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Abstract: In this paper, the authors study some subordination and superordination properties for classes of p -valent
meromorphic, analytic, and univalent functions associated with a linear operator Lm,ℓ

p,λ (a, c, µ) of the Erdélyi–Kober type.
Connections with several earlier results are also pointed out.
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1. Introduction
Let H(U) be the class of analytic functions in the open unit disk

U = {z : z ∈ C and |z| < 1}

and suppose that H[b, n] denotes a subclass of H(U) consisting of functions of the form

f(z) = b+ bnz
n + bn+1z

n+1 + · · · (b ∈ C; n ∈ N = {1, 2, 3, · · · }).

Now let An be the class of the form

An = {f : f ∈ H(U) and f(z) = z + bn+1z
n+1 + · · · }.

If we put n = 1 , we obtain the class of A1 = A of normalized analytic functions in U .

Definition 1 For f(z) and g(z) analytic in U , we say that the function f(z) is subordinate to g(z) in U ,
written f ≺ g or f(z) ≺ g(z), if there exists a Schwarz function ω(z) that is analytic in U , satisfying the
following conditions:

ω(0) = 0 and |ω(z)| < 1 (z ∈ U)

such that
f(z) = g

(
ω(z)

)
(z ∈ U).
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In particular, if the function g(z) is univalent in U , we have the following equivalence (see [14, 25, 27]):

f(z) ≺ g(z) (z ∈ U) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

Let Σp be the class of functions of the form

f(z) =
1

zp
+

∞∑
k=−p+1

bkz
k (p ∈ N = {1, 2, 3, · · · }), (1)

which are analytic and univalent in the punctured unit disk

U∗ = {z : z ∈ C and 0 < |z| < 1} = U \ {0}.

For m ∈ Z , ℓ > 0 and λ ≧ 0 , El-Ashwah (see [15, 16]) defined the multiplier transformations Lm
p (ℓ, λ)

as follows:

Lm
p (ℓ, λ) =

1

zp
+

∞∑
k=−p+1

(
ℓ+ λ(k + p)

ℓ

)m

bkz
k.

For µ > 0, a, c ∈ C such that ℜ(c − a) ≧ 0, ℜ(a) ≧ µp (p ∈ N) and for f(z) ∈ Σp given by (1),
El-Ashwah and Hassan [20] introduced the integral operator

J a,c
p,µ : Σp → Σp

given by

• For ℜ(c− a) > 0 ,

J a,c
p,µf(z) =

Γ(c− µp)

Γ(a− µp)Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1f(ztµ)dt;

• For a = c ,
J a,a
p,µ f(z) = f(z).

It is easily seen that the operator J a,c
p,µf(z) can be expressed as follows:

J a,c
p,µf(z) =

1

zp
+

Γ(c− µp)

Γ(a− µp)

∞∑
k=−p+1

Γ(a+ µk)

Γ(c+ µk)
akz

k,

where µ > 0, a, c ∈ C, ℜ(c− a) ≧ 0, ℜ(a) ≧ µp (p ∈ N).

We now consider the linear operator Lm,ℓ
p,λ (a, c, µ) : Σp → Σp given by

Lm,ℓ
p,λ (a, c, µ)

=
1

zp
+

Γ(c− µp)

Γ(a− µp)

∞∑
k=−p+1

(
ℓ+ λ(k + p)

ℓ

)m
Γ(a+ µk)

Γ(c+ µk)
bkz

k, (2)
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where m ∈ Z , ℓ > 0 , λ ≧ 0 , µ > 0, a, c ∈ C , ℜ(c− a) ≧ 0 , and ℜ(a) ≧ µp (p ∈ N). It is readily verified from
(2) that

z
(
Lm,ℓ
p,λ (a, c, µ)f(z)

)′
=
ℓ

λ
Lm+1,ℓ
p,λ (a, c, µ)f(z)−

(
p+

ℓ

λ

)
Lm,ℓ
p,λ (a, c, µ)f(z) (λ > 0) (3)

and

z
(
Lm,ℓ
p,λ (a, c, µ)f(z)

)′
=
a− µp

µ
Lm,ℓ
p,λ (a+ 1, c, µ)f(z)− a

µ
Lm,ℓ
p,λ (a, c, µ)f(z). (4)

The above-defined operator includes several simpler operators. We point out here some of these special
cases as follows:

(a) Putting ℓ = 1 and a = c , we obtain Dm
λ f(z) , which was studied by Al-Oboudi and Al-Zkeri [6];

(b) Putting m = −α, λ = 1, ℓ = 1 , and a = c , we obtain Pαf(z) , which was studied by Aqlan et al. [7];

(c) Putting a = c , we obtain Imp (λ, ℓ)f(z) , which was studied by El-Ashwah (see [15, 16]);

(d) Putting µ = 1, a = a + p , c = c + p , and m = 0 , we obtain ℓp(a, c)f(z) (a ∈ R, c ∈ R\Z−
0 ,Z

−
0 =

{0, 1, 2, · · · }, p ∈ N) , which was studied by Liu and Srivastava [24];

(e) Putting µ = 1 , a = n+ 2p , c = p+ 1 , and m = 0 , we obtain Dn+p−1f(z) (n is an integer, n > −p and
p ∈ N) , which was studied by Aouf [3] (see also [5, 35]);

(f) Putting µ = 1, c = a+ 1 , and m = 0 , we obtain Ja
p f(z) (ℜ(a) > p; p ∈ N) , which was studied by Kumar

and Shukla [22];

(g) Putting µ = 1 , a = β+p , c = α+β−γ+1+p , and m = 0 , we obtain Qp,1
α,β,γf(z) (β > 0, α > γ−1, γ >

0, p ∈ N) , which was studied by El-Ashwah et al. [18];

(h) Putting µ = 1 , a = β + p , c = α+ β + p , and m = 0 , we obtain Qp
α,βf(z) (β > 0, α > 0, p ∈ N) , which

was studied by Aqlan et al. [7] (see also Aouf et al. [4]);

(i) Putting p = 1 , m = α, λ = 1, ℓ = β , and a = c , we obtain Pα
β f(z) , which was studied by Lashin [23];

(j) Putting p = 1 , λ = 1 , and a = c , we obtain I(m, ℓ)f(z) , which was studied by Cho et al. (see [10, 11]);

(k) Putting p = 1 , λ = 1 , ℓ = 1 , and a = c , we obtain Imf(z) , which was studied by Uralegaddi and
Somanatha [34];

(l) Putting p = 1 and m = 0 , we obtain Iµ(a, c)f(z) , which was studied by El-Ashwah [17];

Recently, based on various linear operators, some subordination results have been studied in [1, 2] and
[8] (see also [9, 12, 13, 17, 19, 29, 31–33, 36]). In the present paper, the authors study some subordination and
superordination properties for classes of p -valent meromorphic, analytic, and univalent functions associated
with a linear operator Lm,ℓ

p,λ (a, c, µ). The linear operator Lm,ℓ
p,λ (a, c, µ)f(z) is convolution between the linear

integral operator J a,c
p,µf(z) and the multiplier transforms operator Lm

p (ℓ, λ)f(z) .
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2. A set of preliminaries
To prove our main theorems, we need several lemmas and definitions, which are presented in this section.

Definition 2 ([27, p. 21, Definition 2.2b]) Let Q be the class of functions g that are analytic and injective on
U \ E(g), where

E(g) = {ξ ∈ ∂U : lim
z→ξ

g(z) = ∞}

and g′(ξ) ̸= 0 for ξ ∈ ∂U \ E(g).

Definition 3 ([27, p. 16]) For h, k ∈ H(U), let φ : C2 × U → C and let h(z) be univalent in U . If k(z)
satisfies the first-order differential subordination

φ(k(z), zk′(z); z) ≺ h(z), (5)

then k(z) is a solution of the differential subordination (5). The univalent function q(z) is called a dominant
of the solutions of the differential subordination (5), if k(z) ≺ q(z) for all the functions k(z) satisfying (5). A
univalent dominant q̃(z) is said to be the best dominant of (5) if q̃(z) ≺ q(z) for all dominant q(z) .

Definition 4 (see [28]) Let φ : C2 × U → C and suppose that the functions k(z) and φ
(
k(z), zk′(z); z

)
are

univalent in U . If k(z) satisfies the first-order differential superordination

h(z) ≺ φ
(
k(z), zk′(z); z

)
, (6)

then k(z) is a solution of the differential superordination (6). The univalent function q(z) is called a subordinant
of the solutions of the differential superordination, if q(z) ≺ k(z) for all the functions k(z) satisfying (6). A
subordinant q̃(z) is said to be the best subordinant of (6) if q(z) ≺ q̃(z) for all the subordinants q(z) .

Definition 5 A function L(z, t) : U× [0,∞) → C is called a Löwner chain (subordination), if L(., t) is analytic
and univalent in U and L(z, s) ≺ L(z, t), for all t ≧ 0 and 0 ≦ s ≦ t.

Lemma 1 (see [26]) Let ϑ, ζ ∈ C and ζ ̸= 0 and let h(z) ∈ H(U) with h(0) = c . If

ℜ
(
ζh(z) + ϑ

)
> 0 (z ∈ U),

then the solution of the following differential equation :

p(z) +
zp′(z)

ζp(z) + ϑ
= h(z)

(
p(0) = c

)
has analytic solution in U that satisfies

ℜ
(
ζp(z) + ϑ

)
> 0 (z ∈ U).

Lemma 2 (see [30]) Let
L(z; t) = b1(t)z + b2(t)z

2 + · · ·
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with
b1(t) ̸= 0 (∀ t ≧ 0) and lim

t→∞
|b1(t)| = ∞.

Assume that L(.; t) is analytic in U and(∀ t ≧ 0), L(z; .) is continuously differentiable on [0,∞) (∀ z ∈ U). If
L(z; t) satisfies

ℜ
(
z
∂L/∂z
∂L/∂t

)
> 0 (z ∈ U; t ≧ 0)

and
|L(z; t)| ≦ K0|b1(t)| (|z| < r0 < 1; t ≧ 0)

for some positive constants K0 and r0, then L(z; t) is a subordination chain.

Lemma 3 (see [27] and [25]) Suppose that H : C2 → C satisfies the following condition :

ℜ
(
H(iϱ, t)

)
≦ 0 (∀ ϱ, t ∈ C)

with

t ≦ −1

2
j(1 + ϱ2) (j ∈ N).

If the function q(z) = 1 + qjz
j + · · · is analytic in U and

ℜ
{

H
(
q(z), zq′(z)

)}
> 0 (z ∈ U),

then
ℜ
(
q(z)

)
> 0 (z ∈ U).

Lemma 4 (see [28]) Let p ∈ H[b, 1], Ψ : C2 → C , and Ψ
(
p(z), zp′(z)

)
= h(z) . If L(z; t) = Ψ

(
p(z), tzp′(z)

)
is

a subordination chain and g ∈ H[b, 1] ∩Q, then

h(z) ≺ Ψ
(
g(z), zg′(z)

)
implies that p(z) ≺ g(z).

Furthermore, if Ψ
(
p(z), zp′(z)

)
= h(z) has a univalent solution p ∈ Q, then g is the best subordinant.

Lemma 5 ([27]) Let q ∈ Q with q(0) = b and

p(z) = b+ bkz
k + bk+1z

k+1 + · · ·

be analytic in U with p(z) ̸= b for k ∈ N. If p is not subordinate to q, then there exist the points z0 = r0e
iθ ∈ U

and ζ0 ∈ ∂U \ E(f) such that p(Ur0) ⊂ q(U), p(z0) = q(ζ0) and z0p
′(z0) = jζ0q

′(ζ0) (j ≧ k), where

Ur0 = {z : z ∈ C and |z| < r0}.
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3. The main results
Unless otherwise mentioned, we suppose that m ∈ Z , ℓ > 0 , λ ≧ 0, µ > 0 , a, c ∈ C , ℜ(c− a) ≧ 0, 0 ≦ β ≦ p ,
ℜ(a) ≧ µp , and p ∈ N .

We first prove the following subordination theorem for the linear operator Lm,ℓ
p,λ (a, c, µ) .

Theorem 1 Let

η =
ℓp(a− µp)

(p− β)λ(a− µp) + µβℓ
(7)

be such that ℜ(η) ≧ 1 . Suppose for f(z) ∈ Σp that

χ1(z) =
zp+1

p

[
(p− β)Lm+1,ℓ

p,λ (a, c, µ)f(z) + βLm,ℓ
p,λ (a+ 1, c, µ)f(z)

]
(8)

satisfies the following condition :

ℜ
(
1 +

zχ′′
1(z)

χ′
1(z)

)
> −υ (z ∈ U). (9)

If ℜ(η) = 1, then υ = 0 and if ℜ(η) > 1, then

υ ≦


ℜ(η)− 1

2

(
1 < ℜ(η) ≤ 2

)
1

2[ℜ(η)− 1]

(
ℜ(η) > 2

) (10)

and

[ℑ(η)]2 ≦ [ℜ(η)− 1− 2υ]

(
1

2υ
−ℜ(η) + 1

)
. (11)

Equations (10) and (11) occur only when ℑ(η) = 0 . If g(z) ∈ Σp satisfies the following condition :

zp+1

p

[
(p− β)Lm+1,ℓ

p,λ (a, c, µ)g(z) + βLm,ℓ
p,λ (a+ 1, c, µ)g(z)

]
≺ χ1(z) (z ∈ U), (12)

then
zp+1Lm,ℓ

p,λ (a, c, µ)g(z) ≺ zp+1Lm,ℓ
p,λ (a, c, µ)f(z) (z ∈ U) (13)

and the function zp+1Lm,ℓ
p,λ (a, c, µ)f(z) is the best dominant of (12).

Proof Put
G(z) = zp+1Lm,ℓ

p,λ (a, c, µ)g(z) and A(z) = zp+1Lm,ℓ
p,λ (a, c, µ)f(z). (14)

First of all, we prove that the function A(z) is convex univalent in U . Let

s(z) = 1 +
zA′′(z)

A′(z)
(z ∈ U). (15)
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For f(z) ∈ Σp , by using equations (3) and (4), we obtain

χ1(z) =
zA′(z)

η
+

(
1− 1

η

)
A(z), (16)

where η is given by (7). Differentiating (16) and using (15), we have

χ′
1(z)

A′(z)
=

(
1− 1

η

)
+
s(z)

η
,

which, upon differentiating once again and using equation (15), yields

1 +
zχ′′

1(z)

χ′
1(z)

= s(z) +
zs′(z)

s(z) + η − 1
= h(z). (17)

From (9) and (10), we have
ℜ{h(z) + η − 1} > 0 (z ∈ U).

Thus, by using Lemma 1, we conclude that equation (17) has a solution s(z) ∈ H(U) with

s(0) = h(0) = 1.

We will now use Lemma 3 to prove that the inequality

ℜ
(
s(z)

)
> 0 (z ∈ U)

is true. Let
H(x, y) = x+

y

x+ η − 1
+ υ, (18)

where υ is given by (10). From equations (9), (17), and (18), we have

ℜ
(

H
(
s(z), zs′(z)

))
> 0 (z ∈ U). (19)

We proceed to show that ℜ
(
H(iϱ, t)

)
≦ 0 for all ϱ, t ∈ C with

t ≦ −1

2
(1 + ϱ2).

Using (18), we find that

ℜ
(
H(iϱ, t)

)
= ℜ

(
iϱ+

t

iϱ+ η − 1
+ υ

)
=

(ℜ(η)− 1)t

|iϱ+ η − 1|2
+ υ. (20)

If we take ℜ(η) = 1 and υ = 0 , we obtain ℜ
(
H(iϱ, t)

)
= 0. If we take ℜ(η) > 1, we get

ℜ
(
H(iϱ, t)

)
≦ − ϖ(ϱ, η, υ)

2|iϱ+ η − 1|2
, (21)
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where
ϖ(ϱ, η, υ) =

[
ℜ(η)− 1

]
(1 + ϱ2)− 2υ|iϱ+ η − 1|2.

By taking ℜ(η)− 1 = x and ℑ(η) = y, we can rewrite ϖ(ϱ, η, υ) as follows:

ϖ(ϱ, η, υ) = (x− 2υ)ϱ2 − 4υyϱ+ x− 2υ(x2 + y2).

If we set y = 0 and use equation (10), we obtain

ϖ(ϱ, η, υ) = (x− 2υ)ϱ2 + (1− 2υx)x ≧ 0.

If y ̸= 0 and we assume that x− 2υ > 0 for any x > 0 , then we have

ϖ(ϱ, η, υ) = (x− 2υ)

(
ϱ− 2υy

x− 2υ

)2

− 4υ2y2

x− 2υ
+ x− 2υ(x2 + y2)

= (x− 2υ)

(
ϱ− 2υy

x− 2υ

)2

+ x

[
1− 2υ

(
x+

y2

x− 2υ

)]
≧ 0,

which, in light of (10), yields that ϖ(ϱ, η, υ) ≧ 0 for all ϱ ∈ R . Thus, from equations (20) and (21), we obtain
ℜ
(
H(iϱ, t)

)
≦ 0 for all ϱ ∈ R and t ≦ −(1 + ϱ2)/2. Thus, by using Lemma 3, we find that ℜ

(
s(z)

)
> 0 for all

z ∈ U, which proves that the function A(z) is convex univalent for all z ∈ U .
Secondly, we prove that

G(z) ≺ A(z) (z ∈ U), (22)

if condition (12) is true. We define a function L(z, t) by

L(z; t) =
(
1− 1

η

)
A(z) +

(1 + t)

η
zA′(z) (z ∈ U; t ≧ 0) (23)

and
∂L(z; t)
∂z

|z=0 = A′(0)

(
1 +

t

η

)
= 1 +

t

η
̸= 0 (t ≧ 0). (24)

This shows that the function
L(z; t) = b1(t)z + b2(t)z

2 + · · ·

with b1(t) = 1+ t
η ̸= 0 for all t ≧ 0 and limt→∞ |b1(t)| = ∞. Using (24), we can deduce the following equality:

ℜ
(
z
∂L/∂z
∂L/∂t

)
= ℜ(η)− 1 + (1 + t)ℜ

(
1 +

zA′′(z)

A′(z)

)
.

By the inequalities ℜ
(
s(z)

)
> 0 and ℜ(η) > 1 , the above relation yields

ℜ
(
z
∂L/∂z
∂L/∂t

)
> 0 (∀ z ∈ U; ∀ t ≧ 0).

Since the function A(z) is convex and normalized in U , we have the following growth and distortion sharp
bounds (see [21]):

r

1 + r
≦ |A(z)| ≦ r

1− r
, |z| ≦ r < 1,
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and
1

(1 + r)2
≦ |A′(z)| ≦ 1

(1− r)2
, |z| ≦ r < 1.

From equations (23) and (7), we have

|L(z; t)|
|b1(t)|

≦ |η − 1|
|η + t|

|A(z)|+ |1 + t|
|η + t|

|zA′(z)|

≦ |A(z)|+ |zA′(z)| ≦ r

1− r
+

r

(1− r)2

≦ r

(1− r)2
(|z| ≦ r < 1; t ≧ 0).

Hence, the second assumptions of Lemma 2 hold true. Hence, the function L(z; t) is a subordination chain.

Now we assume that G(z) and A(z) are analytic and univalent in U and A′(ζ) ̸= 0 for |ζ| = 1 .
Otherwise, we replace G by Gr(z) = G(rz) and A by Ar(z) = A(rz) , where r ∈ (0, 1) . This function satisfies
the conditions of Theorem 1 on U . We thus need to prove that Gr(z) ≺ Ar(z) for all r ∈ (0, 1) , which enables
us to prove (22) by letting r → 1− . Suppose that G(z) is not subordinate to A(z) . Then, by Lemma 5, there
exist points z0 ∈ U and ς0 ∈ ∂U, and the number t ≧ 0 , such that

G(z0) = A(ς0) and z0G
′(z0) = (1 + t)ς0A

′(ς0).

Thus, from the above two relations and the condition (12), we obtain

L(ς0; t) =
(
1− 1

η

)
A(ς0) +

1 + t

η
ς0A

′(ς0)

=

(
1− 1

η

)
G(z0) +

1 + t

η
z0G

′(z0)

=
zp+1
0

p

[
(p− β)Lm+1,ℓ

p,λ (a, c, µ)g(z0) + βLm,ℓ
p,λ (a+ 1, c, µ)g(z0)

]
∈ χ1(U),

which contradicts the above observation that L(ς; t) /∈ χ1(U). Thus, the subordination condition (12) must
imply the subordination given by (22). Considering G(z) ≺ A(z) , we see that A(z) is the best dominant. This
completes the proof of Theorem 1. 2

Remark 1 For p = 1 in Theorem 1, we obtain the result that was obtained by El-Ashwah [17].

We next prove a superordination theorem for the linear operator Lm,ℓ
p,λ (a, c, µ) .

Theorem 2 Suppose that η given by (7) is such that ℜ(η) > 1 and that , for f(z) ∈ Σp,

χ2(z) =
zp+1

p

[
(p− β)Lm+1,ℓ

p,λ (a, c, µ)f(z) + βLm,ℓ
p,λ (a+ 1, c, µ)f(z)

]
2008
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satisfies the following condition :

ℜ
(
1 +

zχ′′
2(z)

χ′
2(z)

)
> −υ (z ∈ U),

where υ is given by (10). If g(z) ∈ Σp, let

zp+1

p

[
(p− β)Lm+1,ℓ

p,λ (a, c, µ)g(z) + βLm,ℓ
p,λ (a+ 1, c, µ)g(z)

]
(z ∈ U),

be univalent in U and
zp+1Lm,ℓ

p,λ (a, c, µ)g(z) ∈ H[0, 1] ∩Q.

Then the condition given by

χ2(z) ≺
zp+1

p

[
(p− β)Lm+1,ℓ

p,λ (a, c, µ)g(z) + βLm,ℓ
p,λ (a+ 1, c, µ)g(z)

]
(25)

(z ∈ U)

implies that
zp+1Lm,ℓ

p,λ (a, c, µ)f(z) ≺ zp+1Lm,ℓ
p,λ (a, c, µ)g(z) (z ∈ U), (26)

and the function zp+1Lm,ℓ
p,λ (a, c, µ)f(z) is the best subordinant of (25).

Proof By using the same method as in the proof of Theorem 1, we can prove that ℜ
(
s(z)

)
> 0 for all z ∈ U.

Secondly, we prove that subordination (25) implies that

A(z) ≺ G(z) (z ∈ U),

where G(z) and A(z) are defined by (14). We now define a function L(z; t) by

L(z; t) =
(
1− 1

η

)
A(z) +

t

η
zA′(z) (z ∈ U; t ≧ 0) (27)

and
∂L(z; t)
∂z

∣∣∣∣
z=0

= A′(0)

(
1− 1− t

η

)
= 1− 1− t

η
̸= 0 (t ≧ 0).

This shows that the function
L(z; t) = b1(t)z + b2(t)z

2 + · · ·

with

b1(t) = 1− 1− t

η
̸= 0

for all t ≧ 0 and limt→∞ |b1(t)| = ∞. Using (27) and (7), we have

|L(z; t)|
|b1(t)|

≦

∣∣∣∣∣∣
(
1− 1

η

)
A(z) + t

η zA
′(z)

1− 1−t
η

∣∣∣∣∣∣
≦

∣∣∣1− 1
η

∣∣∣ |A(z)|+ | tη ||zA
′(z)|∣∣∣1− 1−t

η

∣∣∣ (|z| ≦ r < 1; t ≧ 0).

2009



SRIVASTAVA et al./Turk J Math

Since the function A(z) is convex and normalized in U , we obtain

|L(z; t)|
|b1(t)|

≦ |η − 1|
|η − 1 + t|

|A(z)|+ |t|
|η − 1 + t|

|zA′(z)|

≦ |A(z)|+ |zA′(z)| ≦ r

1− r
+

r

(1− r)2

≦ r

(1− r)2
(|z| ≦ r < 1; t ≧ 0).

We can thus deduce the equality:

ℜ
(
z
∂L/∂z
∂L/∂t

)
= ℜ(η)− 1 + tℜ

(
1 +

zA′′(z)

A′(z)

)
.

By the inequalities ℜ
(
s(z)

)
> 0 and ℜ(η) > 1 , the above relation yields

ℜ
(
z
∂L/∂z
∂L/∂t

)
> 0 (∀ z ∈ U; ∀ t ≧ 0).

Hence, the second assumptions of Lemma 2 hold true. Thus, the function L(z; t) is a subordination chain.
Therefore, according to Lemma 4, we conclude that superordination (25) implies superordination (26). Fur-
thermore, equation (26) has the univalent solution A, which is the best subordinant of the given differential
superordination. This completes the proof of Theorem 2. 2

Combining the above results involving differential subordination and differential superordination, we state
the following sandwich-type theorem.

Theorem 3 Suppose that η given by (7)

η =
ℓp(a− µp)

(p− β)λ(a− µp) + µβℓ

is such that ℜ(η) > 1 and that , for fj(z) ∈ Σp (j = 1, 2),

χj(z) =
zp+1

p

[
(p− β)Lm+1,ℓ

p,λ (a, c, µ)fj(z) + βLm,ℓ
p,λ (a+ 1, c, µ)fj(z)

]
satisfy the following condition :

ℜ

[
1 +

zχ′′
j (z)

χ′
j(z)

]
> −υ (z ∈ U),

where υ is given by (10). If g(z) ∈ Σp, let

zp+1

p

[
(p− β)Lm+1,ℓ

p,λ (a, c, µ)g(z) + βLm,ℓ
p,λ (a+ 1, c, µ)g(z)

]
(z ∈ U),

be univalent in U and
zp+1Lm,ℓ

p,λ (a, c, µ)g(z) ∈ H[0, 1] ∩Q.
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Then the condition

χ1(z) ≺
zp+1

p

[
(p− β)Lm+1,ℓ

p,λ (a, c, µ)g(z) + βLm,ℓ
p,λ (a+ 1, c, µ)g(z)

]
≺ χ2(z) (z ∈ U) (28)

implies that

zp+1Lm,ℓ
p,λ (a, c, µ)f1(z) ≺ zp+1Lm,ℓ

p,λ (a, c, µ)g(z)

≺ zp+1Lm,ℓ
p,λ (a, c, µ)f2(z) (z ∈ U) (29)

and the functions zp+1Lm,ℓ
p,λ (a, c, µ)f1(z) and zp+1Lm,ℓ

p,λ (a, c, µ)f2(z) are the best subordinant and the best
dominant of (28), respectively.

Corollary 1 Let k ∈ Σp and suppose that

ϕ(z) =
zp+1

p

((
p− β

[
1− µℓ

λ(a− µp)

])
Lm+1
p (ℓ, λ)k(z)

+ β

[
1− µℓ

λ(a− µp)

]
Lm
p (ℓ, λ)k(z)

)
(30)

satisfies the following condition :

ℜ
(
1 +

zϕ′′(z)

ϕ′(z)

)
> −υ (z ∈ U),

where

(1) if ℜ(η) = 1, then υ = 0;

(2) if ℜ(η) > 1, then υ is given by (10) and (11).

If f ∈ Σp and

zp+1

p

((
p− β

[
1− µℓ

λ(a− µp)

])
Lm+1
p (ℓ, λ)f(z)

+ β

[
1− µℓ

λ(a− µp)

]
Lm
p (ℓ, λ)f(z)

)
≺ ϕ(z), (31)

then
zp+1Lm

p (ℓ, λ)f(z) ≺ zp+1Lm
p (ℓ, λ)k(z) (z ∈ U)

and the function zp+1Lm
p (ℓ, λ)k(z) is the best dominant of (31).

Remark 2 Putting β = 0 in Corollary 1, we obtain the following consequence.
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Corollary 2 Let g, f ∈ Σp and suppose that

ψ0(z) = zp+1Lm+1
p (ℓ, λ)g(z)

satisfies the condition :

ℜ
(
1 +

zψ′′
0 (z)

ψ′
0(z)

)
> −τ (z ∈ U),

where

(1) if ℓ

λ
= 1, then τ = 0;

(2) if ℓ

λ
> 1, then

τ ≦


ℓ− λ

2λ

(
1 <

ℓ

λ
< 2

)
λ

2(ℓ− λ)

(
ℓ

λ
> 2

)
.

If

zp+1Lm+1
p (ℓ, λ)f(z) ≺ ψ0(z),

then
zp+1Lm

p (ℓ, λ)f(z) ≺ zp+1Lm
p (ℓ, λ)g(z) (z ∈ U)

and the function zp+1Lm
p (ℓ, λ)g(z) is the best dominant.

Corollary 3 Let k ∈ Σp and suppose that

ϕ1(z) =
zp+1

p

(
(p− β)

[
1− λ(a− µp)

µℓ

]
J a,c
p,µk(z)

+

(
p− (p− β)

[
1− λ(a− µp)

µℓ

])
J a+1,c
p,µ k(z)

)
(32)

satisfies the following condition :

ℜ
(
1 +

zϕ′′1(z)

ϕ′1(z)

)
> −υ (z ∈ U),

where

(1) if ℜ(η) = 1, then υ = 0;

(2) if ℜ(η) > 1, then υ is given by (10) with (11).
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If f ∈ Σp and

zp+1

p

(
(p− β)

[
1− λ(a− µp)

µℓ

]
J a,c
p,µf(z)

+

(
p− (p− β)

[
1− λ(a− µp)

µℓ

])
J a+1,c
p,µ f(z)

)
≺ ϕ1(z), (33)

then
zp+1J a,c

p,µf(z) ≺ zp+1J a,c
p,µk(z) (z ∈ U)

and the function zp+1J a,c
p,µk(z) is the best dominant of (33).

Remark 3 Putting β = p in Corollary 3, we obtain the following result.

Corollary 4 Let g, f ∈ Σp and suppose that

ψ(z) = zp+1J a+1,c
p,µ g(z)

satisfies the following condition :

ℜ
(
1 +

zψ′′(z)

ψ′(z)

)
> −τ (z ∈ U),

where

(1) if ℜ
(
a

µp

)
= 2, then τ = 0;

(2) if ℜ
(
a

µp

)
> 2, then

τ ≦



ℜ
(
a

µp

)
− 2

2

(
2 < ℜ( a

µp
) < 3

)
1

2

[
ℜ
(
a

µp

)
− 2

] (
ℜ
(
a

µp

)
> 3

)

and [
ℑ
(
a

µp

)]2
≦
[
ℜ
(
a

µp

)
− 2− 2τ

] [
1

τ
−ℜ

(
a

µp

)
+ 2

]
.

The equality in the above equations holds true when ℑ(a) = 0. Then

zp+1J a,c
p,µf(z) ≺ zp+1J a,c

p,µg(z) (z ∈ U)

and the function zp+1J a,c
p,µg(z) is the best dominant.
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4. Subordination and superordination properties involving the integral operator Fν,p

In this section, we consider the integral operator Fν,p defined by (see [22])

Fν,pf(z) =
ν

zν+p

∫ z

0

tν+p−1f(t)dt
(
f(z) ∈ Σp; ν > 0; p ∈ N

)
. (34)

From equation (34), it is easily verified that

z
(
Lm,ℓ
p,λ (a, c, µ)Fν,pf(z)

)′
= νLm,ℓ

p,λ (a, c, µ)f(z)− (ν + p)Lm,ℓ
p,λ (a, c, µ)Fν,pf(z). (35)

By using (35), we can prove the following theorem.

Theorem 4 Let ν > 0 and fj ∈ Σp (j = 1, 2) and suppose that

ψj(z) = zp+1Lm,ℓ
p,λ (a, c, µ)fj(z) (j = 1, 2), (36)

satisfies the following condition :

ℜ

(
1 +

zψ′′
j (z)

ψ′
j(z)

)
> −υ (z ∈ U; j = 1, 2),

where υ is given by

υ ≦


ν − 1

2
(1 < ν ≦ 2)

1

2(ν − 1)
(ν > 2).

(37)

For g(z) ∈ Σp, if we suppose that

zp+1Lm,ℓ
p,λ (a, c, µ)g(z) (z ∈ U),

is univalent in U and that
zp+1Lm,ℓ

p,λ (a, c, µ)Fν,pg(z) ∈ H[0, 1] ∩Q,

then the following condition :

ψ1(z) ≺ zp+1Lm,ℓ
p,λ (a, c, µ)g(z) ≺ ψ2(z) (z ∈ U), (38)

implies that

zp+1Lm,ℓ
p,λ (a, c, µ)Fν,pf1(z) ≺ zp+1Lm,ℓ

p,λ (a, c, µ)Fν,pg(z)

≺ zp+1Lm,ℓ
p,λ (a, c, µ)Fν,pf2(z) (z ∈ U) (39)

and the functions zp+1Lm,ℓ
p,λ (a, c, µ)Fν,pf1(z) and zp+1Lm,ℓ

p,λ (a, c, µ)Fν,pf2(z) are the best subordinant and the
best dominant of (38), respectively.
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Proof Let us set

G(z) = zp+1Lm,ℓ
p,λ (a, c, µ)Fν,pg(z) (40)

and

Kj(z) = zp+1Lm,ℓ
p,λ (a, c, µ)Fν,pfj(z) (j = 1, 2). (41)

From equation (35) in combination with (36), (40), and (41), we obtain

νψj(z) = (ν − 1)Kj(z) + zK ′
j(z). (42)

Putting

pj(z) = 1 +
zK ′′

j (z)

K ′
j(z)

(j = 1, 2)

and differentiating equation (42), we obtain

1 +
zψ′′

j (z)

ψ′
j(z)

= pj(z) +
zp′j(z)

pj(z) + ν − 1
.

The remaining part of the proof of Theorem 4 is similar to that of Theorem 3 (a combined proof of Theorems
1 and 2) and we omit the details involved. 2

Corollary 5 Let ν > 0 and fj ∈ Σp (j = 1, 2) and suppose that

ψj(z) = zp+1Lm,ℓ
p,λ (a, c, µ)fj(z) (j = 1, 2) (43)

satisfies the following condition :

ℜ

(
1 +

zψ′′
j (z)

ψ′
j(z)

)
> −υ (z ∈ U),

where υ is given by (37). If g(z) ∈ Σp, then the condition :

ψ1(z) ≺ zp+1Lm,ℓ
p,λ (a, c, µ)g(z) ≺ ψ2(z) (z ∈ U) (44)

implies that

zp+1Lm,ℓ
p,λ (a, c, µ)Fν,pf1(z) ≺ zp+1Lm,ℓ

p,λ (a, c, µ)Fν,pg(z)

≺ zp+1Lm,ℓ
p,λ (a, c, µ)Fν,pf2(z) (z ∈ U) (45)

and the functions zp+1Lm,ℓ
p,λ (a, c, µ)Fν,pf1(z) and zp+1Lm,ℓ

p,λ (a, c, µ)Fν,pf2(z) are the best subordinant and the
best dominant of (44), respectively.
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