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1. Introduction
Monge–Ampère equations are fully nonlinear second order PDEs that have many important applications in
geometry and other scientific fields. Much attention has been focused on the study of problems with a single
equation (see [1, 3, 5–10, 12, 17]) like

{
det(D2u) = f(u), in B,

u(x) = 0, on ∂B,
(1.1)

or equations (see [2, 11, 13–16]) like


det(D2u1) = f1(−u1, · · · ,−un), in B,

· · ·
det(D2un) = fn(−u1, · · · ,−un), in B,

ui(x) = 0, on ∂B,

(1.2)

where fi(i = 1, 2 · · ·n) are continuous, D2u(x) = ( ∂2u
∂xj∂xk

) , j, k = 1, 2 · · ·n , is the Hessian matrix of u(x) ,

B = {x ∈ RN : |x| < 1} . One of the important research directions is the existence of nontrivial solutions of
(1.1) or (1.2), which has been studied by many researchers in the nonsingular case [2, 6–8, 11–15, 17] as well as
the singular case [3, 10, 16].

On one hand, authors [11] investigated the existence, uniqueness, and nonexistence results of radial
solutions of the following system of equations:
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
detD2u1 = (−u2)α, in B,

detD2u2 = (−u1)β , in B,

u1 = u2 = 0, on ∂B,

(1.3)

which are expressed as follows:

Theorem A [11] Assume that α, β > 0 . Then we have

(I) (existence ) If αβ ̸= N2 , then (1.3) has at least a radial convex solution.

(II) (uniqueness) If αβ < N2 , then (1.3) has a unique radial convex solution.

(III) (nonexistence) If αβ = N2 , then (1.3) has no radial convex solution.

Furthermore, the authors handle more general ones, i.e.
detD2u = f1(−v), in B,

detD2v = f2(−u), in B,

u = v = 0, on ∂B.

(1.4)

Similar arguments go through and the authors get the following conclusion: If f1, f2 : [0,∞) → [0,∞) are
continuous, both nondecreasing, then (1.4) admits a solution if one of the following cases is satisfied:

(i) limx→0+
f

1
N
1 (f

1
N
2 (x))
x = 0 and limx→∞

f
1
N
1 (f

1
N
2 (x))
x = ∞;

(ii) limx→∞
f

1
N
1 (f

1
N
2 (x))
x = 0 and limx→0+

f
1
N
1 (f

1
N
2 (x))
x = ∞.

However, the uniqueness and multiplicity results of radial solutions of (1.4) are not considered. Thus, one of
the important results of this paper is concerned with the existence, uniqueness, and multiplicity of the positive
radial solutions of a more general system, i.e.

detD2u = f1(x,−v), in B,

detD2v = f2(x,−u), in B,

u = v = 0, on ∂B.

(1.5)

The results we are going to present reveal how the behavior of the function fi(i = 1, 2) at zero and infinity,
where fi : [0, 1]× [0,+∞) → [0,+∞) are continuous, and they are nondecreasing on the second variable,

φ0
i
= lim inf

c→0+
min
t∈[0,1]

fi(t, c)

cαi
, ψ

∞
i = lim sup

c→∞
max
t∈[0,1]

fi(t, c)

cβi
,

φ0
i = lim sup

c→0+
max
t∈[0,1]

fi(t, c)

cαi
, ψ∞

i
= lim inf

c→∞
min
t∈[0,1]

fi(t, c)

cβi
,

has a profound effect on the number of nontrivial solutions of problem (1.5). In particular, we assume that
f2(x, 0) = 0 in Section 2.

1591



LIU et al./Turk J Math

On the other hand, in [2, 14], the authors mainly consider the existence of nontrivial solutions of (1.2)
under the notations

(N) there exist nonnegative constants f0i , f∞i defined as

f0i = lim∑
|ui|→0

fi(u)

(
∑

|ui|)N
, and f∞i = lim∑

|ui|→∞

fi(u)

(
∑

|ui|)N
.

Another important result of this paper is concerned with the existence of positive radial solutions of problem
(1.2) under the following assumption:

(H) there exist two pairs of nonnegative continuous functions Fi∗, F
∗
i (i = 1, . . . , n) such that

Fi∗(−ui0) ≤ fi(−u1, · · · ,−un) ≤ F ∗
i (−ui0),

For some − ui0 ∈ {−uj}, ui0 ̸= uk0
, if i ̸= k.

For convenience, we give the following notations:

F 0
i∗ = lim inf

c→0+

Fi∗(c)

cαi
, F ∗

i

∞
= lim sup

c→+∞

F ∗
i (c)

cβi
,

F∞
i∗ = lim inf

c→+∞

Fi∗(c)

cαi
, F ∗

i

0
= lim sup

c→0+

F ∗
i (c)

cβi
.

At the end of Section 3, we also give examples to illustrate that fi(u) satisfies the assumption (H).

Finally, for radial solution u(r) with r =
√∑N

1 x2i , the Monge–Ampère operator simply becomes

det(D2u) =
(u′)N−1u′′

rN−1
=

1

NrN−1
((u′)N )′.

Inspired by [11, 14], in the rest of this paper, we mainly pay more attention to the boundary value problems,
respectively, 

((−u′(t))N )′ = NtN−1f1(t, v), t ∈ (0, 1),

((−v′(t))N )′ = NtN−1f2(t, u), t ∈ (0, 1),

u(t) > 0, v(t) > 0, t ∈ (0, 1),

u′(0) = u(1) = 0, v′(0) = v(1) = 0

(1.6)

and 

((−v′1(t))N )′ = NtN−1f1(v1, v2, . . . , vn),

((−v′2(t))N )′ = NtN−1f2(v1, v2, . . . , vn),

· · ·
((−v′n(t))N )′ = NtN−1fn(v1, v2, . . . , vn),

v′i(0) = vi(1) = 0, i = 1, 2, . . . , n.

(1.7)

The discussion is based on the following lemmas.

Lemma 1.1 [4] Let E be a Banach space and K ⊂ E be a cone in E . Assume Ω1 , Ω2 are bounded, open
subsets of E with 0 ∈ Ω1,Ω1 ⊂ Ω2 , and let A : K ∩ (Ω2 \ Ω1) → K be a completely continuous operator such
that either
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(i) ∥Au∥ ≤ ∥u∥, u ∈ K ∩ ∂Ω1 and ∥Au∥ ≥ ∥u∥, u ∈ K ∩ ∂Ω2 ; or

(ii) ∥Au∥ ≥ ∥u∥, u ∈ K ∩ ∂Ω1 and ∥Au∥ ≤ ∥u∥, u ∈ K ∩ ∂Ω2 .
Then A has a fixed point in K ∩ (Ω2 \ Ω1) .

Definition 1.2 [4] Let K be a cone in a real Banach space E . With some u0 ∈ K positive, A : K → K is
called u0 -sublinear if
(a) for any u > 0 ,there exists θ1 > 0, θ2 > 0 such that θ1u0 ≤ Au ≤ θ2u0 ;
(b) for any θ1u0 ≤ u ≤ θ2u0 and t ∈ (0, 1) , there always exists some η = η(u, t) > 0 such that A(tu) ≥
(1 + η)tAu .

Lemma 1.3 [4] An increasing and u0 -sublinear operator A has at most one positive fixed point.

2. Results of (1.6)

Theorem 2.1 Assume that αi, βi > 0 (i = 1, 2) with

α1α2 ≤ N2, β1β2 ≤ N2.

If φ0
1
> 0, φ0

2
= +∞, ψ

∞
1 < +∞, ψ

∞
2 = 0, then (1.6) has at least a solution.

Proof Define a mapping A : C[0, 1] → C[0, 1] by

A(u)(t) = A1 ◦A2(u)(t),

where

A1(v)(t) =

∫ 1

t

(

∫ s

0

NτN−1f1(τ, v(τ))dτ)
1
N ds, t ∈ [0, 1],

A2(u)(t) =

∫ 1

t

(

∫ s

0

NτN−1f2(τ, u(τ))dτ)
1
N ds, t ∈ [0, 1].

Now our main goal is to look for nontrivial fixed points of A in a subcone K ⊂ C[0, 1] defined by

K = {u ∈ C[0, 1] : u(t) ≥ 0, min
1
4≤t≤ 3

4

u(t) ≥ 1

4
∥u∥},

where ∥u(t)∥ = maxt∈[0,1] |u(t)| . From the standard process (see [11]), it follows that A : K → K is completely
continuous.

For any γ > 0 , in the following paragraphs, we set

Ωγ = {u ∈ C[0, 1] : ∥u∥ < γ},

and
∂Ωγ = {u ∈ C[0, 1] : ∥u∥ = γ}.

On one hand, by the definitions of φ0
1
> 0, φ0

2
= +∞ , there exist C1 > 0 and r1 ∈ (0, 1) such that

f1(t, v) ≥ (φ0
1
− ϵ)vα1 , for t ∈ [0, 1], 0 ≤ v ≤ r1,
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f2(t, u) ≥ C1u
α2 , for t ∈ [0, 1], 0 ≤ u ≤ r1,

where C1 satisfies

1

4
α1N+α1α2

N2

C1

α1
N2 Γ

α1+N
N (φ0

1
− ϵ)

1
N ≥ 1,Γ =

∫ 3
4

1
4

(∫ s

1
4

NτN−1dτ

) 1
N

ds.

Since f2 is continuous and f2(t, 0) = 0 , there exists an r2 ∈ (0, r1) such that

f2(t, u) ≤ rN1 , ∀ t ∈ [0, 1], u ∈ [0, r2].

For any u ∈ K ∩ ∂Ωr2 , we have

v(t) = A2(u)(t) =

∫ 1

t

(

∫ s

0

NτN−1f2(τ, u(τ))dτ)
1
N ds

≤
∫ 1

0

(

∫ s

0

NτN−1rN1 dτ)
1
N ds ≤ r1.

Furthermore, we can get

A1(v)(
1

4
) =

∫ 1

1
4

(

∫ s

0

NτN−1f1(τ, v(τ))dτ)
1
N ds

≥
∫ 3

4

1
4

(

∫ s

1
4

NτN−1(φ0
1
− ϵ)(

1

4
∥v∥)

α1

dτ)
1
N ds

≥ (φ0
1
− ϵ)

1
N (

1

4
)

α1
N

Γ∥v∥
α1
N

and

v(
1

4
) = A2(u)(

1

4
) =

∫ 1

1
4

(

∫ s

0

NτN−1f2(τ, u(τ))dτ)
1
N ds

≥
∫ 3

4

1
4

(

∫ s

1
4

NτN−1C1(
1

4
∥u∥)

α2

dτ)
1
N ds

≥ (C1)
1
N (

1

4
)

α2
N

Γ∥u∥
α2
N .

Thus for any u ∈ K ∩ ∂Ωr2 , from the above inequalities it follows that

∥A(u)(t)∥ ≥ A1 ◦A2(u)(
1

4
)

≥ 1

4
α1N+α1α2

N2

C1

α1
N2 Γ

α1+N
N (φ0

1
− ϵ)

1
N ∥u∥

α1α2
N2 ≥ ∥u∥.

On the other hand, by the definitions of ψ∞
1 < +∞, ψ

∞
2 = 0 , there exist ϵ1 > 0 and R1 > 0 such that

f1(t, v) ≤ (ψ
∞
1 + ε)vβ1 , for t ∈ [0, 1], v ≥ R1,
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f2(t, u) ≤ ϵ1u
β2 , for t ∈ [0, 1], u ≥ R1,

where ϵ1 satisfies

ϵ
β1
N2

1 (ψ
∞
1 + ε)

1
N < 1.

Since fi is continuous, let

M1 = max{f1(t, v) : 0 ≤ t ≤ 1, 0 ≤ v ≤ R1},

M2 = max{f2(t, u) : 0 ≤ t ≤ 1, 0 ≤ u ≤ R1}.

Then we have
f1(t, v) ≤ (ψ

∞
1 + ε)vβ1 +M1,

f2(t, u) ≤ ϵ1u
β2 +M2.

Furthermore, we have

A(u)(t) = A1 ◦A2(u)(t)

=

∫ 1

t

(

∫ s

0

NτN−1f1(τ, A2(u)(τ))dτ)
1
N ds

≤ [

∫ 1

0

NτN−1((ψ
∞
1 + ε)(A2(u)(τ))

β1 +M1)dτ ]
1
N

≤ (

∫ 1

0

NτN−1dτ)
1
N [(ψ

∞
1 + ε)∥A2(u)∥β1 +M1]

1
N

= [(ψ
∞
1 + ε)∥A2(u)∥β1 +M1]

1
N

and

A2(u)(t) =

∫ 1

t

(

∫ s

0

NτN−1f2(τ, u(τ))dτ)
1
N ds

≤ [

∫ 1

0

NτN−1(ϵ1u(τ)
β2 +M2)dτ ]

1
N

≤ (

∫ 1

0

NτN−1dτ)
1
N [ϵ1∥u∥β2 +M2]

1
N

= [ϵ1∥u∥β2 +M2]
1
N .

From the above inequalities, it is clear that the term with the highest index is

ϵ
β1
N2

1 (ψ
∞
1 + ε)

1
N u

β1β2
N2 < u

β1β2
N2 .

Hence we can choose a sufficiently large R2 > 0 such that

∥A(u)(t)∥ ≤ ∥u∥, u ∈ K ∩ ∂ΩR2
.

Therefore, by Lemma 1.1, the operator A has at least one fixed point in K ∩ (ΩR2
\ Ωr2) . 2
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Corollary 2.2 Assume that fi(t, c) satisfies the following conditions:

(i) fi(t, c) is continuous and nondecreasing on c ;

(ii) there exist positive constants α, β, ki, li(i = 1, 2), such that

k1v
α ≤ f1(t, v) ≤ k2v

α, l1u
β ≤ f2(t, u) ≤ l2u

β .

If αβ < N2 , then (1.6) has a unique positive solution.

Proof The existence result can be obtained from Theorem 2.1. Now we just give the proof of uniqueness of
solutions.

Let P = {u ∈ C[0, 1], u(t) ≥ 0, t ∈ [0, 1]}. Now we show that A has at most one fixed point in P . Since
fi(t, c) is nondecreasing on c , the operator A = A1 ◦ A2 is nondecreasing. By Lemma 2.2, we only need to
verify that A is u0 -sublinear for u0 = 1− t.

Let M = maxt∈[0,1]{f1(t, v(t))}. Then

A(u)(t) =

∫ 1

t

(

∫ s

0

NτN−1f1(τ, A2(u)(τ))dτ)
1
N ds

≤
∫ 1

t

(

∫ s

0

NτN−1Mdτ)
1
N ds

≤ M
1
N (1− t).

Therefore, we take θ2 =M
1
N .

Choose any c ∈ (0, 1) and set

m =

(∫ c

0

NτN−1f1 (v) dτ

) 1
N

.

Since (Au)(t) is strictly decreasing in t and vanishes at t = 1 , we have

(Au)(t) ≥ (Au)(c) ≥ m(1− c), for all t ∈ [0, c],

(Au)(t) ≥
∫ 1

t

mds = m(1− t), for any t ∈ [c, 1].

It is clear that (Au)(t) ≥ m(1− c)(1− t), for all t ∈ [0, 1]. Thus we choose θ1 = m (1− c) .

Finally, for u ∈ [θ1u0, θ2u0] , ξ ∈ (0, 1) , we have

A2(ξu) =

∫ 1

t

(

∫ s

0

NτN−1f2(τ, ξu)dτ)
1
N ds

≥
∫ 1

t

(

∫ s

0

NτN−1l1(ξu(τ))
βdτ)

1
N ds

≥ (
l1
l2
)

1
N ξ

β
NA2(u)

1596



LIU et al./Turk J Math

and

A(ξu) = A1 ◦A2(ξu)

≥
∫ 1

t

(

∫ s

0

NτN−1k1A
α
2 (ξu)dτ)

1
N ds

≥ (
k1
k2

)
1
N (
l1
l2
)

α
N2 ξ

αβ

N2A(u).

Further, since αβ < N2 , for any ξ ∈ (0, 1) , there always exists some η > 0 such that A(ξu) ≥ (1 + η)ξAu.

Therefore, by Lemma 1.1 and 1.3, (1.6) has a unique positive solution. 2

Theorem 2.3 Assume that αi, βi > 0 (i = 1, 2) with

α1α2 ≥ N2, β1β2 ≥ N2.

If φ0
1 < +∞, φ0

2 = 0, ψ∞
1
> 0, ψ∞

2
= +∞, then (1.6) has at least a solution.

Proof On one hand, from the definitions of φ0
1 < +∞, φ0

2 = 0 , there exist ϵ2 > 0 and r3 ∈ (0, 1) such that

f1(t, v) ≤ (φ0
1 + ε)vα1 , for t ∈ [0, 1], v ∈ [0, 1],

f2(t, u) ≤ ϵ2u
α2 , for t ∈ [0, 1], u ∈ [0, r3],

where ϵ2 satisfies

1

2
ϵ

1
N
2 ≤ 1 and

1

2
α1+N

N

ϵ
α1
N2

2 (φ0
1 + ε)

1
N ≤ 1.

Then for any u ∈ K ∩ ∂Ωr3 , we have

v(t) = A2(u)(t) =

∫ 1

t

(

∫ s

0

NτN−1f2(τ, u(τ))dτ)
1
N ds

≤
∫ 1

0

(

∫ s

0

NτN−1ϵ2u
α2dτ)

1
N ds

≤
∫ 1

0

(

∫ s

0

NτN−1ϵ2∥u∥α2dτ)
1
N ds

≤ 1

2
ϵ2

1
N ∥u∥

α2
N ≤ 1.
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Furthermore, we have

A1(v)(t) =

∫ 1

t

(

∫ s

0

NτN−1f1(τ, v(τ))dτ)
1
N ds

≤
∫ 1

t

(

∫ s

0

NτN−1(φ0
1 + ε)vα1(τ)dτ)

1
N ds

≤
∫ 1

0

(

∫ s

0

NτN−1(φ0
1 + ε)∥v∥α1dτ)

1
N ds

≤ 1

2
(φ0

1 + ε)
1
N ∥v∥

α1
N

≤ 1

2
α1+N

N

ϵ
α1
N2

2 (φ0
1 + ε)

1
N ∥u∥

α1α2
N2

≤ ∥u∥
α1α2
N2 ≤ ∥u∥,

namely, ∥A(u)(t)∥ ≤ ∥u∥, u ∈ K ∩ ∂Ωr3 .

On the other hand, from the definitions of ψ∞
1
> 0, ψ∞

2
= +∞ , it follows that there exist C2 , C3 > 0

and R3 > 1 such that
f1(t, v) ≥ C2v

β1 , for t ∈ [0, 1], v ≥ R3,

f2(t, u) ≥ C3u
β2 , for t ∈ [0, 1], u ≥ R3,

where C2, C3 satisfy

C
1
N
3

1

4
β2
N

Γ ≥ 4,

C
β1
N2

3 Γ
β1+N

N C
1
N
2

1

4
β1β2+β1N

N2

≥ 1.

Set R4 = max{4R3, R
N
β2
3 } . Then for any u ∈ K ∩ ∂ΩR4

, we have

min
t∈[ 14 ,

3
4 ]
u(t) ≥ 1

4
R4 ≥ R3

and

∥v∥ ≥ v(
1

4
) = A2(u)(

1

4
) =

∫ 1

1
4

(

∫ s

0

NτN−1f2(τ, u(τ))dτ)
1
N ds

≥
∫ 1

1
4

(

∫ s

0

NτN−1C3u
β2(τ)dτ)

1
N ds

≥
∫ 3

4

1
4

(

∫ s

1
4

NτN−1C3
1

4β2
∥u∥β2dτ)

1
N ds

≥ C
1
N
3

1

4
β2
N

Γ∥u∥
β2
N ≥ 4∥u∥

β2
N ≥ 4R3.
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Furthermore, we also get

min
t∈[ 14 ,

3
4 ]
v(t) ≥ 1

4
∥v∥ ≥ R3

and

A1(v)(
1

4
) =

∫ 1

1
4

(

∫ s

0

NτN−1f1(τ, v(τ))dτ)
1
N ds

≥
∫ 3

4

1
4

(

∫ s

1
4

NτN−1C2v
β1(τ)dτ)

1
N ds

≥
∫ 3

4

1
4

(

∫ s

1
4

NτN−1C2
1

4β1
∥v∥β1dτ)

1
N ds

≥ C
1
N
2

1

4
β1
N

Γ∥v∥
β1
N .

From the above inequalities, we have

A(u)(
1

4
) ≥ C

β1
N2

3 Γ
β1+N

N C
1
N
2

1

4
β1β2+β1N

N2

∥u∥
β1β2
N2

≥ ∥u∥
β1β2
N2 ≥ ∥u∥.

Hence, we have ∥A(u)(t)∥ ≥ ∥u∥, u ∈ K ∩ ∂ΩR4 .

Therefore, by Lemma 1.1, the operator A has at least one fixed point in K ∩ (ΩR4 \ Ωr3) . 2

Theorem 2.4 Assume that αi, βi > 0 (i = 1, 2) with

α1α2 ≤ N2, β1β2 ≥ N2.

In addition, the following conditions hold:
(i) φ0

1
> 0, φ0

2
= +∞, ψ∞

1
> 0, ψ∞

2
= +∞;

(ii) there exists an R̃ such that

1

2
(N1

R̃
)

1
N ≤ R̃,

where

N1
R̃
= max{f1(t, v) : 0 ≤ t ≤ 1, 0 ≤ v ≤ 1

2
(N2

R̃
)

1
N },

N2
R̃
= max{f2(t, u) : 0 ≤ t ≤ 1, 0 ≤ u ≤ R̃}.

Then (1.6) has at least two solutions.
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Proof For any u ∈ K ∩ ∂ΩR̃ , we have

v(t) = A2(u)(t) =

∫ 1

t

(

∫ s

0

NτN−1f2(τ, u(τ))dτ)
1
N ds

≤
∫ 1

0

(

∫ s

0

NτN−1N2
R̃
dτ)

1
N ds

≤ 1

2
(N2

R̃
)

1
N .

Furthermore, we can get

A(u)(t) = A1 ◦A2(u)(t)

=

∫ 1

t

(

∫ s

0

NτN−1f1(τ, A2(u)(τ))dτ)
1
N ds

≤
∫ 1

0

(

∫ s

0

NτN−1N1
R̃
dτ)

1
N ds

≤ 1

2
(N1

R̃
)

1
N ≤ R̃,

namely, ∥A(u)(t)∥ ≤ ∥u∥, u ∈ K ∩ ∂ΩR̃.

Since α1α2 ≤ N2, β1β2 ≥ N2 , φ0
1
> 0, φ0

2
= +∞, ψ∞

1
> 0, ψ∞

2
= +∞ , from the proof of

Theorem 2.1 and Theorem 2.3, there exist r2 > 0 (sufficiently small) and R4 > 0 (sufficiently large) such
that ∥A(u)(t)∥ ≥ ∥u∥, u ∈ K ∩ ∂Ωr2 and ∥A(u)(t)∥ ≥ ∥u∥, u ∈ K ∩ ∂ΩR4

. Therefore, by Lemma 1.1, the
operator A has at least two fixed points in K ∩ (ΩR̃ \ Ωr2) and K ∩ (ΩR4

\ ΩR̃) . 2

Theorem 2.5 Assume that αi, βi > 0 (i = 1, 2) with

α1α2 ≥ N2, β1β2 ≤ N2.

In addition, the following conditions hold:

(i) φ0
1 < +∞, φ0

2 = 0, ψ
∞
1 < +∞, ψ

∞
2 = 0;

(ii) there exists an R̂ such that

Γ(K1
R̂
)

1
N ≥ R̂,

where

K1
R̂
= min{f1(t, v) :

1

4
≤ t ≤ 3

4
,
1

4
Γ(K2

R̂
)

1
N ≤ v ≤ 1

2
(N2

R̂
)

1
N },

N2
R̂
= max{f2(t, u) : 0 ≤ t ≤ 1, 0 ≤ u ≤ R̂},

K2
R̂
= min{f2(t, u) :

1

4
≤ t ≤ 3

4
,
1

4
R̂ ≤ u ≤ R̂}.

Then (1.6) has at least two solutions.
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Proof For any u ∈ K ∩ ∂ΩR̂ , we have

v(t) = A2(u)(t) =

∫ 1

t

(

∫ s

0

NτN−1f2(τ, u(τ))dτ)
1
N ds

≤
∫ 1

0

(

∫ s

0

NτN−1N2
R̂
dτ)

1
N ds

≤ 1

2
(N2

R̂
)

1
N .

Furthermore,

min
t∈[ 14 ,

3
4 ]
v(t) ≥ 1

4
∥v∥ ≥ 1

4

∫ 1

0

(

∫ s

0

NτN−1f2(τ, u(τ))dτ)
1
N ds

≥ 1

4

∫ 3
4

1
4

(

∫ s

1
4

NτN−1K2
R̂
dτ)

1
N ds

≥ 1

4
Γ(K2

R̂
)

1
N .

For t ∈ [ 14 ,
3
4 ] , we have the estimates

1

4
Γ(K2

R̂
)

1
N ≤ v(t) ≤ 1

2
(N2

R̂
)

1
N

and

A(u)(
1

4
) = A1 ◦A2(u)(

1

4
)

=

∫ 1

1
4

(

∫ s

0

NτN−1f1(τ, A2(u)(τ))dτ)
1
N ds

≥
∫ 3

4

1
4

(

∫ s

1
4

NτN−1K1
R̂
dτ)

1
N ds

≥ Γ(K1
R̂
)

1
N ,

namely, ∥A(u)(t)∥ ≥ ∥u∥, u ∈ K ∩ ∂ΩR̂.

Since α1α2 ≥ N2, β1β2 ≤ N2 , φ0
1 < +∞, φ0

2 = 0, ψ
∞
1 < +∞, ψ

∞
2 = 0 , from the proof of

Theorem 2.1 and Theorem 2.3, there exist R2 > 0 (sufficiently large) and r3 > 0 (sufficiently small) such
that ∥A(u)(t)∥ ≤ ∥u∥, u ∈ K ∩ ∂ΩR2 and ∥A(u)(t)∥ ≤ ∥u∥, u ∈ K ∩ ∂Ωr3 . Therefore, by Lemma 1.1, the
operator A has at least two fixed points in K ∩ (ΩR̂ \ Ωr3) and K ∩ (ΩR2

\ ΩR̂) . 2

Now we give some examples to illustrate our main results.
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Example 2.6 If N = 3, then (1.6) is related to the second-order system
((−u′(t))3)′ = 3t2f1(t, v), t ∈ (0, 1),

((−v′(t))3)′ = 3t2f2(t, u), t ∈ (0, 1),

u(t) > 0, v(t) > 0, t ∈ (0, 1),

u′(0) = u(1) = 0, v′(0) = v(1) = 0,

(2.1)

where f1 (t, v) = (sin v)2 + t2, f2 (t, u) = u+ t . Choosing α1 = 2, α2 = 3, β1 = 4, β2 = 2 , it is easy to verify that

φ0
1
= lim inf

v→0+
min
t∈[0,1]

f1 (t, v)

vα1
= lim inf

v→0+

(sin v)2
v2

= 1 > 0,

φ0
2
= lim inf

u→0+
min
t∈[0,1]

f2 (t, u)

uα2
= lim inf

u→0+

u

u3
= +∞,

ψ
∞
1 = lim sup

v→∞
max
t∈[0,1]

f1 (t, v)

vβ1
= lim sup

v→∞

(sin v)2 + 1

v4
= 0 < +∞,

ψ
∞
2 = lim sup

u→∞
max
t∈[0,1]

f2 (t, u)

uβ2
= lim sup

u→∞

u+ 1

u2
= 0,

which implies that the assumptions of Theorem 2.1 hold. Therefore, the problem (2.1) has at least one positive
solution.⋄

Example 2.7 If N = 3 , then (1.6) is related to the second-order system
((−u′(t))3)′ = 3t2f1(t, v), t ∈ (0, 1),

((−v′(t))3)′ = 3t2f2(t, u), t ∈ (0, 1),

u(t) > 0, v(t) > 0, t ∈ (0, 1),

u′(0) = u(1) = 0, v′(0) = v(1) = 0,

(2.2)

where f1 (t, v) = (v3 + v5) sin(t+ π
2 − 1), f2 (t, u) = u5(t2 + t+ 1). Choosing α1 = 3, α2 = 4, β1 = 5, β2 = 3 , it

is easy to verify that

φ0
1 = lim sup

v→0+
max
t∈[0,1]

f1 (t, v)

vα1
= lim sup

v→0+

v3 + v5

v3
= 1 < +∞,

φ0
2 = lim sup

u→0+
max
t∈[0,1]

f2 (t, u)

uα2
= lim sup

u→0+

3u5

u4
= 0,

ψ∞
1

= lim inf
v→∞

min
t∈[0,1]

f1 (t, v)

vβ1
= lim inf

v→∞

(v3 + v5) sin(π2 − 1)

v5
= sin(π

2
− 1) > 0,

ψ∞
2

= lim inf
u→∞

min
t∈[0,1]

f2 (t, u)

uβ2
= lim inf

u→∞

u5

u3
= +∞,

which implies that the assumptions of Theorem 2.3 hold. Therefore, the problem (2.2) has at least one positive
solution.⋄
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Example 2.8 If N = 3 , then (1.6) is related to the second-order system


((−u′(t))3)′ = 3t2f1(t, v), t ∈ (0, 1),

((−v′(t))3)′ = 3t2f2(t, u), t ∈ (0, 1),

u(t) > 0, v(t) > 0, t ∈ (0, 1),

u′(0) = u(1) = 0, v′(0) = v(1) = 0,

(2.3)

where

f1(t, v) =

{
v2, 0 ≤ v ≤ 1,
v4, 1 < v.

and f2(t, u) =

{
u2, 0 ≤ u ≤ 1,
u6, 1 < u.

Choosing α1 = 2, α2 = 3, β1 = 4, β2 = 5 , it is easy to verify that

φ0
1
= lim inf

v→0+
min
t∈[0,1]

f1 (t, v)

vα1
= lim inf

v→0+

v2

v2
= 1 > 0,

φ0
2
= lim inf

u→0+
min
t∈[0,1]

f2 (t, u)

uα2
= lim inf

u→0+

u2

u3
= +∞,

ψ∞
1

= lim inf
v→∞

min
t∈[0,1]

f1 (t, v)

vβ1
= lim inf

v→∞

v4

v4
= 1 > 0,

ψ∞
2

= lim inf
u→∞

min
t∈[0,1]

f2 (t, u)

uβ2
= lim inf

u→∞

u6

u5
= +∞,

which implies that (i) of Theorem 2.4 holds.

Choosing R̃ = 1
2 , via some computations we can get

N2
R̃
= max{f2(t, u) : 0 ≤ t ≤ 1, 0 ≤ u ≤ R̃} = R̃2,

N1
R̃
= max{f1(t, v) : 0 ≤ t ≤ 1, 0 ≤ v ≤ 1

2
(N2

R̃
)

1
N } = R̃

10
3 ,

1

2
(N1

R̃
)

1
N = R̃

19
9 ≤ R̃,

which yields that (ii) of Theorem 2.4 holds. Therefore, the problem (2.3) has at least two positive solutions.⋄

Example 2.9 If N = 3 , then (1.6) is related to the second-order system


((−u′(t))3)′ = 3t2f1(t, v), t ∈ (0, 1),

((−v′(t))3)′ = 3t2f2(t, u), t ∈ (0, 1),

u(t) > 0, v(t) > 0, t ∈ (0, 1),

u′(0) = u(1) = 0, v′(0) = v(1) = 0,

(2.4)
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where

f1(t, v) =


v3, 0 ≤ v ≤ 2048

Γ4 ,

( 2048Γ4 )3, 2048
Γ4 < v ≤ ( 2048Γ4 )

3
2 ,

v2, ( 2048Γ4 )
3
2 < v.

f2(t, u) =

 u6, 0 ≤ u ≤ 64
Γ2

( 64Γ2 )
6, 64

Γ2 < u ≤ ( 64Γ2 )
2,

u3, ( 64Γ2 )
2 < u.

Choosing α1 = 3, α2 = 5, β1 = 2, β2 = 4 , then it is easy to verify that

φ0
1 = lim sup

v→0+
max
t∈[0,1]

f1(t, v)

vα1
= lim sup

v→0+

v3

v3
= 1 < +∞,

φ0
2 = lim sup

u→0+
max
t∈[0,1]

f2(t, u)

uα2
= lim sup

u→0+

u6

u5
= 0,

ψ
∞
1 = lim sup

v→∞
max
t∈[0,1]

f1(t, v)

vβ1
= lim sup

v→∞

v2

v2
= 1 < +∞,

ψ
∞
2 = lim sup

u→∞
max
t∈[0,1]

f2(t, u)

uβ2
= lim sup

u→∞

u3

u4
= 0,

which implies that (i) of Theorem 1.5 holds.

Choosing R̂ = 64
Γ2 , via some computations we can get

N2
R̂
= max{f2(t, u) : 0 ≤ t ≤ 1, 0 ≤ u ≤ R̂} = R̂6,

K2
R̂
= min{f2(t, u) :

1

4
≤ t ≤ 3

4
,
1

4
R̂ ≤ u ≤ R̂} = (

R̂

4
)6,

K1
R̂
= min{f1(t, v) :

1

4
≤ t ≤ 3

4
,
Γ

4
(K2

R̂
)

1
N ≤ v ≤ 1

2
(N2

R̂
)

1
N } = (

Γ

4
)3(

R̂

4
)6,

Γ(K1
R̂
)

1
N = R̂,

which yields that (ii) of Theorem 2.5 holds. Therefore, the problem (2.4) has at least two positive solutions.⋄

3. Main results of (1.7)

Theorem 3.1 Assume that (H) holds. In addition, 0 < αi, βi ≤ N (i = 1, . . . , n) . If F 0
i∗ = +∞ , F ∗

i

∞
= 0,

then (1.7) has at least one positive solution.
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Proof Let E denote the Banach space
n︷ ︸︸ ︷

C[0, 1]× · · · × C[0, 1] with the norm ∥v⃗∥ = max1≤i≤n{|vi|1} , where
|vi|1 = maxt∈[0,1] |vi(t)| . Define a mapping A : E → E by

A(v⃗)(t) = (A1(v⃗)(t), . . . , An(v⃗)(t)),

where

Ai(v⃗)(t) =

∫ 1

t

(

∫ s

0

NτN−1fi(v1(τ), . . . , vn(τ))dτ)
1
N ds, t ∈ [0, 1].

Define a subcone K ⊂ E by K = K1 × · · · × Kn , where Ki = {vi(t) : min 1
4≤t≤ 3

4
vi(t) ≥ 1

4 |vi|1}. From the

standard process (see [11]) and the Arzelà–Ascoli theorem, it follows that A : K → K is completely continuous.

On one hand, from the definition of F ∗
i

∞
= 0 , there exist a sufficiently small ϵ > 0 and R > 0 such that

F ∗
i (vi0) ≤ ϵvβi

i0
, for vi0 ≥ R . For the given R , let

Mi = max
0≤vi0≤R

F ∗
i (vi0).

Then we have
fi(v⃗) ≤ F ∗

i (vi0) ≤ ϵvβi

i0
+Mi.

Furthermore, we have the estimates

Ai(v⃗)(t) =

∫ 1

t

(

∫ s

0

NτN−1fi(v1(τ), . . . , vn(τ))dτ)
1
N ds

≤
∫ 1

0

(

∫ s

0

NτN−1[ϵvβi

i0
+Mi]dτ)

1
N ds

≤ 1

2
(ϵ|vi0 |

βi

1 +Mi)
1
N .

Therefore, combining with the assumption βi ≤ N , there exists a sufficiently large R > 0 such that, for
any v⃗ ∈ ∂ΩR ∩K ,

∥A(v⃗)∥ ≤ max
1≤i≤n

{1
2
(ϵ|vi0 |

βi

1 +Mi)
1
N }

≤ max
1≤i≤n

{1
2
(ϵRβi +Mi)

1
N } ≤ R = ∥v⃗∥.

On the other hand, since F 0
i∗ = +∞ , there exist M > 0 and r < 1 such that

Fi∗(vi0) ≥Mvαi
i0
, for 0 ≤ vi0 ≤ r,

where M satisfies

min
1≤i≤n

{M 1
N (

1

4
)

αi
N Γ} ≥ 1.
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Then for any v⃗ ∈ ∂Ωr ∩K , we have

Ai(v⃗)(
1

4
) =

∫ 1

1
4

(

∫ s

0

NτN−1fi(v1(τ), . . . , vn(τ))dτ)
1
N ds

≥
∫ 1

1
4

(

∫ s

0

NτN−1Fi∗(vi0)dτ)
1
N ds

≥
∫ 3

4

1
4

(

∫ s

1
4

NτN−1Fi∗(vi0)dτ)
1
N ds

≥
∫ 3

4

1
4

(

∫ s

1
4

NτN−1Mvαi
i0
)dτ)

1
N ds

≥ M
1
N (

1

4
)

αi
N Γ|vi0 |

αi
N
1 .

Furthermore, there exists an index i0 such that

∥A(v⃗)∥ > max
1≤i≤n

{|vi0 |
αi
N
1 } = r

αi
N ≥ r.

Therefore, for any v⃗ ∈ ∂Ωr ∩K , we have ∥A(v⃗)∥ > ∥v⃗∥ .

Therefore, by Lemma 1.1, the operator A has at least one fixed point in K ∩ (ΩR \ Ωr) . 2

Theorem 3.2 Assume that (H) holds. In addition, αi, βi ≥ N . If F∞
i∗ = +∞ , F ∗

i

0
= 0 , then (1.7) has at

least one positive solution.

Proof On one hand, from the definition of F ∗
i

0
= 0 , there exist a sufficiently small ϵ > 0 with 1

2ϵ
1
N ≤ 1 and

r < 1 such that
F ∗
i (vi0) ≤ ϵvβi

i0
, for 0 ≤ vi0 ≤ r.

Then, for any v⃗ ∈ ∂Ωr ∩K , we have

Ai(v⃗)(t) =

∫ 1

t

(

∫ s

0

NτN−1fi(v1(τ), . . . , vn(τ))dτ)
1
N ds

≤
∫ 1

0

(

∫ s

0

NτN−1ϵvβi

i0
dτ)

1
N ds

≤ 1

2
(ϵ|vi0 |

βi

1 )
1
N .

Therefore, combining with the assumption βi ≥ N , we have

∥A(v⃗)∥ < max
1≤i≤n

{|vi0 |
βi
N
1 } ≤ r.

On the other hand, from the definitions of F∞
i∗ = +∞ , there exist M > 0 and R > r such that

Fi∗(vi0) ≥Mvαi
i0
, for vi0 ≥ R,
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where M satisfies

min
1≤i≤n

{M 1
N (

1

4
)

αi
N Γ} ≥ 1.

Set R = 4R+ 1 . Let
Di = min

0≤vi0≤R
Fi∗(vi0).

Then for any v⃗ ∈ ∂ΩR ∩K , if ∥v⃗∥ = |vi0 |1 = R , then

min
t∈[ 14 ,

3
4 ]
vi0(t) ≥

1

4
|vi0 |1 > R.

Further, we have

Ai(v⃗)(
1

4
) =

∫ 1

1
4

(

∫ s

0

NτN−1fi(v1(τ), . . . , vn(τ))dτ)
1
N ds

≥
∫ 1

1
4

(

∫ s

0

NτN−1Fi∗(vi0)dτ)
1
N ds

≥
∫ 3

4

1
4

(

∫ s

1
4

NτN−1Fi∗(vi0)dτ)
1
N ds

≥
∫ 3

4

1
4

(

∫ s

1
4

NτN−1Mvαi
i0
)dτ)

1
N ds

≥ M
1
N (

1

4
)

αi
N Γ|vi0 |

αi
N
1 ≥ |vi0 |

αi
N
1

and for j ̸= i ,

Aj(v⃗)(
1

4
) =

∫ 1

1
4

(

∫ s

0

NτN−1fj(v1(τ), . . . , vn(τ))dτ)
1
N ds

≥
∫ 1

1
4

(

∫ s

0

NτN−1Fj∗(vj0)dτ)
1
N ds

≥
∫ 3

4

1
4

(

∫ s

1
4

NτN−1Djdτ)
1
N ds = D

1
N
j Γ.

Furthermore, we obtain

max
1≤i≤n

{Ai(v⃗)(
1

4
)} > max{|vi0 |

αi
N
1 , D

1
N
j Γ}

≥ |vi0 |
αi
N
1 = R

αi
N ≥ R.

Hence, for any v⃗ ∈ ∂ΩR ∩K , we have ∥A(v⃗)∥ > ∥v⃗∥ .

Therefore, by Lemma 1.1, the operator A has at least one fixed point in K ∩ (ΩR \ Ωr) . 2
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Example 3.3 Assume that α, β > 0 , N = 4 . Then for the problem


((−u′(t))N )′ = NtN−1(sin(u+ v) + 2)vα(t), t ∈ (0, 1),

((−v′(t))N )′ = NtN−1(e−v + arctan(u+ 1))uβ(t), t ∈ (0, 1),

u(t) > 0, v(t) > 0, t ∈ (0, 1),

u′(0) = u(1) = 0, v′(0) = v(1) = 0,

(3.1)

It is obvious that

F1∗(v) = vα(t) ≤ f1(u, v) = (sin(u+ v) + 2)vα(t) ≤ F ∗
1 (v) = 3vα(t),

F2∗(u) =
π

4
uβ(t) ≤ f2(u, v) = (e−v + arctan(u+ 1))uβ(t) ≤ F ∗

2 (u) = (1 +
π

2
)uβ(t).

Choosing α1 = 4 , α2 = β+4
2 , β1 = 3α+4

4 , β2 = 4β+4
5 .

Case I. If α, β < 4 , then it is easy to verify that

F 0
1∗ = lim inf

c→0+

F1∗(c)

cα1
= lim inf

v→0+

vα

v4
= +∞,

F 0
2∗ = lim inf

c→0+

F2∗(c)

cα2
= lim inf

u→0+

uβ

u
β+4
2

= +∞,

F ∗
1

∞
= lim sup

c→+∞

F ∗
1 (c)

cβ1
= lim sup

v→+∞

vα

v
3α+4

4

= 0,

F ∗
2

∞
= lim sup

c→+∞

F ∗
2 (c)

cβ2
= lim sup

u→+∞

uβ

u
4β+4

5

= 0.

Thus, by Theorem 3.1, the problem (3.1) has at least a positive solution.
Case II. If α, β > 4 , then it is easy to verify that

F∞
1∗ = lim inf

c→+∞

F1∗(c)

cα1
= lim inf

v→+∞

vα

v4
= +∞,

F∞
2∗ = lim inf

c→+∞

F2∗(c)

cα2
= lim inf

u→+∞

uβ

u
β+4
2

= +∞,

F ∗
1

0
= lim sup

c→0+

F ∗
1 (c)

cβ1
= lim sup

v→0+

vα

v
3α+4

4

= 0,

F ∗
2

0
= lim sup

c→0+

F ∗
2 (c)

cβ2
= lim sup

u→0+

uβ

u
4β+4

5

= 0.

Thus, by Theorem 3.2, the problem (3.1) has at least a positive solution.
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