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Abstract: System dynamics (SD) is a simulation-based approach for analyzing feedback-rich systems. An ideal SD
modeling cycle requires evaluating the qualitative pattern characteristics of a large set of time series model output for
testing, validation, scenario analysis, and policy analysis purposes. This traditionally requires expert judgement, which
limits the extent of experimentation due to time constraints. Although time series recognition approaches can help
to automate such an evaluation, utilization of them has been limited to a hidden Markov model classifier, namely the
Indirect Structure Testing Software (ISTS) algorithm. Despite being used within several automated model-analysis tools,
ISTS has several shortcomings. In that respect, we propose an interpretable time series classification algorithm for the
SD field, which also addresses the shortcomings of ISTS. Our approach, which can highlight the regions of a certain
time series that are influential in the class assignment, is an extension of the symbolic multivariate time series approach
with the use of a local importance measure. We compare the performance of the proposed approach against both ISTS
and nearest-neighbor (NN) classifiers. Our experiments on a SD-specific application show that the proposed approach
outperforms ISTS as well as conventional NN classifiers on both noisy and nonnoisy datasets. Additionally, its class
assignments are interpretable as opposed to the other approaches considered in the experiments.

Key words: System dynamics, model analysis, classification, time series, local importance, nearest-neighbor

1. Introduction
Time series classification is a data mining problem being studied in different fields such as medicine [1], finance
[2], and engineering [3]. As a dynamic modeling approach, system dynamics (SD) models produce large sets
of time series data and there is therefore high potential for utilization of time series classification tools. Since
application-specific approaches are needed due to the characteristics of the dataset at hand, the need for time
series classification tools tailored to the SD field is obvious.

Similarity-based approaches such as 1-nearest-neighbor (NN) classifiers with Euclidean or a dynamic
time warping (DTW) distance have been widely and successfully used to classify time series [4–6]. Although
the Euclidean distance performs well for many real-life applications [7], it is sensitive to the noise, scaling, and
translation of the patterns within time series. DTW attempts to compensate for possible time translations and
dilations between features, but the capability for DTW is degraded with long time series and relatively short
features of interest. More importantly, NN classifiers lack interpretability, which makes it hard to understand
∗Correspondence: mustafa.baydogan@boun.edu.tr
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what exactly relates to the class [8]. On the other hand, it is of utmost importance to verify results in
interdisciplinary teams of researchers. However, it is not easy to determine why an instance is assigned to
a certain class when NN classification is used. For example, a cardiologist might be interested in the analysis of
ECG signals to identify whether patients have different temporal patterns in their heart signals than a control
group [9]. Seismologists aim at discriminating seismic waves to classify events such as earthquakes, mining
explosions, or nuclear explosions. However, many successful classifiers fail to provide interpretable results in
the time series classification domain [10].

Similar problems exist in the SD field, which is a simulation-supported methodology for studying complex
dynamic problems [11]. These problems are “systemic” as the dynamic behavior emerges as a result of the
internal feedback structure that is formed by the entangled relationships among system elements [12]. Since the
studied problems are dynamic in nature, analyses are typically based on large sets of time series model output.
As SD practitioners focus mainly on qualitative pattern features in output analysis, several field-specific tools
have been developed to support and automate output analysis [13–15], most of which rely on the same time
series classification algorithm, namely ISTS. ISTS is a hidden Markov model (HMM)-based classifier that is
trained to classify 25 generic behavior patterns observed in dynamical systems [16, 17]. However, it has several
shortcomings. In general, it has low precision and high processing time compared to state-of-the-art methods,
and it performs very poorly specifically with output whose dynamics are confined in a narrow time window.
More importantly, its class assignments are not directly interpretable as it does not provide any information on
why a time series is assigned to a certain class.

Considering the potential problems with the existing methods, Baydogan and Runger [18] proposed
symbolic representations that identify potential predictive patterns to classify time series. In this context,
symbolic representation for multivariate time series (SMTS) has been shown to be successful in pattern-based
representation. After transforming a time series to a pattern-based representation, SMTS trains a tree-based
ensemble to classify the time series. However, SMTS also lacks the interpretability aspect since it is hard to
understand why a time series is assigned to a certain class because of the multiple decision trees trained in
a randomized manner (i.e. tree-based ensembles). We devise a new approach based on the local importance
information proposed by the ensembles to facilitate the interpretability. To the best of our knowledge, this is
the first study utilizing local information to identify important time series patterns. The novelty of this study
stems from the extension of SMTS [18] for interpretability purposes.

This paper also presents a comparative analysis of alternative pattern classification approaches to rec-
ommend a novel and improved output classification approach in the SD field. The underlying motivation stems
from the deficiencies of the NN classifiers and ISTS algorithm as well as novel developments in the classification
field. In that respect, ISTS sets the established benchmark for our inquiry. In the scope of this study, we
consider 1-nearest-neighbor (1-NN) classifiers with different distance measures and Baydogan and Runger’s [18]
tree-based approach for SD model output classification.

2. Background

2.1. ISTS (Indirect Structure Testing Software) algorithm

The ISTS algorithm is a continuous density HMM-based algorithm specifically developed to classify fundamental
dynamic behavior patterns studied in the SD field [16]. Basically, ISTS is an ensemble of HMMs, each being
trained for a particular behavior class. For a given time series, ISTS converts the series into an observation vector
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and classifies it with the label of HMM that is more likely to generate such an observation. The algorithm divides
the time series to be classified into 12 equal-length segments and then estimates mean, slope, and curvature
values for each segment. In summary, the ISTS relies on an ensemble of HMMs trained on the features to
classify 25 principal behavior types. For further information, the reader is referred to [16].

2.2. Nearest-neighbor classification

A nearest-neighbor (NN) classifier assigns a new time series to a class by considering k closest time series in
the training dataset. The class of the new time series is the most encountered label among these k neighboring
time series [1]. The quantification of “closeness” between time series is another important part of NN classifiers.
Wang et al. [7] categorized similarity measures into four different groups as (i) lock-step measures, (ii) elastic
measures, (iii) threshold-based measure, and (iv) pattern-based measure. Lock-step measures include the well-
known ℓp -norms (e.g., Euclidean distance, Manhattan distance). Elastic measures are grouped into two: (i)
dynamic time warping and (ii) edit-based distance measures. Edit-based distance measures include longest
common subsequence, edit distance on real sequences, edit, and distance with real penalty.

Although lock-step similarity measures are widely used in the literature due to their simplicity, they fail
to handle time series of different lengths and local time shifts where similar patterns appear at different portions
of two time series being considered [19]. It was also reported that statistical error measurements such as mean
squared error (MSE) and sum of squared errors (SSE) are ineffective in determining pattern-wise similarity
between SD model outputs [13, 14]. Therefore, ℓp -norms are excluded from our study. Only elastic measures
are considered in this study as they can handle time series of different lengths and shifts in temporal domain.
Namely, these are dynamic time warping (DTW), longest common subsequence (LCSS), edit distance on real
sequences (EDR), and edit distance with real penalty (ERP). We refer readers to [7] for further discussion of
these measures. We use 1-NN classifiers (i.e. k = 1) with the aforementioned similarity measures as competitors.
The 1-NN classifier is commonly used to understand whether the selected similarity measure is appropriate for
the problem of interest [7].

2.3. Random forest
Decision trees are one of the classification and regression tools, which generate axis-parallel splits on the dataset
by using only one feature at each iteration. The number of splits is generally determined by node impurity, a
measure of heterogeneity of a node of the tree in terms of class distribution. Each terminal node of a decision
tree represents a class label. A random forest (RF) is an ensemble of J decision trees [20], {gj , j = 1, 2,…, J} .
Each tree is constructed using a different bootstrap sample from the original data. About one-third of the
cases are left out of the bootstrap sample and not used in the construction of the single tree. These are called
out-of-bag (OOB) samples. The prediction for instance x from tree gj is ŷj (x) = argmaxcp

c
j (x) , where pcj (x)

is the estimated proportion of c in the corresponding leaf of the j th tree, for c = 1, 2, . . . , C . Let G (x) denote
the set of all trees in the RF where instance x is OOB. The OOB class probability estimate of x is

pc (x) =
1

G (x)

∑
gj∈G(x)

I (ŷj (x) = c) , (1)

where I (·) is an indicator function that equals one if its argument is true and zero otherwise. The predicted
class is ŷ (x) = argmaxcp

c (x) . In summary, an instance is labeled through a majority voting approach using
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the tree results for which it is OOB. The estimates computed from OOB predictions are known to provide a
reliable estimate of generalization error [21].

In the tree growing steps of RF, the best split is determined based on only a random sample of features.
Often, the random sample size is

√
ν , where ν is the number of features. The random selection reduces the

variance of the classifier, and also reduces the computational complexity. Therefore, for a large number of
features, an RF can be as computationally efficient as a single decision tree.

3. Symbolic time series representation with local importance
3.1. Representation learning

A univariate time series, xn = (xn(1), xn(2), . . . , xn(t), . . . , xn(T )) is an ordered set of T values. We assume
time series are measured at equally spaced time points. A time series database, X , stores N univariate time
series. Time series are assumed to be of the same length, T , for illustration purposes, although the proposed
method is flexible in handling the different length time series.

Most of the time series classifiers transform the raw data to an alternative representation instead of
working with the observed values. This strategy allows for noise reduction or obtaining the same number of
features for different length series, etc. Considering this fact, SMTS discretizes the signal space in a randomized
manner to identify the informative segments related to the class with the help of tree-based learning. To avoid
determination of handcrafted features from each time series, SMTS considers each observation of xn as an
instance. This is achieved by creating a matrix of instances DNT×1 where

DNT×1 =



x1

.

.
xn

.

.
xN


(2)

Eq. (2) is basically the concatenation of training examples xn . The label of each observation is assumed to be
the same as the time series it belongs to. Then DNT×M is mapped to a new feature space ΦNT×3 by adding
the following new information: time index and first differences between consecutive observations. The row of
Φ for series n at time index t is

[t, xn(t), xn(t)− xn(t− 1)] . (3)

The time index, t , provides information related to the temporal relations. If time of specific observation is
important for classification, a tree learner can capture this information. Moreover, the differences can be
considered as empirical estimates of the first derivative and they provide trend information. The difference for
the first observation of a time series is not available and it is assumed to be missing.

SMTS [18] trains an RF classifier denoted as RFins (for RF applied to the instances) with Jins trees
trained on Φ to learn the representation. Each observation (i.e. row) is assumed to have the same class label
as its time series. RFins maps each instance of Φ to a terminal node of each tree. The number of terminal
nodes of each tree is restricted to R and this determines the alphabet size in the approach. Use of multiple
trees trained in a randomized manner is proposed to handle nonlinear boundaries by SMTS [18]. After traversal
of each tree, a time series is represented by counting the terminal node assignments in each tree.
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A sample discretization is illustrated in Figure 1. The plot of raw data versus time index (i.e. signal space,
denoted as S ) is schematized in Figure 1a (with the time index plotted on the horizontal axis and the value
from a time series plotted on the vertical axis). If there are differences between the classes, there are regions in
S where one class of points dominate. A tree learner trained on the signal space assuming that the observation
has the same class label as the time series implicitly identifies the level of the observations that differentiates
different classes. The terminal nodes for the example tree are shown in Figure 1b to illustrate the partition
used for the symbolic representation. These terminal nodes correspond to the partition of signal space shown in
Figure 1a. The distribution of the symbols for each time series is schematized in Figure 1c. For example, symbol
E implies a region where time series observations from class 3 are frequent. Similarly, time series observations
from class 2 are more frequent in the region implied by symbol D. After tree-based discretization of the time
series, each time series is represented by the frequency of its observations in the terminal nodes. A classifier
trained on this new representation has the potential to perform well in classification.

3.2. Classification
The trees in RFins map each observation of time series in a terminal node (i.e. symbol) as illustrated in Figure 1.
The final representation is obtained by concatenation of symbol distribution from each tree. Specifically, let
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Figure 1. (a) Signal space plot of time series data from three classes. (b) A decision tree fitted to the time series data
in signal space partitions the space and the terminal nodes provide symbols. (c) Symbol distribution for each time series
[18].
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Fj(x
n) be the R × 1 frequency vector of the terminal nodes from tree gj for time series xn . Let the function

zj(·) assign a row of Φ to a terminal node of tree gj . Each entry of Fj(x
n) is the proportion of time indices

from time series xn assigned to a terminal node (say r ) by tree gj . That is, the r th element of Fj(x
n) is

∑T
t=1 I[zj(Φ

n
t ) = r]

T
(4)

for r = 1, 2, . . . , R , where I(·) is the indicator function and Φn
t denotes the row t of time series xn in Φ .

Frequency vectors of time series xn from each of the Jins trees, Fj(x
n) , are concatenated to represent

the time series. This mapping results in a final representation, namely H(xn) , which is of length R × Jins .
Table 1 illustrates the representation for symbol frequencies with the number of terminal nodes R = 4 . A
classifier is then trained on the H(Xn) . SMTS [18] suggests training another RF, denoted as RFts on the
H(xn) , since the number of features in H(xn) might be large based on the setting of R and Jins . RFts not
only provides the classification result but also the information about the important time series patterns can be
identified by exploiting the structure of RFts . To classify a test time series, x0 , H(x0) is obtained and RFts

is used to assign the class label. To understand why a time series is assigned to a certain class, we introduce a
local importance measure, which is further discussed in Section 3.3.

3.3. Interpretation via local importance measures
A random forest classifier is not directly interpretable since it is a combination of multiple unpruned trees built
on the random subspaces of the features. However, certain measures can be derived from the forest structure
to facilitate interpretability. To identify the symbols that are informative, we utilize the local importance
information from RFts . Each feature in the frequency-based representation refers to a symbol and the local
importance of each feature provides information about the effectiveness of the symbol (i.e. a partition in the
signal space) in classification for individual series. Based on the structure of RFts , local importance was
obtained by the change in the accuracy of the classifier when the variables (i.e. symbols) were perturbed.

RF local importance for variable k (i.e. a symbol) of a time series n , LIk (n) , is defined as follows. For
each tree gj in a RFts , consider the associated OOB sample represented by OOB (gj) (time series not included
in the bootstrap sample used to train gj ). For time series n , let the proportion of votes for the correct class be
vn based on the trees in which time series n is OOB. Now, randomly permute the values of the variable k in

Table 1. A visual example of the representation based on symbol frequencies [18]. Each column denotes a symbol from
a tree of RFins (with R = 4 terminal nodes each), and each row denotes a multivariate time series. Each table entry
is the proportion of time series indices (for the multivariate time series corresponding to the row) in the terminal node.

Tree 1 Tree 2 . . . Tree Jins

A1 B1 C1 D1 A2 B2 C2 D2 . . . . . . .
1 0.26 0.37 0.26 0.11 0.12 0.53 0.35 0.00 . . . 0.63 0.00 0.12 0.25
2 0.25 0.10 0.20 0.45 0.39 0.39 0.00 0.22 . . . 0.11 0.53 0.21 0.15
3 0.35 0.37 0.23 0.05 0.15 0.15 0.22 0.48 . . . 0.42 0.42 0.00 0.16
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
N 0.40 0.11 0.19 0.30 0.16 0.37 0.21 0.26 . . . 0.25 0.10 0.25 0.40
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OOB (gj) to get a perturbed sample denoted by ÕOBk (gj) . The prediction based on the perturbed sample
provides a new proportion of votes ṽkn for time series n . Local importance for variable k of time series n is
then equal to LIk (n) = vn − ṽkn . If the number of votes for the correct class decreases with the perturbed
OOB data for a particular variable and time series n , that means the variable (i.e. symbol) plays an important
role in the classification of this particular time series. Conversely, if the number of votes increases (or remains
approximately the same), the variable is not found to be informative for instance n . For each time series, the
local importance of the symbols is sorted and the top q of them are visualized.

0 20 40 60 80 100 120

-2
0

2
4

Index

Cylinder

Bell
Funnel

Figure 2. Cylinder-Bell-Funnel dataset [8].

We illustrate the idea of local importance using the time series of each class from the Cylinder-Bell-Funnel
(CBF) dataset [8] illustrated in Figure 2. After obtaining the representation with Jins = 20 and R = 25 , local
importance values from RFts with 500 trees are visualized in Figure 3 for selected time series from each class.
Symbols with the highest local importance values corresponding to the discriminative observations of the time
series match with class definitions. For the Bell class, increasing intervals between time indices 60 and 80 are
found to be informative. The Cylinder class is defined by the plateau between time indices 20 and 40. The
decreasing intervals between time indices 30 and 50 are important for the Funnel class. Further discussion on
the visualization and interpretation together with illustrative examples is provided in Section 4.2.

4. Experimental setup and results
4.1. Experimental design

We use a noisy and a nonnoisy dataset for our comparative analysis. Both datasets consist of time series from
11 different fundamental dynamic pattern classes (Figure 4) from the SD practice, for which the ISTS algorithm
has individual HMMs. Each class includes 100 instances with varying lengths from 50 to 500 data points. The
noisy versions of the time series are generated by adding random uniform numbers between –0.2 and +0.2 (i.e.
U [−0.2,+0.2]) to each data point after applying z-normalization to the time series. Samples from the nonnoisy
dataset can be seen in Figure 4.

We use the TSdist package [22] for LCSS, EDR, and ERP distance calculations and the dtw [23, 24]
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Figure 3. Three time series from CBF dataset with local importance given under each time series.

package for DTW distance calculations in R [25]. Our experiments use the Windows 8.1 system with 8 GB
RAM, dual core CPU (i5-3230M 2.60 GHz). We perform 10 stratified replications of 10-fold cross-validation on
the dataset to calculate misclassification errors. In k -fold cross-validation, the dataset is split into k disjoint
subsets. Then the classifier is trained on the dataset obtained by taking the union of k − 1 subsets and tested
on the remaining subset. In this way, the performance of the classifier will be tested k times and the average of
the misclassification errors over k folds will determine the performance of the classifier. Repeating this process
several times (e.g., 10 times) and taking the average yields more reliable misclassification error estimates [26]. In
addition, the stratification process ensures that the class distribution in each fold represents the class distribution
of the entire dataset [27]. For LCSS and EDR, the matching threshold ε is 0.1 and 0.5, respectively. For ERP, g
is set to 0 as suggested in [19]. For DTW distance calculations, we employ a symmetric dynamic programming
algorithm with no slope constraint and no normalization. For all of the distance measures, no warping window
constraint is used.

We compare the considered approaches on the basis of computation time (i.e. speed) and classification
performances. Regarding speed, we use average time required to label a time series as the indicator. For
comparing the classification performances, we rely on averages of the misclassification errors over all replications
and folds and use the test procedure developed by Demšar [28]. This procedure first conducts a Friedman test
[29]. If there is a significant difference among the methods, then the Nemenyi test [30] is performed. In the
Nemenyi test, the performances of two classifiers are said to be different if the difference between their average
ranks is greater than the critical difference (CD).
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Figure 4. Example time series from the nonnoisy dataset.

4.2. Results on raw data

The experimental results for the NN classifiers (Table 2) constitute the benchmark for our comparison. For
each NN classifier, we report the average required time to classify one single time series, and the error rate,
which is the average of the misclassification errors over all replications and folds.

The results with the proposed approach and ISTS are given in Table 3. For the proposed approach, we
report the average training and test times over all replications and folds. The test time is the time required to
classify one single test instance. We are unable to train the ISTS algorithm with our dataset. Therefore, we
only report the required time to classify one single test instance.

The DTW-based NN classifier performs best in terms of error rates on both datasets, and its run time
is similar to other NN classifiers. The performance of ISTS on the nonnoisy dataset is comparable to some of
the NN classifiers (e.g., LCSS, EDR), but it lags behind the DTW one. On the noisy dataset, the performance
of ISTS is poor (i.e. error rate = 0.7518), which makes it impractical to use on noisy time series without prior
filtering/denoising operations. Considering the computation time, ISTS seems to have a slight advantage over
the NN classifiers.

When we compare the proposed approach against both the best NN classifier (i.e. DTW) and ISTS,
SMTS clearly outperforms both on the nonnoisy dataset. On the noisy dataset, SMTS is on par with DTW.
Apart from the superiority in error rates, the proposed approach also has a clear advantage in classification
speed.
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Table 2. Error rates and runtimes of 1-NN classifier with different distance measures.

No interpolation Linear interpolation
Distance Dataset Error Runtime Error Runtime
LCSS
(ε = 0.1)

Noisy 0.1140 13.6065 0.0866 4.4546
Nonnoisy 0.1648 13.9162 0.0727 4.4394

LCSS
(ε = 0.5)

Noisy 0.1516 13.7450 0.0506 4.3846
Nonnoisy 0.2001 13.5328 0.0600 4.4087

EDR
(ε = 0.1)

Noisy 0.1114 13.8286 0.0748 4.5216
Nonnoisy 0.1500 13.9908 0.0689 4.4784

EDR
(ε = 0.5)

Noisy 0.1584 14.2040 0.0540 4.4676
Nonnoisy 0.2153 14.1784 0.0578 4.4706

ERP
(g = 0)

Noisy 0.1394 13.9658 0.0608 4.4692
Nonnoisy 0.1505 14.2031 0.0561 4.4037

DTW Noisy 0.0866 13.2865 0.0731 4.4965
Nonnoisy 0.1001 12.8535 0.0821 4.4520

Table 3. Error rates, training, and test times of SMTS and ISTS.

No interpolation Linear interpolation

Method Dataset Error Training
time

Test
time

Error Training
time

Test
time

SMTS Noisy 0.0895 62.5382 0.0022 0.0432 28.9982 0.0010
Nonnoisy 0.0412 52.9031 0.0022 0.0227 28.1526 0.0010

ISTS Noisy 0.7518 - 0.0964 0.8182 - 0.0964
Nonnoisy 0.2109 - 0.0965 0.2155 - 0.0939

When we compare the classification performance of the considered approaches as described in the previous
section, we obtain the comparative plots given in Figure 5 and Figure 6 for nonnoisy and noisy datasets,
respectively. Methods are sorted with respect to their average ranks and there is a line segment between two
methods if the difference between them is less than the critical difference (CD). The proposed approach (SMTS)
significantly outperforms all of the methods at 0.05 and 0.1 level in nonnoisy data, but there is no significant
difference between DTW and SMTS at 0.05 and 0.1 level in the presence of noisy data. In Figure 6, the critical
differences (CDs) are 0.963 and 1.050 for 0.1 and 0.05 levels, and in both cases DTW is connected to SMTS.
This means that the difference between the average ranks of DTW and SMTS is less than the corresponding
CDs. Considering the two main outcomes of interest (speed and precision), we conclude that the proposed
approach performs superior not only to ISTS, but also to NN classifiers on nonnoisy datasets.

Apart from these two main criteria, this study aims to propose an interpretable classifier. Neither ISTS
nor NN classifiers provide any information about the reasons behind individual label assignments. By extending
SMTS with the procedure suggested in [21], it is possible to report time series segments that are most influential
in the class assignment. For example, Figure 7 illustrates sample time series with characteristic segments marked
with red dots. We observe that SMTS can capture original class definitions by appropriately determining the
behavioral characteristics of classes. This provides insights especially when one deals with time series data with
different complex behavioral characteristics, which may also be generated by SD models.
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Figure 5. Average ranks of classifiers on the nonnoisy dataset (no interpolation).
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Figure 6. Average ranks of classifiers on the noisy dataset (no interpolation).
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Figure 7. Sample time series from four different classes with local importance information.
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4.3. Results on interpolated data
Although elastic similarity measures are proposed as an effective way of calculating the distance between time
series of different lengths, the elastic nature of the measure also creates certain disadvantages. For example,
consider the three series given in Figure 8. A1 and A2 are from the same behavior class, with a small difference
between their plateau levels. B1 belongs to another class, but its y -range (ymin , ymax ) covers the y -range of
A1. In the case where the lengths of A2 and B1 are relatively shorter than that of A1, DTW tends to measure
A1 to be closer to B1. In other words, the shape-wise misfit of A1 and B1 is underpenalized due to the elastic
nature of the measure, and the scale-wise difference of A1 and A2 is relatively overpenalized. This eventually
leads to a misclassification. Triggered by this observation, we introduce a preprocessing stage in order to equate
the lengths of the time series through interpolation. Since ISTS already incorporates such a preprocessing to
transform the length of the time series to 120 by linear interpolation, we employ the same for all classifiers
considered in this study.
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Figure 8. An example case where DTW distance calculation yields a misclassification.

Results show that equating the lengths of the time series by interpolation yields similar ranks of the
methods. In that respect, our main observation regarding the superiority of the proposed approach still holds.
However, on average, we observe a 68% decrease in runtimes and a 50% increase in accuracy except for ISTS.
Ratanamahatana and Keogh [31] also reports that, in the case of 1-NN with DTW, there is no statistically
significant difference between working on the original dataset and equating the lengths of the time series by linear
interpolation in terms of classification accuracy. Even if the increase in accuracy values might not be significant,
interpolation reduces the required time for classification since most of the time series become shorter than their
original lengths, yielding faster distance calculations. Results show that SMTS significantly outperforms all the
methods in the presence of a nonnoisy dataset having time series of the same lengths (Figure 9). In a noisy
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dataset having time series of the same lengths, SMTS still performs best, but not significantly better than 1-NN
with LCSS (ε = 0.5) (Figure 10).
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Figure 9. Average ranks of classifiers on the nonnoisy dataset (linear interpolation).
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Figure 10. Average ranks of classifiers on the noisy dataset (linear interpolation).

5. Conclusion
During a typical SD modeling cycle, an analyst faces the task of visually evaluating a large set of time series
output in terms of the dynamic pattern features. As it has been shown in former studies, a field-specific time
series classification algorithm may prove very useful. In that respect, we propose a novel field-specific classifier
for the SD studies.

The performance of the proposed approach (SMTS with local importance) is compared against both
established field-specific (ISTS) and state-of-the-art NN classifiers that perform well on time series classification
in general. Experimental results show that SMTS performs significantly better than all of the considered
alternatives on nonnoisy test datasets. For noisy data, the 1-NN classifier with DTW and SMTS performs
best with no significant difference between them. Although it is claimed that ISTS can handle noisy data,
its performance is the worst among other distance measures and methods. Based on the experimental results,
SMTS stands not just as a new approach better than the currently used ISTS, but also as an approach that
outperforms state-of-the-art classifiers in the time series classification domain. Moreover, the performance of
the proposed approach on noisy time series is on par with NN classifiers, and the former is much faster than
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the latter. Additionally, SMTS also has an advantage over NN classifiers regarding the training data. As NN
classifiers need to store all the training data in order to classify a new test instance, they are considered as “lazy
learners”. However, as a tree-based approach, SMTS is an “eager learner”, which does not require to store the
training data once trained.

Considering the interpretability aspect, the proposed approach performs successfully in informing the
user about the important segments of a time series with respect to its class assignment. In that respect,
SMTS successfully utilizes local variable importance in conjunction with a feature-based classifier. This is a
methodological contribution of our work, which goes beyond the SD field and relates to the time series data
mining domain.
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