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Abstract: In this article, we introduce new classes of submodules called r -submodule and special r -submodule, which
are two different generalizations of r -ideals. Let M be an R -module, where R is a commutative ring . We call a proper
submodule N of M an r -submodule (resp., special r -submodule) if the condition am ∈ N with annM (a) = 0M (resp.,
annR(m) = 0) implies that m ∈ N (resp., a ∈ (N :R M)) for each a ∈ R and m ∈ M. We also give various results
and examples concerning r -submodules and special r -submodules.

Key words: r -Ideal, prime ideal, r -submodule, special r -submodule, prime submodule

1. Introduction
Throughout, all rings will be commutative with 1 ̸= 0 and all modules will be unitary. In particular, R will
always denote such a ring. The concept of r -ideals was introduced and studied by Mohamadian in [9] . Recall
from [9] that a proper ideal I of R is an r -ideal if ab ∈ I and ann(a) = {r ∈ R : ra = 0} = 0 , and then
b ∈ I for each a, b ∈ R . In this article, we give two different generalizations of this concept to modules by
r -submodules and special r -submodules.

Let us give some definitions and notations we will need throughout this study. Let M be an R -module.
Then a submodule N of M is proper whenever N ̸= M . If N is a submodule of M and K is a nonempty subset
of M, then the ideal {r ∈ R : rK ⊆ N} is denoted by (N :R K) . In particular, we use AnnR(M) instead
of (0M :R M) . Furthermore, for each element m of M , we denote (0M :R {m}) by annR(m) . Suppose
that N is a submodule of M and S is a nonempty subset of R . Denote by (N :M S) the set of all
m ∈ M with Sm ⊆ N . In particular, we use annM (a) instead of (0M :M {a}) for each a ∈ R . Also, the sets
{a ∈ R : annM (a) ̸= 0M} and {m ∈ M : annR (m) ̸= 0} will be designated by Z(M) and T (M), respectively.

The prime submodule, which is an important subject of module theory, has been widely studied by
various authors. See, for example, [2, 4, 8] and [3, 5, 7] . Recall that a prime submodule is a proper submodule
N of M with the property that am ∈ N implies that a ∈ (N :R M) or m ∈ N for each a ∈ R,m ∈ M .
In that case, (N :R M) is a prime ideal of R . In Section 2, we extend the concept of r -ideals to modules
by r -submodules, and we investigate some properties of r -submodules with similar prime submodules. We
define a proper submodule N of M as an r -submodule if whenever am ∈ N with annM (a) = 0M , then
m ∈ N for each a ∈ R and m ∈ M . Since there is no proper submodule of zero module, from now on we
assume that R -module M is nonzero. Among many results in this paper, it is shown in Proposition 4 that
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a proper submodule N of M is an r -submodule if and only if N = (N :M a) for every a ∈ R − Z(M) . In
Theorem 1 we show that a proper submodule N of M is an r -submodule of M if and only if whenever I is
an ideal of R such that I ∩ (R− Z(M)) ̸= ∅ and L is a submodule of M with IL ⊆ N, then L ⊆ N . Also, it
is proved in Proposition 7 that if N is a maximal r -submodule of M, then N is prime submodule. Finally, in
Theorem 8, we characterize the r -submodules of Cartesian products of modules.

In Section 3, we introduce the special r -submodule, which is another generalization of r -ideals. We
call a proper submodule N of M a special r -submodule (briefly sr -submodule) if for each a ∈ R and
m ∈ M , am ∈ N with annR (m) = 0 , and then a ∈ (N :R M) . In Example 11, it is shown that r -submodules
and sr -submodules are different concepts, i.e. neither implies the other. In Theorem 13, we show that an
R -module M is torsion-free if and only if M is faithful and the zero submodule is the only sr -submodule
of M . We characterize, in Theorem 14, all R -modules in which every proper submodule is an sr -submodule.
Finally we characterize, in Theorem 15, the sr -submodules of Cartesian products of modules.

2. r -Submodules
Definition 1 Let M be an R -module. A proper submodule N of M is said to be an r -submodule if
am ∈ N with annM (a) = 0M implies that m ∈ N for each a ∈ R,m ∈ M.

Note that a proper submodule N of M being an r -submodule means simply that Z(M/N) ⊆ Z(M) and
also the r -submodules of R -module R are precisely the r -ideals of R . Now we give some examples of r -
submodules.

Example 1 Consider the Z-module Zn for n ≥ 2 . Let ⟨x⟩ be a proper submodule of Zn. Then gcd(x, n) = d >

1. This implies that ⟨x⟩ = ⟨d⟩ , and also note that Zn/⟨x⟩ is isomorphic to Z-module Zd. Since Z(Zd) ⊆ Z(Zn),

it follows that ⟨x⟩ is an r -submodule of Zn.

Example 2 Consider Z-module Q/Z . We know that E (p) = {α ∈ Q/Z : α =
r

pt
+ Z for t ∈ N ∪ {0} and

r ∈ Z} is a submodule of Q/Z , where p is a prime number. Then any proper submodule of E (p) is of the

form Gt0 = {α ∈ Q/Z : α =
r

pt0
+ Z for some r ∈ Z} for some t0 ∈ N ∪ {0} [12] . E(p) does not have

any prime submodule. However, we show that every proper submodule of E (p) is an r -submodule. First, note

that annE(p) (m) = 0E(p) if and only if gcd (p,m) = 1 for m ∈ Z . Let m ∈ Z,
r

pt
+ Z ∈ E (p) such that

m

(
r

pt
+ Z

)
=

mr

pt
+ Z ∈ Gt0 and gcd (p,m) = 1 . If t ≤ t0, then we have r

pt
+ Z ∈ Gt0 . Now, assume that

t > t0 . Since mr

pt
+ Z ∈ Gt0 , we have mr

pt
+ Z =

k

pt0
+ Z for some k ∈ Z, and so mr

pt
− k

pt0
∈ Z . Then

we have mr ≡ kpt−t0 (mod pt) . Since gcd (m, pt) = 1, we get r ≡ k′kpt−t0 (mod pt) for some k′ ∈ Z, and so
r

pt
+ Z =

k′k

pt0
+ Z ∈ Gt0 . Hence, Gt0 is an r -submodule of E (p) .

Lemma 1 If N is an r -submodule of M, then (N :R M) ⊆ Z(M) .

Proof It follows from the fact that (N :R M) = Ann(M/N) ⊆ Z(M/N) ⊆ Z(M). 2
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The converse of Lemma 1 is not always valid, i.e. if N is a submodule of M with (N :R M) ⊆ Z(M), then
N need not be an r -submodule of M . We give a counter example in the following.

Example 3 Consider the Z-module Z × Z and the submodule N = 2Z × 0 of M = Z × Z . Note that
(N :Z M) = ⟨0⟩ ⊆ Z(M) and also M/N is isomorphic to Z-module Z2 ×Z. Since 2 ∈ Z(Z2 ×Z)−Z(M) , we
have Z(Z2 × Z) ⊈ Z(M) and thus N is not an r -submodule of M.

The following examples show that the concepts of prime submodule and r -submodule are different.

Example 4 (i) Consider the Z-module Z . Of course, 3Z is a prime submodule of Z , since (3Z :Z Z) = 3Z ⊈
Z (Z) , it follows that 3Z is not an r -submodule of Z.

(ii) Consider the Z-module Z18 . By Example 1, we know that ⟨9⟩ is an r -submodule of Z18 but it is
not a prime submodule. Since 3.3 = 9 ∈ ⟨9⟩ but 3 /∈

(
⟨9⟩ : Z18

)
= 9Z and 3 /∈ ⟨9⟩.

Note that in a vector space, any proper subspace is a prime submodule. In the following proposition, we
show it is true for r -submodules and so in a vector space the prime submodule coincides with the r -submodule.

Proposition 1 Let V be a vector space over a field F. Then every proper subspace W of V is an r -submodule.

Proof Follows from Z(V /W ) = 0. 2

Proposition 2 For a prime submodule N of M, N is an r -submodule if and only if (N :R M) ⊆ Z(M).

Proof If N is prime submodule, then Z(M/N) = (N :R M) so that N is an r -submodule iff (N :R M) ⊆
Z(M). 2

Proposition 3 Let M be an R -module. Then the following hold:
(i) The zero submodule is an r -submodule.
(ii) The intersection of an arbitrary nonempty set of r -submodules is an r -submodule.

Proof (i) It is clear that Z(M/0M ) = Z(M) and so the zero submodule is an r -submodule.

(ii) Let Ni be an r -submodule of M for every i ∈ ∆ . Suppose that am ∈
∩
i∈∆

Ni with annM (a) = 0M

for a ∈ R,m ∈ M . Then we have am ∈ Ni for every i ∈ ∆ . Since Ni is an r -submodule, we conclude that

m ∈ Ni for every i ∈ ∆, and thus m ∈
∩
i∈∆

Ni . Hence,
∩
i∈∆

Ni is an r -submodule. 2

Note that the sum of two r -submodules need not be an r -submodule. See the following example.

Example 5 Consider the Z-module Z10 . Then ⟨2⟩ and ⟨5⟩ are r -submodules but ⟨2⟩ + ⟨5⟩ = Z10 is not an
r -submodule of Z10.

It is well known if N is prime submodule of M, then (N :R M) is prime ideal of R . However, the
following example shows that this is not always correct for r -submodules.
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Example 6 Consider the Z-module Z4 . ⟨2⟩ is an r -submodule but
(
⟨2⟩ :Z Z4

)
= 2Z is not an r -ideal of Z,

since a domain has no nonzero r -ideals.

Recall that a nonempty subset S of R is multiplicatively closed precisely when ab ∈ S for all a, b ∈ S. For
instance, S = R − Z(M) is a multiplicatively closed subset of R. Suppose that S is a multiplicatively closed
subset of R and M is an R -module . Then we denote the module of fraction at S by S−1M. Note that S−1M is
both an S−1R -module and an R -module. Also, for every submodule N of M, S−1N is an S−1R -submodule of
S−1M. Let M be an R -module. Consider S−1M as an R -module. The natural R -homomorphism is defined
as follows:

π : M → S−1M, for all m ∈ M, π(m) = m
1 .

Proposition 4 Let N be a proper submodule of M. Then the following are equivalent:
(i) N is an r -submodule of M.

(ii) aM ∩N = aN for every a ∈ R− Z(M) .
(iii) (N :M a) = N for every a ∈ R− Z(M).

(iv) N = π−1(L), where S = R− Z(M) and L is an S−1R -submodule of S−1M.

Proof (i) ⇒ (ii) : Suppose that N is an r -submodule. For every a ∈ R, the inclusion aN ⊆ aM ∩N always
holds. Let a ∈ R with annM (a) = 0M and x ∈ aM ∩N . Then we get x = am ∈ N for some m ∈ M . Since
N is an r -submodule, m ∈ N and thus x = am ∈ aN . Hence, we get aM ∩N = aN.

(ii) ⇒ (iii) : It is well known that N ⊆ (N :M a) for every a ∈ R . Let a ∈ R such that annM (a) =

0M and m ∈ (N :M a) . Then we have am ∈ N, and so am ∈ aM∩N = aN by (ii) . Thus, we have am = an for
some n ∈ N . Since annM (a) = 0M , we conclude that m = n ∈ N . Hence, we have (N :M a) ⊆ N.

(iii) ⇒ (iv) : Since N ⊆ π−1(S−1N), it is sufficient to show that π−1(S−1N) ⊆ N. Let m ∈
π−1(S−1N). Then we have π(m) = m

1 ∈ S−1N and so am ∈ N for some a ∈ S. Thus, by (iii), we con-
clude that m ∈ (N :M a) = N .

(iv) ⇒ (i) : Suppose that N = π−1(L), where S = R − Z(M) and L is an S−1R -submodule of
S−1M. Let am ∈ N and annM (a) = 0M . Then we have π(am) = am

1 ∈ L. Since a ∈ S and L is an
S−1R -submodule , we conclude that 1

a
am
1 = m

1 = π(m) ∈ L and so m ∈ π−1(L) = N, as needed. 2

In [11] , Ribenboim defined the pure submodule as a proper submodule N of M if aM ∩ N = aN for
every a ∈ R . By Proposition 4, every pure submodule is also an r -submodule. However, in the following, we
show that the converse is not necessarily correct.

Example 7 Consider the Z-module Z16 and the submodule N = ⟨2⟩ . Then N is an r -submodule of Z16 , but
N is not a pure submodule of Z16, because 2N = ⟨4⟩ ⫋ 2Z16 ∩N = ⟨2⟩.

Proposition 5 Suppose that N is an r -submodule of M and S is a nonempty subset of R with S ⊈
(N :R M) . Then (N :M S) is an r -submodule of M . In particular, (0M :M S) is always an r -submodule
if S ⊈ AnnR (M) .
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Proof Let am ∈ (N :M S) with annM (a) = 0M for a ∈ R,m ∈ M . Then we have asm ∈ N for every s ∈ S .
Since N is an r -submodule, we get sm ∈ N for every s ∈ S and this yields m ∈ (N :M S) , as is needed. The
rest follows easily. 2

Corollary 1 If a /∈ AnnR (M) , then annM (a) is an r -submodule of M .

Proposition 6 For any R -module M, the following hold if the zero submodule is the only r -submodule:
(i) The zero submodule is a prime submodule of M.

(ii) AnnR (M) is a prime ideal of R.

Proof (i) Let am = 0M and a /∈ AnnR (M) , where a ∈ R, m ∈ M. Then by previous corollary, annM (a) is
an r -submodule and thus annM (a) = 0M . Hence, we have m = 0M , as needed.

(ii) It follows from (i). 2

Remember that a proper submodule N of M is prime if and only if for every ideal I of R and submodule
L of M with IL ⊆ N, then either I ⊆ (N :R M) or L ⊆ N . Now we present a similar result for r -submodules
as follows.

Theorem 1 For a proper submodule N of M, the following hold:
(i) N is an r -submodule of M if and only if whenever I is an ideal of R such that I∩(R− Z(M)) ̸= ∅ and

L is a submodule of M with IL ⊆ N, then L ⊆ N.

(ii) If (N :R M) ⊆ Z(M) and N is not an r -submodule of M, then there exist an ideal I of R and a
submodule L of M such that I ∩ (R− Z(M)) ̸= ∅, N ⫋ L, (N :R M) ⫋ I , and IL ⊆ N.

Proof (i) Suppose that N is an r -submodule and IL ⊆ N for some ideal I of R with I∩(R− Z(M)) ̸= ∅ and
submodule L of M . Then there exist a ∈ I such that annM (a) = 0M . Since al ∈ N for every l ∈ L and N is
an r -submodule , we conclude that l ∈ N, and thus L ⊆ N . For the converse, let am ∈ N and annM (a) = 0M

for a ∈ R,m ∈ M . We take I = aR and L = Rm . Note that I ∩ (R− Z(M)) ̸= ∅ and IL ⊆ N . Then by
assumption we have Rm ⊆ N, and so m ∈ N . Hence, N is an r -submodule .

(ii) Since N is not an r -submodule, there exist a ∈ R,m ∈ M such that am ∈ N with annM (a) = 0M

and m /∈ N . We take I = (N :R m) . Note that a ∈ I and a /∈ (N :R M) since annM (a) = 0M .
Thus, (N :R M) ⫋ I . Now we take L = (N :M I) . Since m /∈ N and m ∈ L, N ⫋ L . Hence, we get
N ⫋ L, (N :R M) ⫋ I and IL = I (N :M I) ⊆ N. 2

Theorem 2 Suppose that K1,K2, L are submodules of M and I is an ideal of R with I ∩ (R− Z(M)) ̸= ∅ .
Then the following hold:

(i) If K1,K2 are r -submodules of M with IK1 = IK2, then K1 = K2.

(ii) If IL is an r -submodule , then IL = L . In particular, L is an r -submodule.

Proof (i) Since IK1 ⊆ K2 and K2 is an r -submodule, we have K1 ⊆ K2 by Theorem 1(i). Similarly, we
have K2 ⊆ K1, and so K1 = K2.

(ii) Since IL is an r -submodule and IL ⊆ IL, we have L ⊆ IL ⊆ L by Theorem 1(i), and so IL = L.

2
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Theorem 3 Suppose that N1, N2, ..., Nn are prime submodules of M such that (Ni :R M)s are not comparable.

If
n∩

i=1

Ni is an r -submodule, then Ni is an r -submodule for each i ∈ {1, 2, ..., n} .

Proof Let am ∈ Nk with annM (a) = 0M for a ∈ R,m ∈ M . Since (Ni :R M)s are not comparable, we

have r ∈

 n∩
i=1
i̸=k

(Ni :R M)

 − (Nk :R M) for some r ∈ R . Then we have ram ∈
n∩

i=1

Ni . Since
n∩

i=1

Ni is an

r -submodule, we conclude that rm ∈
n∩

i=1

Ni ⊆ Nk . Thus, we have m ∈ Nk, because Nk is a prime submodule

and r /∈ (Nk :R M) . Hence, Nk is an r -submodule . 2

Proposition 7 If N is a maximal r -submodule of M , then N is prime submodule .

Proof Let am ∈ N and m /∈ N ; we show that a ∈ (N :R M) . Assume that a /∈ (N :R M) . Then (N :M a) is
an r -submodule by Proposition 5. Since N is a maximal r -submodule, we conclude that m ∈ (N :M a) = N, a
contradiction. Thus, we have a ∈ (N :R M) , as needed. 2

Let recall the following well-known theorem of the prime avoidance lemma: suppose that N ⊆
n∪

j=1

Nj

and at most two of Nj are not prime submodules. Then N ⊆ Ni for some 1 ≤ i ≤ n if the condition
(Ni :R M) ⊈ (Nj :R M) holds for every i ̸= j [4, 7]. Now we present a result with a similar prime avoidance
lemma for r -submodules.

Proposition 8 Let N ⊆
n∪

j=1

Nj for submodules N,N1, N2, ..., Nn of M . Suppose that Nk is an r -submodule

and (Nj :R M) ∩ (R− Z(M)) ̸= ∅ for every j ̸= k. If N ⊈
∪
j ̸=k

Nj , then N ⊆ Nk .

Proof We may asume that k = 1 . Since N ⊈
n∪

j=2

Nj , there exists m ∈ N such that m /∈
n∪

j=2

Nj , namely

m ∈ N1. Let n ∈ N ∩N2 ∩N3 ∩ ...∩Nn. Then it is clear that m+n ∈ N −
n∪

j=2

Nj , and thus m+n ∈ N1. This

gives n ∈ N1, and so N ∩ N2 ∩ N3 ∩ ... ∩ Nn ⊆ N1. Since (Nj :R M) ∩ (R− Z(M)) ̸= ∅, there exists
aj ∈ (Nj :R M) such that annM (aj) = 0M for j = 2, 3, ..., n . Then note that annM (a2a3...an) = 0M . Now we

take I =

n∩
j=2

(Nj :R M) . Then we have a2a3...an ∈ I∩(R− Z(M)) . Since IN ⊆ N∩N2∩N3∩...∩Nn ⊆ N1 and

I ∩ (R− Z(M)) ̸= ∅, by Theorem 1, we get N ⊆ N1. 2

Definition 2 A nonempty subset S of R is said to be an r -multiplicatively closed subset precisely when
R− Z(M) ⊆ S and ab ∈ S , for all a ∈ R− Z(M) and b ∈ S.
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Example 8 For every r -submodule N of M, R − (N :R M) is an r -multiplicatively closed subset of R .
We know that if N is an r -submodule, then (N :R M) ⊆ Z(M) and so R − Z(M) ⊆ R − (N :R M) . Let
a ∈ R − Z(M) and b ∈ R − (N :R M) . Suppose that ab ∈ (N :R M) . Then we have abm ∈ N for every
m ∈ M and annM (a) = 0M . Since N is an r-submodule, it follows that bm ∈ N and thus b ∈ (N :R M) , a
contradiction. Hence, R− (N :R M) is an r -multiplicatively closed subset .

Definition 3 Let S be an r -multiplicatively closed subset of R and S∗ be a nonempty subset of M . Then
S∗ is called an S -closed subset of M if am ∈ S∗ for each a ∈ S and m ∈ S∗.

Theorem 4 Let S∗ be an S -closed subset of M, where S is an r -multiplicatively closed subset of R. Suppose
that N is a submodule of M with N ∩ S∗ = ∅ . Then there exists an r -submodule L of M with N ⊆ L and
L ∩ S∗ = ∅.

Proof Let Ω = {L′ : L′ be a submodule of M with N ⊆ L′ and L′ ∩ S∗ = ∅} . Since N ∈ Ω, we have
Ω ̸= ∅ . By Zorn’s lemma, Ω has a maximal element L with N ⊆ L and L∩ S∗ = ∅ . Assume that L is not an
r -submodule of M . Then there exist a ∈ R,m ∈ M such that am ∈ L, annM (a) = 0M and m /∈ L . Since
m /∈ L and m ∈ (L :M a) , L ⫋ (L :M a) . By the maximality of L, we get m′ ∈ (L :M a)∩S∗ . Since a ∈ S, we
get the result that am′ ∈ L ∩ S∗ , a contradiction. Hence, L is an r -submodule. 2

Theorem 5 Let M be an R -module. Then every proper submodule of M is an r -submodule if and only if for
every submodule N of M, aN = N for every a ∈ R− Z(M) .

Proof Suppose that every proper submodule of M is an r -submodule. Let N be a submodule and
a ∈ R − Z(M) . Assume that N = M . If aM ̸= M, then aM is an r -submodule of M . Since am ∈ aM for
every m ∈ M and annM (a) = 0M , we conclude that m ∈ aM , and thus aM = M, a contradiction. Thus,
we have aM = M . Now assume that N is a proper submodule of M . Then aN ⊆ N ̸= M and so aN is an
r -submodule of M . Since an ∈ aN for every n ∈ N, similarly we get the result that aN = N . Conversely,
suppose that aN = N for every submodule N of M and every a ∈ R−Z(M) . Let N be a proper submodule
of M and a ∈ R − Z(M) . Then we have aM ∩ N = aN , and so by Proposition 4, N is an r -submodule of
M. 2

Let M be an R -module. Recall that the idealization of M in R, which is denoted by R (+)M = {(a,m) :

a ∈ R, m ∈ M}, is a commutative ring with component-wise addition and multiplication (a1,m1)(a2,m2) =

(a1a2, a1m2 + a2m1) [10] . In [1,6] , the zero divisor set of R (+)M was characterized as follows:

Z(R (+)M) = {(a,m) : a ∈ Z (R) ∪ Z (M) , m ∈ M},

where Z(R) = {a ∈ R : ann (a) ̸= 0} .

Corollary 2 For every a ∈ R and m ∈ M, annR(+)M (a,m) = 0 if and only if ann (a) = 0 and annM (a) =

0M .

Suppose that N is a submodule of M and J is an ideal of R. Then it is clear that J(+)N is an ideal
of R(+)M if and only if JM ⊆ N. In that case J(+)N is called a homogeneous ideal.

Proposition 9 Suppose that J is an r -ideal of R. Then J(+)M is an r -ideal of R(+)M .
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Proof Let J be an r -ideal of R . Suppose that (a1,m1)(a2,m2) = (a1a2, a1m2 + a2m1) ∈ J (+)M and
annR(+)M (a1,m1) = 0 . Since annR(+)M (a1,m1) = 0, we have ann (a1) = 0 . Then we get the result that
a2 ∈ J, because J is an r -ideal and a1a2 ∈ J . Thus, we have (a2,m2) ∈ J (+)M . Consequently, J(+)M is
an r -ideal. 2

The converse of the previous proposition is not always true. We have a counterexample as follows.

Example 9 Consider the Z (+)Z2 and the ideal 2Z (+)Z2 of Z (+)Z2 . We know that 2Z is not an r -ideal
of Z but 2Z (+)Z2 is an r -ideal of Z (+)Z2.

Theorem 6 Suppose that J is an r -ideal of R and N is an r -submodule of M with JM ⊆ N . Then
J(+)N is an r -ideal of R(+)M.

Proof Let (a1,m1)(a2,m2) ∈ J(+)N with annR(+)M (a1,m1) = 0 . Then we have ann(a1) = 0 and
annM (a1) = 0M . Since J is an r -ideal and a1a2 ∈ J , we have a2 ∈ J . Thus, we have a2m1 ∈ N and
so a1m2 ∈ N . As N is an r -submodule, it follows that m2 ∈ N and so (a2,m2) ∈ J(+)N . Hence, J(+)N is
an r -ideal . 2

Example 9 also serves as a counterexample of the previous theorem, but we prove that the converse of
Theorem 6 is valid when Z (R) = Z (M) as follows .

Theorem 7 Let M be an R -module and Z(R) = Z(M) . If J(+)N is an r -ideal of R(+)M with N ̸= M, then
J is an r -ideal of R and N is an r -submodule of M.

Proof Suppose that J(+)N is an r -ideal. Since Z(R) = Z(M), annR(+)M (a1,m1) = 0 if and only if
ann(a1) = 0 . Let a, b ∈ R with ab ∈ J and ann(a) = 0 . Then we have annR(+)M (a, 0M ) = 0 and so
(a, 0M )(b, 0M ) = (ab, 0M ) ∈ J(+)N . Since J(+)N is an r -ideal , we get the result that (b, 0M ) ∈ J(+)N and
thus b ∈ J . Hence, J is an r -ideal of R . Suppose that am ∈ N with annM (a) = 0M for a ∈ R, m ∈ M . Then
annR(+)M (a, 0M ) = 0 , so we get (a, 0M )(0,m) = (0, am) ∈ J(+)N . As J(+)N is an r -ideal, we conclude that
(0,m) ∈ J(+)N and so m ∈ N . Hence, N is an r -submodule . 2

Let M1 be an R1 -module and M2 an R2 -module, where R1 and R2 are commutative rings with identity.
Suppose that R = R1×R2 and M = M1×M2 . Then M becomes an R -module with coordinate-wise addition
and the scalar multiplication (a1, a2) (m1,m2) = (a1m1, a2m2) for every a1 ∈ R1, a2 ∈ R2; m1 ∈ M1 and
m2 ∈ M2 . Also, every submodule N of M has the form N = N1 ×N2, where N1 is a submodule of M1 and
N2 is a submodule of M2 . The following theorem characterizes the r -submodule of Cartesian product of
modules.

Lemma 2 Let R = R1 × R2 and M = M1 × M2, where M1 is an R1 -module and M2 is an R2 -module.
Suppose that N = N1 ×N2 is a submodule of M . Then the following are equivalent:

(i) N is an r -submodule of M.

(ii) N1 = M1 and N2 is an r -submodule of M2 or N1 is an r -submodule of M1and N2 = M2 or
N1, N2 are r -submodules of M1 and M2, respectively.

Proof (i) ⇒ (i) : First note that M/N is isomorphic to (M1/N1)× (M2/N2) and Z(M/N) = (Z(M1/N1)×
R2) ∪ (R1 × Z(M2/N2)). Suppose that N is an r -submodule of M and assume that N1 = M1. Since N is
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a proper submodule of M, N2 ̸= M2. Then Z(M/N) = R1 × Z(M2/N2) ⊆ Z(M) = (Z(M1) × R2) ∪ (R1 ×
Z(M2)) and so Z(M2/N2) ⊆ Z(M2). This implies that N2 is an r -submodule of M2 . In other cases, a similar
argument shows that (i) implies (ii).

(ii) ⇒ (i) : Conversely, suppose that (ii) holds. Assume that N1, N2 are r -submodules of M1 and
M2, respectively. Then Z(M1/N1) ⊆ Z(M1) and Z(M2/N2) ⊆ Z(M2). This implies that Z(M/N) =

(Z(M1/N1)×R2)∪ (R1 ×Z(M2/N2)) ⊆ (Z(M1)×R2)∪ (R1 ×Z(M2)) = Z(M), i.e. N is an r -submodule of
M. In other cases, one can similarly prove that N is an r -submodule. 2

Theorem 8 Suppose that R = R1 ×R2 × ...×Rn and M = M1 ×M2 × ...×Mn, where Mi is an Ri -module
for n ≥ 1 and 1 ≤ i ≤ n . Let N = N1×N2× ...×Nn be a submodule of M . Then the following are equivalent:

(i) N is an r -submodule of M.

(ii) Ni = Mi for i ∈ {t1, t2,..., tk : k < n} and Ni is an r -submodule of Mi for i ∈ {1, 2, ..., n} \ {t1, t2,..., tk} .

Proof To prove the claim, we use induction on n . If n = 1, then it is clear that (i) ⇔ (ii) . If n = 2, by
Lemma 2, (i) and (ii) are equal. Assume that n ≥ 3 and the claim is valid when K = M1×M2×...×Mn−1 . We
prove that the claim is true when M = K×Mn . Then by Lemma 2 we get the result that N is an r -submodule
if and only if N = K×Nn for some r -submodule Nn of Mn or N = L×Mn for some r -submodule L of K or
N = L×Nn for some r -submodule L of K and some r -submodule Nn of Mn . By induction hypothesis, the
result is valid in three cases. 2

3. Special r -submodules
In this section, we give another type of generalization of r -ideals to modules.

Definition 4 Let M be an R -module. Then a submodule N of M is said to be a special r -submodule (briefly
sr -submodule) if N ̸= M, for each a ∈ R,m ∈ M with am ∈ N and annR(m) = 0, then a ∈ (N :R M).

If we consider R -module R , the sr -submodules and r -submodules coincide. Now we give some examples
of sr -submodules in the following.

Example 10 By Example 1, we know that all proper submodules of Z-module Zn are r -submodules. One
can easily see that all proper submodules of Zn are also sr -submodules. Now consider the Z-module E(p) . By

Example 2, all proper submodules of E(p) are r -submodules. Since annZ

(
r

pt
+ Z

)
̸= 0 for each r

pt
+ Z ∈

E (p) , we conclude that all proper submodules of E(p) are also sr -submodules.

In the previous example, r -submodules and sr -submodules are equal, but these concepts are different.
See the following examples.

Example 11 (i) By Proposition 1, the subspace N = {(x, 0) : x ∈ R} of M = R2 is an r -submodule, but
2 (1, 0) = (2, 0) ∈ N, annR (1, 0) = 0 , and 2 /∈ (N :R M) ; thus, we get the result that N is not an sr -
submodule.

(ii) Consider the R = Z×Z-module M = Z×Z2 and the submodule N = 2Z×0 . Since annR (m) ̸= 0 for
every m ∈ M, it follows that N is an sr -submodule of M . However, it is not an r -submodule since
(2, 1)

(
1, 0
)
=
(
2, 0
)
∈ N, annM (2, 1) = 0M , and

(
1, 0
)
/∈ N.
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Lemma 3 If N is an sr -submodule of M, then N ⊆ T (M).

Proof Assume that N ⊈ T (M). There exists m ∈ N with annR (m) = 0 . Since 1.m = m ∈ N and N is an
sr -submodule, we get the result that 1 ∈ (N :R M) , i.e. N = M, a contradiction. Hence, we have N ⊆ T (M).

2

The converse of the previous lemma is not always true. See the following example.

Example 12 Consider the R = R × Z-module M = C × Z and the submodule N = R × 0 of M . Note that
T (M) = (0C × Z)∪ (C× 0) and (N :R M) = 0R . Thus, we have N ⊆ T (M) . Since (2, 0) (2 + 0i, 1) = (4, 0) ∈
N, annR (2 + 0i, 1) = 0R , and (2, 0) /∈ (N :R M) , we get the result that N is not an sr -submodule .

Example 13 (i) Every nonzero prime submodule of Z-module Z is not an sr -submodule .
(ii) ⟨4⟩ is an sr -submodule of Z-module Z12 but it is not prime.

Now we give a condition for a prime submodule to be an sr -submodule in the following proposition.

Proposition 10 For a prime submodule N of M, N is an sr -submodule if and only if N ⊆ T (M).

Proof Assume that N is a prime submodule . If N is an sr -submodule, then N ⊆ T (M) by Lemma 3. Now,
suppose N ⊆ T (M) . Let am ∈ N and annR (m) = 0 for a ∈ R and m ∈ M . Since annR (m) = 0, m /∈
T (M) and so m /∈ N . Since N is prime submodule, we have a ∈ (N :R M) and hence N is an sr -submodule .

2

Proposition 11 Let M be an R -module. Then the following hold:
(i) The zero submodule is an sr -submodule of M.

(ii) The intersection of an arbitrary nonempty set of sr -submodules is an sr -submodule.

Proof (i) Let a ∈ R,m ∈ M with am = 0M and annR (m) = 0 . Then we have a = 0 ∈ (0M :R M) . Hence,
we get the result that the zero submodule is an sr -submodule.

(ii) Suppose that {Ni}i∈∆ is an arbitrary nonempty set of sr -submodules of M . Let am ∈
∩
i∈∆

Ni and

annR (m) = 0 . Since Ni is an sr -submodule and am ∈ Ni , we get a ∈ (Ni :R M) for every i ∈ ∆ . Hence, we

get a ∈
∩
i∈∆

(Ni :R M) =

((∩
i∈∆

Ni

)
:R M

)
and so

∩
i∈∆

Ni is an sr -submodule . 2

The following example shows that (N :R M) need not be an r -ideal even if N is an sr -submodule of
M.

Example 14 Consider the Z-module Z6[x] and the submodule N = {p(x) ∈ Z6[x] : p(0) ∈ ⟨2⟩} . Then N is
an sr -submodule but (N :Z Z6[x]) = 2Z is not an r -ideal of Z.

Proposition 12 Let N be a proper submodule of M . Then the following are equivalent:
(i) N is an sr -submodule of M.

(ii) Rm ∩N = (N :R M)m for every m ∈ M − T (M) .

(iii) (N :R M) = (N :R m) for every m ∈ M − T (M) .
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Proof (i) ⇒ (ii) : Suppose that N is an sr -submodule. The inclusion (N :R M)m ⊆ Rm∩N always holds
for each m ∈ M . Let m ∈ M − T (M) and x ∈ Rm ∩ N . Then we have x = am ∈ N for some a ∈ R . As
N is an sr -submodule of M and annR (m) = 0, a ∈ (N :R M) and so x = am ∈ (N :R M)m, as desired.

(ii) ⇒ (iii) : It is easy to see that (N :R M) ⊆ (N :R m) for every m ∈ M . Suppose that m ∈
M − T (M) and a ∈ (N :R m) . Then we have am ∈ N . Thus, we have am ∈ Rm ∩ N = (N :R M)m by
assumption. Then am = rm for some r ∈ (N :R M) . Since annR (m) = 0 and (a− r)m = 0M , we conclude
that a ∈ (N :R M) . Hence, we have (N :R M) = (N :R m) .

(iii) ⇒ (i) : Let am ∈ N and annR(m) = 0 . Then we get m ∈ M − T (M) and so a ∈ (N :R m) =

(N :R M) by the assumption. Consequently, N is an sr -submodule of M. 2

Theorem 9 Let f : M1 → M2 be an R -module homomorphism. Then the following hold:
(i) If f is a monomorphism and L is an sr -submodule of M2 with f−1(L) ̸= M1, then f−1(L) is an

sr -submodule of M1.

(ii) If f is an epimorphism and K is an sr -submodule of M1 containing Ker(f) , then f(K) is an
sr -submodule of M2.

Proof (i) Let am ∈ f−1(L) with annR(m) = 0 for a ∈ R, m ∈ M1 . Then f(am) = af(m) ∈ L and
annR(f(m)) = 0 . Since L is an sr -submodule of M2, we conclude that a ∈ (L :R M2) ⊆ (f−1(L) :R M1) .
Hence, f−1(L) is an sr -submodule of M1.

(ii) Let am′ ∈ f(K) and annR(m
′) = 0 for a ∈ R,m′ ∈ M2 . Since f is epimorphism, there exists

m ∈ M1 such that f(m) = m′ . Then we have am′ = af(m) = f(am) ∈ f(K) . As Ker(f) ⊆ K, we have
am ∈ K . Since annR(m) = 0, we conclude that a ∈ (K :R M1) ⊆ (f(K) :R M2) . Consequently, f(K) is an
sr -submodule . 2

Corollary 3 Let K be a submodule of M. Then the following hold:
(i) For every sr -submodule N of M with K ⊈ N, N ∩K is an sr -submodule of K.

(ii) For every sr -submodule N of M with K ⊆ N, N/K is an sr -submodule of M/K.

Proof (i) Consider the injection i : K → M and note that i−1 (N) = K∩N . Thus, N∩K is an sr -submodule
of K by Theorem 9(i).

(ii) Assume π : M −→ M/K to be the natural homomorphism and note that Ker (π) = K ⊆ N . Thus,
N/K is an sr -submodule of M/K by Theorem 9(ii) . 2

Remark 1 For any nonempty subset S of R and submodule N of M, ((N :M S) :R M) = ((N :R M) :R S)

always holds.

Proposition 13 Let M be an R -module. Then the following hold:
(i) For every sr -submodule N of M and every subset S of R with S ⊈ (N :R M), (N :M S) is an

sr -submodule of M . In particular, (0M :M S) is always an sr -submodule if S ⊈ AnnR (M) .

(ii) annM (a) is an sr -submodule of M for every a /∈ AnnR(M).
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Proof (i) Let am ∈ (N :M S) with annR (m) = 0 for a ∈ R,m ∈ M . Then asm ∈ N for every s ∈ S . Since
N is an sr -submodule, we get the result that as ∈ (N :R M) for every s ∈ S and so a ∈ ((N :R M) :R S) . By
Remark 1, a ∈ ((N :M S) :R M) , and thus (N :M S) is an sr -submodule .

(ii) Follows from (i) and Proposition 11. 2

Theorem 10 For a proper submodule N of M, the following hold:
(i) N is an sr -submodule of M if and only if whenever L is a submodule of M with L∩ (M − T (M)) ̸=

∅ and J is an ideal of R with JL ⊆ N, then J ⊆ (N :R M) .

(ii) If N is not an sr -submodule with N ⊆ T (M), then there is an ideal J of R and submodule L of
M with L ∩ (M − T (M)) ̸= ∅ , N ⫋ L, (N :R M) ⫋ J , and JL ⊆ N.

Proof (i) Suppose N is an sr -submodule. For submodule L of M with L ∩ (M − T (M)) ̸= ∅ and ideal
J of R, assume that JL ⊆ N . Since L ∩ (M − T (M)) ̸= ∅, annR (m) = 0 for some m ∈ L . By assumption,
am ∈ N for every a ∈ J, and thus a ∈ (N :R M) . We get the result that J ⊆ (N :R M) . Conversely, let
am ∈ N and annR (m) = 0 for a ∈ R,m ∈ M . Now we take J = aR and L = Rm . Then we have JL ⊆ N for
submodule L of M with L ∩ (M − T (M)) ̸= ∅ and ideal J of R . By assumption, J = aR ⊆ (N :R M) so
that a ∈ (N :R M) . Consequently, N is an sr -submodule.

(ii) If N is not an sr -submodule , then am ∈ N with annR (m) = 0 but a /∈ (N :R M) for some
a ∈ R,m ∈ M . Now we take L = (N :M a) . Since m ∈ L −N, N ⫋ L . Also, we take J = (N :R L) . Since
a ∈ J − (N :R M) , we get (N :R M) ⫋ J . Then we get JL = (N :R L)L ⊆ N, as desired. 2

As a consequence of Theorem 10, we have the following result.

Theorem 11 Let L be a submodule of M with L ∩ (M − T (M)) ̸= ∅ . Then the following hold:
(i) If N1, N2 are sr -submodules of M with (N1 :R M)L = (N2 :R M)L, then (N1 :R M) = (N2 :R M).

(ii) If JL is an sr -submodule for an ideal J of R, then JL = JM . Particularly, JM is an sr -submodule
of M.

Theorem 12 Suppose that N1, N2, ..., Nn are prime submodules of M with (Ni :R M)s not comparable. If
n∩

i=1

Ni is an sr -submodule , then Ni is an sr -submodule for each i ∈ {1, 2, ..., n} .

Proof The proof is similar to Theorem 3. 2

The following theorem characterizes the torsion-free modules by sr -submodule.

Theorem 13 For any R -module M, the following are equivalent:
(i) M is torsion-free.
(ii) M is faithful and the zero submodule is the only sr -submodule .

Proof (i) ⇒ (ii) : It is obvious that M is faithful. For every sr -submodule N of M, N ⊆ T (M) = 0M and
so N = 0M by Lemma 3. However, the zero submodule is always an sr -submodule.

(ii) ⇒ (i) : Let m ∈ T (M) . Then we have 0 ̸= r ∈ R such that rm = 0M . We know that annM (r) is
an sr -submodule by Proposition 13(ii), and we have m ∈ annM (r) = 0M by assumption. Hence, we have
T (M) = 0M . 2
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Proposition 14 If N is a maximal sr -submodule of M, then N is prime submodule.

Proof Let am ∈ N and a /∈ (N :R M); we show that m ∈ N. Then (N :M a) is an sr -submodule by
Proposition 13(i). Since N is maximal sr -submodule , m ∈ (N :M a) = N. Consequently, N is prime
submodule. 2

Theorem 14 Let M be an R -module. Then every proper submodule is an sr -submodule of M if and only if
T (M) = M or Rm = M for every m ∈ M − T (M) .

Proof Suppose every proper submodule of M is an sr -submodule and T (M) ̸= M . Let m ∈ M − T (M) .
If Rm ̸= M, then we get the result that Rm is an sr -submodule. Since rm ∈ Rm for every r ∈ R and
annR (m) = 0, (Rm :R M) = R . Thus, we have Rm = RM = M , which contradicts the assumption. Hence,
we have Rm = M for all m ∈ M − T (M) . Conversely, if T (M) = M, then every proper submodule is an
sr -submodule. Now assume that Rm = M for all m ∈ M − T (M) . Suppose N is a proper submodule of
M . Let am ∈ N and annR (m) = 0 for a ∈ R,m ∈ M . Then we get the result that Rm = M , because
m ∈ M − T (M) . Thus, a ∈ (N :R m) = (N :R M) . Consequently, N is an sr -submodule. 2

Lemma 4 For every R1 -module M1 and R2 -module M2, T (M1 × M2) = (T (M1) × M2) ∪ (M1 × T (M2))

always holds.

Proof Let (m1,m2) ∈ T (M1 ×M2) . Then there exists (0R1 , 0R2) ̸= (a1, a2) ∈ R1 × R2 such that
(a1, a2) (m1,m2) = (0M1

, 0M2
) and so a1m1 = 0M1

, a2m2 = 0M2
. Since a1 ̸= 0R1

or a2 ̸= 0R2
, we

conclude that m1 ∈ T (M1) or m2 ∈ T (M2) . Hence, we have (m1,m2) ∈ (T (M1)×M2) ∪ (M1 × T (M2)) .
Conversely, let (m1,m2) ∈ (T (M1)×M2) ∪ (M1 × T (M2)) . Without loss of generality, we may assume that
(m1,m2) ∈ T (M1)×M2 . There exists 0R1

̸= a1 ∈ R1 such that a1m1 = 0M1
since m1 ∈ T (M1) . Thus, we have

(0R1
, 0R2

) ̸= (a1, 0R2
) ∈ R1 × R2 such that (a1, 0R2

) (m1,m2) = (0M1
, 0M2

) and so (m1,m2) ∈ T (M1 ×M2) .
Hence, we have T (M1 ×M2) = (T (M1)×M2) ∪ (M1 × T (M2)) . 2

Corollary 4 If T (M1) = M1 or T (M2) = M2, then we have T (M1 ×M2) = M1 ×M2 and so every proper
submodule of M1 ×M2 is an sr -submodule of M1 ×M2 .

Now we characterize the sr -submodules of Cartesian products of modules in case T (M1) ̸= M1 and
T (M2) ̸= M2.

Lemma 5 Let R = R1 × R2 and M = M1 ×M2, where Mi is an Ri -module with T (Mi) ̸= Mi for i = 1, 2.

Suppose that N = N1 ×N2 is a submodule of M . Then the following are equivalent:
(i) N is an sr -submodule .
(ii) N1 = M1 and N2 is an sr -submodule of M2 or N1 is an sr -submodule of M1and N2 = M2 or

N1, N2 are sr -submodules of M1 and M2, respectively.

Proof (i) ⇒ (ii) : Assume that N = N1 × N2 is an sr -submodule and N1 = M1 . Since N is proper , we
conclude that N2 ̸= M2 . Now we show that N2 is an sr -submodule of M2 . Suppose not. Then there
exist a2 ∈ R2,m2 ∈ M2 such that a2m2 ∈ N2 with annR2 (m2) = 0R2 but a2 /∈ (N2 :R2 M2) . Since
T (M1) ̸= M1, we get annR1

(m1) = 0R1
for some m1 ∈ M1. Thus, we have annR (m1,m2) = 0R and
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(0R1 , a2) (m1,m2) = (0M1 , a2m2) ∈ N but (0R1 , a2) /∈ (N :R M) , which contradicts N being an sr -submodule
of M . Hence, we have that N2 is an sr -submodule of M2 . If N2 = M2, in a similar way we can see that N1 is
an sr -submodule of M2 . If N1 ̸= M1 and N2 ̸= M2, it can be proved that N1, N2 are sr -submodules of M1

and M2, respectively.
(ii) ⇒ (i) : Assume N1, N2 are sr -submodules of M1 and M2, respectively. Let (a1, a2) ∈ R1 ×R2 and

(m1,m2) ∈ M1 ×M2 such that (a1, a2) (m1,m2) = (a1m1, a2m2) ∈ N with annR (m1,m2) = (0R1 , 0R2) . Then
we have annRi (mi) = 0Ri and aimi ∈ Ni for i = 1, 2 . Since Ni is an sr -submodule of Mi, we conclude that
ai ∈ (Ni :Ri Mi) and so (a1, a2) ∈ (N1 :R1 M1)× (N2 :R2 M2) = (N :R M) . Hence, we get the result that N is
an sr -submodule. In other cases, one can easily prove the result. 2

Theorem 15 Suppose that R = R1 ×R2 × ...×Rn and M = M1 ×M2 × ...×Mn, where Mi is an Ri -module
with T (Mi) ̸= Mi for n ≥ 1 and 1 ≤ i ≤ n . For a submodule N = N1 ×N2 × ... ×Nn of M , the following
are equivalent:

(i) N is an sr -submodule .
(ii) Ni = Mi for i ∈ {t1, t2,..., tk : k < n} and Ni is an sr -submodule of Mi for i ∈ {1, 2, ..., n} \ {t1, t2,..., tk} .

Proof We use induction on n . If n = 1, of course (i) ⇔ (ii) . If n = 2, by Lemma 5, (i) and (ii) are equal.
Assume n ≥ 3 and (i) ⇔ (ii) holds when K = M1 × M2 × ... × Mn−1 . Now we prove that (i) and (ii) are
equal when M = K ×Mn . Then, by Lemma 5, N is an sr -submodule of M if and only if N = K ×Nn for
some sr -submodule Nn of Mn or N = L × Mn for some sr -submodule L of K or N = L × Nn for some
sr -submodule L of K and some sr -submodule Nn of Mn . By induction hypothesis, the result is true in three
cases. 2
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