 0.100997929685750 1.61e-117 2.99996

VIM [19] 11 0.100997929685750 6.70e-57 2.00000

NM [7] 11 0.100997929685750 2.16e-56 2.00000

Halley [20] 7 0.100997929685750 2.18e-75 2.99974

TR [28] 8 0.100997929685750 3.11e-103 2.99998

688



WASEEM et al./Turk J Math

1 2 3 4 5 6 7 8 9 10 11
−300

−250

−200

−150

−100

−50

0

50

Iterations

Lo
g 

of
 R

es
id

ua
ls

*VIM
*NM
*Halley
*VIM2
VIM,NM
Halley
TR

Figure 2. Log of residuals for Example 4.2.

potential [16]:

V (x) = V0

[(σ
x

)12
−
(σ
x

)6]
, (46)

which is well known in atomic physics and physical chemistry as a model in the interaction between two neutral

atoms or molecules, where V0 denotes the depth of the potential and σ the position where the interparticle

interaction becomes zero. We are interested to find the minimum value of function V (x). The function V (x)

has minimum value at x = 2
1
6σ. We select V0 = 1, σ = 2. Then the actual minimum value of function V (x)

will be x = 2
7
6 .

By taking the derivative of function V (x) in (46), we convert the minimization problem into the problem

of finding the solution of the nonlinear equation given by

f(x) = V ′(x) = V0

[
−12σ12

x13
+

6σ6

x7

]
= 0. (47)

Table 3. Computational results for Example 4.3.

Method IT xn+1 Rel. err. COC

*VIM 5 2.244924096618746 3.95e-44 2.00000

*NM 6 2.244924096618746 7.40e-44 2.00000

*Halley 4 2.244924096618746 4.14e-69 2.99885

*VIM2 4 2.244924096618746 3.60e-89 2.99996

VIM [19] 13 2.244924096618746 9.00e-41 2.00000

NM [7] 14 2.244924096618746 1.02e-65 2.00000

Halley [20] 8 2.244924096618746 2.67e-97 2.99998

TR [28] 10 2.244924096618746 1.02e-87 2.99993
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Figure 3. Log of residuals for Example 4.3.

Now we can rewrite nonlinear equation (47) in an equivalent form as multiplicative nonlinear equation:

g(x) =

(
6V0σ

6

x7

)(
x13

12V0σ12

)
= 1.

We use x0 = 1.4 as initial values for the computer programs in this example. We also chose β = 0.3 for the

multiplicative and ordinary VIM methods. The comparison of numerical results for this problem is given in

Table 3. Figure 3 shows the fall of residuals for this problem. It is clear from Table 3 and Figure 3 that the

effectiveness and presentation of the new methods are much better than those of the other similar ordinary

methods. Results of this example also show that the multiplicative methods converge more rapidly to the

solution as compared to the ordinary ones.

5. Conclusion

In this paper, we have developed some new multiplicative iterative methods. By solving some examples, we

showed that the multiplicative methods are more efficient and provide the approximate solution within the given

tolerance in a very small number of iterations as compared to the similar ordinary techniques; see Tables 1–3

and Figures 1–3. This technique can also be generalized to nonlinear systems of equations.
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