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Abstract: The purpose of this paper is to answer a question of Fulman on the asymptotic normality of the number

of inversions in riffle shuffles. We will also study asymptotics for the number of descents and the length of the longest

alternating subsequences in the same shuffling scheme.
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1. Introduction

For a sequence x = (x1, . . . , xn) of real numbers, the numbers of descents and inversions are defined by

des(x) =
∑n−1

i=1 1(xi > xi+1) and inv(x) =
∑

1≤i<j≤n 1(xi > xj), respectively. For a permutation π in the

symmetric group Sn , we write des(π) for the number of descents in the sequence (π(1), π(2), . . . , π(n)). Similar

notation will be used for the number of inversions and other permutation statistics. In statistics literature,

the number of inversions (or its slight variations) is commonly known as Kendall’s tau. Both the number of

descents and inversions and various other related statistics are standard tools in nonparametric statistics to test

the distribution of random sequences.

In this paper, we will analyze des(ρ) and inv(ρ) when ρ is a random permutation with riffle shuffle

distribution (which is defined in the next section precisely). In particular, we will answer a question of Fulman

in [10] by proving the asymptotic normality of the number of inversions in riffle shuffles.

All statistics previously mentioned are well understood when the underlying permutation is picked

uniformly at random. See [10] for a proof that both the number of descents and the number of inversions

are asymptotically normal in a uniform setting and [16] for an extension of the results of [10] to generalized

descents. Also, let us note that the number of inversions is also studied in random words [4, 14] and in unfair

permutations [2].

The proofs that follow will be mainly based on tools from Stein’s method, which is a technique used

for obtaining convergence rates in distributional approximations. The method was first introduced for normal

approximation in 1972 [20], but since then it has been applied to several other distributions. Stein’s method

in general makes use of characterizing differential equations of distributions and various coupling constructions

to get error bounds with respect to certain probability metrics. See [18] for an introductory survey on Stein’s

method and [5] for an involved analysis of normal approximation.
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Some notation is used below. For a ∈ N , [a] is defined to be the set {1, . . . , a} . G stands for a standard

normal random variable. For given random variables X and Y , X ≤s Y is used for the stochastic dominance

of X by Y . We write →d for convergence in distribution. C will be used for a constant that does not depend

on the underlying parameter n , which may vary in different lines. Finally, the standard abbreviation i.i.d. is

used for independent and identically distributed.

The organization of the manuscript is as follows. Section 2 provides background on riffle shuffles and

makes the connection to random words via inverse shuffles. Inverse shuffles for a variation of top m to random

shuffles is also introduced and discussed in the same section. Section 3 treats the asymptotic distribution of

the number of inversions in riffle shuffles. Finally, in Section 4 we provide asymptotic results for the number

of descents and the length of longest alternating subsequences in uniformly random permutations and riffle

shuffles.

2. Riffle shuffles and connection to random words

The method most often used to shuffle a deck of cards is the following: first, cut the deck into two piles and

then riffle the piles together, that is, drop the cards from the bottom of each pile to form a new pile. The

first mathematical models for riffle shuffles were introduced in [11] and (Reeds J, Theory of riffle shuffling,

unpublished manuscript, 1981), and they were later further insvestigated in [1, 3, 10]. Now, following [10], we

give two equivalent rigorous descriptions of this shuffling scheme.

Description 1 Cut the n card deck into a piles by picking pile sizes according to the mult(a;p) distribution,

where p = (p1, . . . , pa) . That is, choose b1, . . . , ba with probability(
n

b1, . . . , ba

)
Πa

i=1p
bi
i .

Then choose uniformly one of the
(

n
b1,...,ba

)
ways of interleaving the packets, leaving the cards in each pile in

their original order.

Definition 2.1 The probability distribution on Sn resulting from Description 1 will be called the riffle shuffle

distribution and will be denoted by Pn,a,p. When p = (1/a, 1/a, . . . , 1/a) , the shuffle is said to be unbiased and

the resulting probability measure is denoted by Pn,a. Otherwise, the shuffle is said to be biased.

Note that the usual way of shuffling n cards with two hands corresponds to Pn,2,p . Before moving on to

Description 2, let us give an example via unbiased 2-shuffles. The permutation

ρn,2 =

(
1 2 3 4 5 6 7
1 2 5 3 6 7 4

)
is a possible outcome of the Pn,2 distribution. Here the first four cards form the first pile, the last three form

the second one, and these two piles are riffled together. The following alternative description will be important

in the sequel.

Description 2 (Inverse a-shuffles) The inverse of a biased a-shuffle has the following description. Assign

independent random digits from {1, . . . , a} to each card with distribution p = (p1, . . . , pa) . Then sort according

to digit, preserving relative order for cards with the same digit.
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In other words, if σ is generated according to Description 2, then σ−1 ∼ Pn,a,p. A proof of the equivalence

of these two descriptions (with two other formulations) for unbiased shuffles can be found in [3]. Extension

to the biased case is straightforward. Now let us give an example of generating a random permutation with

distribution Pn,2 using inverse shuffles.

Consider a deck of 7 cards. We wish to shuffle this deck with the unbiased 2-shuffle distribution using

inverse shuffles. Let X = (X1, . . . , Xn) = (1, 1, 2, 1, 2, 2, 1) be a sample from the uniform distribution over

{1, 2}7 . Then sorting according to digits preserving relative order for cards with the same digit gives the new

configuration of cards as (1, 2, 4, 7, 3, 5, 6). In the usual permutation notation, the resulting permutation after

the inverse shuffle is

σ =

(
1 2 3 4 5 6 7
1 2 4 7 3 5 6

)
,

and the resulting sample from Pn,2 is

ρn,2 := σ−1 =

(
1 2 3 4 5 6 7
1 2 5 3 6 7 4

)
.

Letting ρn,a,p be a random permutation with distribution Pn,a,p that is generated using inverse shuffles with

the random word X = (X1, . . . , Xn), observe that

ρn,a,p(i) = #{j : Xj < Xi}+#{j ≤ i : Xj = Xi}.

Lemma 2.2 Let X = (X1, . . . , Xn) where Xi s are independent with distribution p = (p1, . . . , pa) . Also let

ρn,a,p be the corresponding random permutation having distribution Pn,a,p. Then for i < k , ρn,a,p(i) > ρn,a,p(k)

if and only if Xi > Xk.

Proof Note that for i, k ∈ [n] , we have ρn,a,p(i) > ρn,a,p(k) if and only if

#{j : Xj < Xi}+#{j : j ≤ i,Xj = Xi} > #{j : Xj < Xk}+#{j : j ≤ k,Xj = Xk}. (2.1)

Since i < k , it is now immediate that the relation in (2.1) can occur only when Xi > Xk . 2

This has the following corollary:

Corollary 2.3 Consider the setting in Lemma 2.2 and let S ⊂ {(i, j) ∈ [n]× [n] : i < j}. Then∑
(i,j)∈S

1(ρn,a,p(i) > ρn,a,p(j)) =
∑

(i,j)∈S

1(Xi > Xj). (2.2)

In the following sections, we will make use of (2.2) to study various statistics of riffle shuffles. Before

that, let us close this section by describing how the random word approach above can be employed to study a

variation of top m to random shuffles, which was first introduced in Section 5 in [9]. Consider a deck of n cards

and let 0 ≤ m ≤ n be fixed. Now cut off the top m cards and insert them randomly among the remaining

n−m cards, keeping both packets in the same relative order. We will call this shuffling method ordered top m

to random shuffles.

An ordered top m to random shuffle is actually equivalent to a 2-shuffle in which exactly m cards are cut

off (whereas for the 2-shuffles case, m is a binomial random variable). It is not hard to see that the following

result gives an inverse description of ordered top m to random shuffles.
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Proposition 2.4 The inverse of an ordered top m to random shuffle has the following description. Assign

card i ∈ [n] a random bit Xi where the random vector X = (X1, . . . , Xn) is uniformly distributed over {1, 2}n

with the restriction that
∑n

i=1 Xi = n−m. Then sort according to digit, preserving relative order for cards with

the same digit.

Letting τ be a random permutation in Sn with ordered top m to random shuffle distribution, Proposition

2.4 allows us to rewrite des(τ) or inv(τ) in a useful way exactly as we did in Corollary 2.3. Namely, we have

des(τ) =d

n−1∑
i=1

1(Xi > Xi+1) and inv(τ) =d

∑
i<j

1(Xi > Xj),

where this time X = (X1, . . . , Xn) is uniformly distributed over {1, 2}n with the restriction that
∑n

i=1 Xi =

n−m. Hence, the problem is transformed into a problem of uniform permutations of a fixed multiset, which is

well studied in the literature. See, for example, [8]. We will revisit this in Section 4.

3. Central limit theorem for the number of inversions

In this section we will discuss the asymptotic normality of the number of inversions in biased riffle shuffles and

will provide a convergence rate of order 1/
√
n in the Kolmogorov distance. This will in particular show that

the conjecture of Fulman in [10], the asymptotic normality of number of inversions in an unbiased setting, is

true as well. Before getting into the main result, let us note that the asymptotic normality of the number of

inversions in random words was recently proven by Bliem and Kousidis [4] without convergence rates in a more

general framework. In [14], Janson gave equivalent descriptions of the random words problem and analyzed the

asymptotic behavior again without converge rates.

Recalling that the Kolmogorov distance between two probability measures µ and ν on R is defined by

dK(µ, ν) = sup
z∈R

|µ((−∞, z])− ν((−∞, z])|,

our main result on the number of inversions in riffle shuffles is as follows.

Theorem 3.1 Let ρn,a,p be a random permutation with distribution Pn,a,p where p is nondegenerate. Then

dK

(
inv(ρn,a,p)− en

sn
,G
)

≤ C√
n
,

en = E[inv(ρn,a,p)] =
(
n

2

) a∑
k=2

(
k−1∑
i=1

pi

)
pk,

and

s2n ∼
(
n

2

) a−1∑
i=1

∑
j=i+1

pipj .+

(
n

2

)(
n− 2

2

)a−1∑
i=1

a∑
j=i+1

pipj

2

+10

(
n

3

) a−1∑
j=2

(j−1∑
i=1

pi

) a∑
k=j+1

pk

 pj −

((
n

2

) a∑
k=2

(
k−1∑
i=1

pi

)
pk

)2

= V ar(inv(ρn,a,p)).
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Our strategy in the proof will be using Corollary 2.3 to transform the problem into random words language

and then using Chen and Shao’s results on asymptotics of U-statistics [7]. Before moving on to the proof of

main result, we provide some necessary background on U-statistics. First, for a real valued symmetric function

h : Rm → R and for a random sample X1, . . . , Xn with n ≥ m , a U-statistic with kernel h is defined by

Un = Un(h) =
1(
n
m

) ∑
Cm,n

h(Xi1 , . . . , Xim)

where the summation is over the set Cm,n of all
(
n
m

)
combinations of m integers, i1 < i2 < . . . < im chosen

from {1, . . . , n}. The next result of Chen and Shao on U-statistics will turn out to be useful in our proof.

Here, h1(X1) := E[h(X1, . . . , Xm)|X1] . Also recall that a kernel h : Rn → R is said to be symmetric if

h(x1, x2, . . . , xn) = h(xτ(1), xτ(2), . . . , xτ(n)), for any (x1, x2, . . . , xn) ∈ Rn , and for any τ ∈ Sn .

Theorem 3.2 [7] Let X1, . . . , Xn be i.i.d. random variables, Un be a U-statistic with symmetric kernel

h , E[h(X1, . . . , Xm)] = 0, σ2 = V ar(h(X1, . . . , Xm)) < ∞ , and σ2
1 = V ar(h1(X1)) > 0. If in addition

E|h1(X1)|3 < ∞, then

dK

( √
n

mσ1
Un,G

)
≤ 6.1E|h1(X1)|3√

nσ3
1

+
(1 +

√
2)(m− 1)σ

(m(n−m+ 1))1/2σ1
. (3.1)

Before moving on to the proof, let us finally note that σ1 satisfies the following asymptotic relation

mσ1√
n

∼
√
V ar(Un) (3.2)

(see Theorem 1 of Ferguson T, U-Statistics, lecture notes, http://www.math.ucla.edu/ tom/Stat200C/Ustat.pdf).

Proof Let p be nondegenerate and ρn,a,p have distribution Pn,a,p . Leaving the details for the computations

regarding en and sn to the end of the proof, we first prove that inv(ρn,a,p) can indeed be represented as a

U-statistic.

Let U1, . . . , Un be independent random variables uniformly distributed over (0, 1). Let σ ∈ Sn be a

random permutation so that Uσ(1) < Uσ(2) < · · · < Uσ(n) . Noting that σ has uniform distribution over Sn , we

have
(X1, . . . , Xn) =d (Xσ(1), . . . , Xσ(n)). (3.3)

Therefore,

inv(ρn,a,p) =
∑
i<j

1(ρn,a,p(i) > ρn,a,p(j)) =d

∑
i<j

1(Xi > Xj) =d

∑
i<j

1(Xσ(i) > Xσ(j))

=

n∑
i,j=1

1(Xσ(i) > Xσ(j), i < j),

where the third equality follows from (3.3). Observing i < j if and only if Uσ(i) < Uσ(j) , we obtain

inv(ρn,a,p) =d

n∑
i,j=1

1(Xσ(i) > Xσ(j), Uσ(i) < Uσ(j)) =

n∑
i,j=1

1(Xi > Xj)1(Ui < Uj). (3.4)
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Let Zi = (Xi, Ui), i = 1, . . . , n , and observe that Zi s are i.i.d. random variables. Define the functions f and

g by

f((xi, ui), (xj , uj)) =

(
n

2

)
1(xi > xj)1(ui < uj)

and

g((xi, ui), (xj , uj)) = f((xi, ui), (xj , uj)) + f((xj , uj), (xi, ui)).

Then g is clearly a real valued symmetric function and

n∑
k,l=1

1(Xk > Xl)1(Uk < Ul) =
1(
n
2

) ∑
k<l

g(Zk, Zl). (3.5)

Thus, by (3.4) and (3.5) we conclude that inv(ρn,a,p) is a U-statistic with

inv(ρn,a,p) =d

(
n

2

)−1∑
i<j

(
n

2

)
(1(Xi > Xj)1(Ui < Uj) + 1(Xi < Xj)1(Ui > Uj)).

This in particular implies that Un := inv(ρn,a,p)− E[inv(ρn,a,p)] is also a U-statistic.

We now focus on the moments of inv(ρn,a,p). First, we have

E[inv(ρn,a,p)] = E[inv(X)] = E

∑
i<j

1(Xi > Xj)

 =
∑
i<j

P(Xi > Xj) =

(
n

2

)
P(X1 > X2),

where the last equality follows since Xi s are i.i.d.. Also,

P(X1 > X2) =
a∑

k=2

P(X1 > X2, X1 = k) =
a∑

k=2

(
k−1∑
i=1

pi

)
pk,

from which the conclusion that

E[inv(ρn,a,p)] =
(
n

2

) a∑
k=2

(
k−1∑
i=1

pi

)
pk (3.6)

follows. For the computation of V ar(inv(ρn,a,p)), let S = {(α, β, γ, δ) : 1 ≤ α < β ≤ n, 1 ≤ γ < δ ≤ n} .
Further, define

S0 = {(α, β, γ, δ) ∈ S : α = γ, β = δ},

S1 = {(α, β, γ, δ) ∈ S : {α, β} ∩ {γ, δ} = ∅}, S2 = {(α, β, γ, δ) ∈ S : α = δ},

and

S3 = {(α, β, γ, δ) ∈ S : α = γ, δ < β}, S4 = {(α, β, γ, δ) ∈ S : β = δ, α < γ}.

Then a simple manipulation shows that

E[(inv(X))2] =
∑
S0

Pα,β,γ,δ +
∑
S1

Pα,β,γ,δ + 2
∑
S2

Pα,β,γ,δ + 2
∑
S3

Pα,β,γ,δ + 2
∑
S4

Pα,β,γ,δ,
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where Pα,β,γ,δ = P(Xα > Xβ , Xγ > Xδ). Here and below, we write
∑

S·
instead of

∑
(α,β,γ,δ)∈S·

for convention.

The factors 2 in front of the sum over S3 and the sum over S4 are due to obvious symmetries. To see

why we have the factor 2 in front of the sum over S2 , observe that the summation of Pα,β,γ,δ over the set

{(α, β, γ, δ) ∈ S : β = γ} is the same as the summation over S2 , and that it is not included any other set

defined above.

Now we compute these five sums separately.

Sum over S0 . Clearly,

∑
S0

Pα,β,γ,δ = E[inv(X)] =

(
n

2

) a−1∑
i=1

a∑
j=i+1

pipj . (3.7)

Sum over S1 . We have

∑
S1

Pα,β,γ,δ =
∑
S1

(P(X1 > X2))
2
=

(
n

2

)(
n− 2

2

)a−1∑
i=1

a∑
j=i+1

pipj

2

. (3.8)

Sum over S2 .

∑
S2

Pα,β,γ,δ =

(
n

3

)
P(X1 > X2 > X3) =

(
n

3

) a−1∑
j=2

P(X1 > j > X3)P(X2 = j)

=

(
n

3

) a−1∑
j=2

(j−1∑
i=1

pi

) a∑
k=j+1

pk

 pj . (3.9)

Sum over S3 .

∑
S3

Pα,β,γ,δ =

(
n

3

)
P(X1 > X2, X1 > X3)

= 2

(
n

3

)
P(X1 > X2 > X3)

= 2

(
n

3

) a−1∑
j=2

(j−1∑
i=1

pi

) a∑
k=j+1

pk

 pj . (3.10)

Sum over S4 . Using the same approach we used for computation over S3 ,

∑
S4

Pα,β,γ,δ = 2

(
n

3

) a−1∑
j=2

(j−1∑
i=1

pi

) a∑
k=j+1

pk

 pj . (3.11)
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Combining (3.7), (3.8), (3.9), (3.10), and (3.11), we arrive at

E[(inv(X))2] =

(
n

2

) a−1∑
i=1

a∑
j=i+1

pipj .+

(
n

2

)(
n− 2

2

)a−1∑
i=1

a∑
j=i+1

pipj

2

+10

(
n

3

) a−1∑
j=2

(j−1∑
i=1

pi

) a∑
k=j+1

pk

 pj . (3.12)

Finally, the variance is found to be V ar(inv(X) = E[(inv(X))2]− (E[inv(X])2 , where the moments are as given

in (3.6) and (3.12).

Once we have the first two moments, the asserted central limit theorem now follows by using (3.2) and

estimating the right-hand side of (3.1) in an elementary way. 2

Remark 3.3 The discussion from Section 2 and a simple coupling argument gives the following stochastic

dominance result for the number of inversions:

inv(ρn,2) ≤s inv(ρn,a) ≤s inv(πn),

where a ≥ 2 , πn is a uniformly random permutation in Sn and ≤s denotes the standard stochastic ordering.

Since the means and variances of these three statistics are of the same order, it would not be surprising to obtain

the asymptotic normality of inv(ρn,a) by the corresponding results for inv(ρn,2) and inv(πn). We are planning

to pursue this idea in a future work.

4. Two m-dependent statistics

The purpose of this section is to study the number of descents and the length of longest alternating subsequences

after a riffle shuffle. Both of these two statistics will turn out to be much easier to handle than the number
of inversions due to the underlying local dependence. Also, in this section we focus on unbiased shuffles for

notational convenience, but the results can be extended to a biased setting in a straightforward way.

Before moving on to the main discussion, we discuss some preliminaries. First recall that, if we define

the distance between two subsets of A and B of N by

ρ(A,B) := inf{|i− j| : i ∈ A, j ∈ B},

the sequence of random variables Y1, Y2, . . . is said to be m-dependent if {Yi, i ∈ A} and {Yj , j ∈ B} are

independent whenever ρ(A,B) > m with A,B ⊂ N. The following result from [6] about m -dependent random

variables will be useful.

Theorem 4.1 [6] Let {Yi}i≥1 be a sequence of zero mean m-dependent random variables with W =
∑n

i=1 Yi

and E[W 2] = 1 . If E|Yi|p < ∞ , i = 1, . . . , n , for some p ∈ (2, 3] , then we have

dK(W,G) ≤ 75(10m+ 1)p−1
n∑

i=1

E|Yi|p.
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4.1. Number of descents

Let ρn,a have distribution Pn,a . We know from Corollary 2.3 that

des(ρn,a) =
n−1∑
i=1

1(ρn,a(i) > ρn,a(i+ 1)) =d

n−1∑
i=1

1(Xi > Xi+1),

where Xi s are independent and uniform over [a] . It is then easy to see that E[des(ρn,a)] = (n− 1)a−1
2a . Also,

setting V =
∑n−1

i=1 Vi with Vi = 1(Xi > Xi+1)− a−1
2a , we have V ar(Vi) =

a2−1
4a2 and Cov(Vi, Vi+1) = −

(
a2−1
12a2

)
for i = 1, . . . , n− 1. Then

V ar(V ) =
n−1∑
i=1

V ar(Vi) + 2
∑
i<j

Cov(Vi, Vj) = (n− 1)
a2 − 1

4a2
− 2(n− 1)

(
a2 − 1

12a2

)

=
(a2 − 1)(n− 1)

12a2
.

Letting W =
des(ρn,a)−(n−1) a−1

2a√
(a2−1)(n−1)

12a2

and Yi =
1(Xi>Xi+1)− a−1

2a√
(a2−1)(n−1)

12a2

, we have W =
∑n

i=1 Yi . Noting that Yi s are

1-dependent, and using Theorem 4.1 with p = 3, we arrive at:

Theorem 4.2 Let ρn,a be distributed according to Pn,a. Then

dK

des(ρn,a)− (a−1)(n−1)
2a√

(a2−1)(n−1)
12a2

,G

 ≤ C√
n
.

Remark 4.3 The number of d-descents in ρn,a is defined by

desd(ρn,a) = #{(i, j) ∈ {1, 2, . . . , n}2 : 1 ≤ j − i ≤ d, ρn,a(i) > ρn,a(j)}.

The number of ordinary descents then corresponds to the case d = 1 . When d is fixed, desd(ρn,a) is still a

sum of m-dependent random variables, and so one can employ Theorem 4.1 to show that a similar central limit

theorem holds for desd(ρn,a) .

Remark 4.4 Note that lima→∞ E[des(ρn,a)] = n−1
2 = E[des(πn)] , where πn is a uniformly random permuta-

tion in Sn . This is no surprise, and indeed with a little more effort, one can also conclude that

des(ρn,a) −→d des(πn),

as a → ∞ . The same also holds for other statistics discussed in this manuscript.

Remark 4.5 We conclude this section with a discussion of the asymptotic normality of the number of descents

after ordered top m to random shuffles, which were defined at the end of Section 2. We start by recalling

a special case of a result of Congar and Viswanath [8] on multisets. Let β ∈ [1/2, 1) . Then there exists a
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constant C > 0 depending only on β so that whenever τ is a uniform permutation of the multiset {0n0 , 1n1}
with n0, n1 ∈ N , n0 + n1 = n , max{n0, n1} ≤ βn ,

dK

(
des(τ)− µ

σ
,G
)

≤ C√
n

is satisfied where µ = E[des(τ)] and σ2 = V ar(des(τ)) (for details, see [8]). It is easily seen from this result

and Theorem 2.4 that one can analyze the asymptotic behavior of the number of inversions in ordered top

m to random shuffles under the assumption that max{m,n −m} ≤ βn. Note that this also suggests a natural

generalization of riffle shuffles. To see this, consider the case where the number of cards in the hands is (n0, n1) ,

where (n0, n1) is uniform over the set {(n0, n1) ∈ [n]×[n] : n0+n1 = n,min{n0, n1} ≥ αn} for some 1 > α ≥ 0.

When α = 0 , we get Pn,2. Using α > 0 , we get a different model, which can be meaningful since when one

shuffles a deck it is highly likely that there will be at least a few cards in each hand.

4.2. Another related statistic: longest alternating subsequences

In this section we will study the asymptotic behavior of lengths of longest alternating subsequences in uniform

permutations and riffle shuffles. Letting x := (xi)
n
i=1 be a sequence of real numbers, a subsequence xik , where

1 ≤ i1 < . . . < ik ≤ n , is called an alternating subsequence if xi1 > xi2 < xi3 > . . . xik . The length of the longest

alternating subsequence of x is defined by LAn(x) := max{k : x has an alternating subsequence of length k}.
For example, letting x = (3, 1, 7, 4, 2, 6, 5), one can easily see that (3, 1, 7, 2, 6, 5) is an alternating subsequence

and that LA7(x) = 6. See [19] for a survey on the longest alternating subsequence problem. The following

proposition, whose proof can be found in [13, 17], is quite useful for understanding LAn(x).

Proposition 4.6 [17] Let x := (xi)
n
i=1 be a sequence of distinct real numbers. Then

LAn(x) = 1 + 1(x1 > x2) +
n−1∑
k=2

1(xk−1 > xk < xk+1) +
n−1∑
k=2

1(xk−1 < xk > xk+1).

Example 4.7 Let x = (3, 1, 7, 4, 2, 6, 5). Then the local maximums are {x3, x6} = {7, 6} and the local mini-

mums are {x2, x5} = {1, 2} . Noting that x1 > x2 and using Proposition 4.6, we get LAn(x) = 1+1+2+2 = 6.

Indeed, the subsequence (3, 1, 7, 2, 6, 5) has length 6 and x does not have a longer alternating subsequence.

For the longest alternating subsequence problem in a uniformly random permutation πn in Sn , [13], [17],

and [19] find the expectation and variance as

E[LAn(πn)] =
2n

3
+

1

6
and V ar(LAn(πn)) =

8n

45
− 13

180
.

Letting X1, . . . , Xn be independent uniform random variables over (0, 1),

Ek = {Xk−1 > Xk < Xk+1} ∪ {Xk−1 < Xk > Xk+1} for k = 2, . . . , n− 1, (4.1)
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we have

LAn(πn) = 1 + 1(πn(1) > πn(2)) +
n−1∑
k=2

1(πn(k − 1) > πn(k) < πn(k + 1))

+

n−1∑
k=2

1(πn(k − 1) < πn(k) > πn(k + 1)) =d 1 + 1(X1 > X2) +

n−1∑
k=2

1(Ek),

where in the second equality, we used the discussion from the Introduction. Clearly, LAn(πn) is a sum of

1-dependent random variables and so Theorem 4.1 can be used to improve results of [13] and [17] by obtaining

convergence rates in the central limit theorem.

Theorem 4.8 Let πn be a uniformly random permutation in Sn. Then, for every n ≥ 1 ,

dK

LAn(π)−
(
2n
3 + 1

6

)√
8n
45 − 13

180

,G

 ≤ C√
n

where C is a constant independent of n .

Next we work on alternating subsequences in riffle shuffles. Note that, with a close connection to the number

of extremum points, longest alternating subsequences can be quite useful in nonparametric tests. Indeed, our

motivation here comes from practical discussions of this issue (Nass C, Running the Cheaters Out of Town:

Counting Out Corrupt Coins, Dubious Dice, Shifty Shuffling, and Lying Lotteries, unpublished manuscript) on

cheating in card games.

We start by recalling the development of longest alternating subsequences in random words given in [13].

This time we need to be careful about defining maxima and minima properly as we may have repeated values

in the sequence. We say that a sequence x = (x1, . . . , xn) ∈ [a]n has a local minimum at k if (i) xk < xk+1 or

k = n , and if (ii) for some j < k , xj > xj+1 = . . . = xk−1 = xk . Similarly, x has a local maximum at k if (i)

xk > xk+1 or k = n , and if (ii) for some j < k , xj < xj+1 = . . . = xk−1 = xk , or for all j < k , xj = xk. With

these definitions, a useful representation of LAn(x) was found by Houdre and Restrepo [13] as

LAn(x) = # of local maxima of x +# of local minima of x .

Letting X = (X1, . . . , Xn) be a random word where Xi s are independent and uniform over [a], they also

showed that

LAn(X)− n(2/3− 1/3a)√
nγ

−→d G, (4.2)

as n → ∞ where

γ2 =
8

45

(
(1 + 1/a)(1− 3/4a)(1− 1/2a)

1− 2/(a+ 1)

)
. (4.3)

(Note there is a typo in [13] for the expression of γ2 . This can be checked from [15] by taking limits in the

corresponding variance formula.) Now Lemma 2.2, the discussion just before it, and (4.2) immediately give:
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Theorem 4.9 Let ρn,a be a random permutation with distribution Pn,a . Then

LAn(ρn,a)− n(2/3− 1/3a)√
nγ

−→d G,

as n → ∞ where γ is as defined in (4.3).

This result can be generalized to biased shuffles as in previous problems in a straightforward way.

Asymptotic mean and variance of this case are described in detail in [13]. Also note that, due to the lack

of local dependence, obtaining convergence rates is not as easy as the case of uniform random permutations for

a shuffles and it will be studied in a subsequent work. However, when one focuses on ρn,2 , one still has local

dependence thanks to the following connection to the number of descents in ρn,2 .

Proposition 4.10 Let ρn,2,p be a random permutation with distribution Pn,2,p generated by inverse shuffling

with the random vector X = (X1, . . . , Xn) where Xi s are independent with distribution p = (p1, p2) with

0 < p1 < 1 . Then for k = 2, . . . , n− 1 ,

i. ρn,2,p has a local maximum at k if and only if ρn,2,p has a descent at k .

ii. ρn,2,p has a local minimum at k if and only if ρn,2,p has a descent at k − 1.

Proof

i. (⇒) Obvious. (⇐) Assume π(k) > π(k + 1). We should show π(k − 1) < π(k). Since π(k) > π(k + 1),

we see that the kth card comes from the second pile and the k + 1st from the first pile. Now whether

card k − 1 comes from the first pile or the second pile, we have π(k − 1) < π(k) since the relative orders

of the piles are preserved.

ii. Proof is similar to the maximum case and we skip it.

2

Via Proposition 4.10, we now have

LAn(ρn,2,p) = 1 + 1(ρn,2,p(1) > ρn,2,p(2)) +
n−1∑
k=2

1(ρn,2,p(k − 1) > ρn,2,p(k) < ρn,2,p(k + 1))

+
n−1∑
k=2

1(ρn,2,p(k − 1) < ρn,2,p(k) > ρn,2,p(k + 1))

=d 1 + 1(X1 > X2) +

n−1∑
i=2

1(Xi > Xi+1) +

n−2∑
i=1

1(Xi > Xi+1)

= 2

(
n−1∑
i=1

1(Xi > Xi+1)

)
+ 1(Xn−1 < Xn). (4.4)

By the representation in (4.4), it is clear that we still have local dependence for LAn(ρn,2,p) and thus we can

still use Theorem 4.1 with p = 3 to obtain a convergence rate of order 1/
√
n for LAn(ρn,2,p).
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5. Concluding Remarks

In this note, after relating riffle shuffle statistics to random word statistics, we were able to obtain asymptotic

normality results with convergence rates for the number of descents and inversions after an arbitrary number

of a-shuffles. We also discussed how similar ideas can be used for a variant of top m to random shuffles and

provided small contributions to Houdre and Restrepo’s work on longest alternating subsequences [13].

In subsequent work, we will provide convergence rates for the length of longest alternating subsequences

in a-shuffles for a ≥ 2. We also hope to find a general framework for establishing the asymptotic normality of

a large class of a-shuffle statistics. One possible direction for this can be using the stochastic dominance idea

introduced in Remark 3.3 as in many cases it can be easier to prove the results for 2-shuffles and uniformly

random permutations.
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