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Abstract: In this paper,we obtain some new existence, uniqueness, and multiplicity results of radial solutions of an

elliptic system coupled by Monge—Ampeére equations using the fixed point theorem.
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1. Introduction

Monge-Ampeére equations are fully nonlinear second order PDEs that have many important applications in
geometry and other scientific fields. Much attention has been focused on the study of problems with a single
equation (see [1, 3, 5-10, 12, 17]) like

det(D?u) = f(u), in B,
u(x) =0, on 0B,

or equations (see [2, 11, 13-16]) like

det(D?uy) = fi(—uy, -+, —uy), in B,

(1.2)
det(D%*uy,) = fn(—u1, -+, —uy,), in B,
ui(x) =0, on dB,

3%u

where f;(i = 1,2---n) are continuous, D?u(x) = o
J

), 4,k = 1,2---n, is the Hessian matrix of u(z),

B = {z € RN : |z| < 1}. One of the important research directions is the existence of nontrivial solutions of
(1.1) or (1.2), which has been studied by many researchers in the nonsingular case [2, 6-8, 11-15, 17] as well as
the singular case [3, 10, 16].

On one hand, authors [11] investigated the existence, uniqueness, and nonexistence results of radial

solutions of the following system of equations:
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det D%uy = (—u2)®, in B,
det D?uy = (—uy)?, in B, (1.3)

uy =uy =0, on dB,
which are expressed as follows:
Theorem A [11] Assume that o, > 0. Then we have

(I) (ezistence ) If a3 # N?, then (1.3) has at least a radial convex solution.

(II) (uniqueness) If af < N?, then (1.3) has a unique radial convex solution.

(IIT) (nomexistence) If af = N?, then (1.3) has no radial convex solution.
Furthermore, the authors handle more general ones, i.e.

det D?>u = f1(—v), in B,
det D%v = fy(—u), in B, (1.4)
u=v=0, onJdB.

Similar arguments go through and the authors get the following conclusion: If fi, fo : [0,00) — [0,00) are

continuous, both nondecreasing, then (1.4) admits a solution if one of the following cases is satisfied:

ERY
=0 and lim; o0 w = 00;

D)

(1) limz_>0+

2~

G @)

1
(i) limg o 2552 — 0 and lim,_ e 22U — o

However, the uniqueness and multiplicity results of radial solutions of (1.4) are not considered. Thus, one of
the important results of this paper is concerned with the existence, uniqueness, and multiplicity of the positive

radial solutions of a more general system, i.e.
det D?>u = fy(x,—v), in B,

det D?>v = fo(x, —u), in B, (1.5)
u=v=0, onJdB.

The results we are going to present reveal how the behavior of the function f;(¢ = 1,2) at zero and infinity,

where f; : [0,1] x [0, +00) — [0, 4+00) are continuous, and they are nondecreasing on the second variable,

fi(t, C)

—o0 i(t,
, Y, = limsup max filt,c)

QOO = hm mf min i
E‘
c—oo tE[0,1] €7

- c—0+ tef0,1] ¢c*

[ ta
, ¥°° = liminf min fit )

?° = limsup max filt;c)
! c—oo tel0,1] P

c—0t te[0,1] €Y

has a profound effect on the number of nontrivial solutions of problem (1.5). In particular, we assume that
f2(z,0) =0 in Section 2.
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On the other hand, in [2, 14], the authors mainly consider the existence of nontrivial solutions of (1.2)

under the notations

(N) there exist nonnegative constants f?, f° defined as

fo lim fi(u)

o0 ; fi
' :Z|ui|ao O Jui NN and f7° = _ lim (u)

S luil—oo (32 ui )N

Another important result of this paper is concerned with the existence of positive radial solutions of problem

(1.2) under the following assumption:

(H) there exist two pairs of nonnegative continuous functions Fy., F;* (i = 1,...,n) such that
Fi*(_uio) < fi(_ulv s 7_U'n) < Fi*(_uio)a
For some —u;, € {—u;}, u;, # upy,if i # k.

For convenience, we give the following notations:

Fi(c) — Ef(c
FBk:hmlnf l*( )7 Fi*oozhmsup L ( ),
ik c—0t % cstoo  CPi

Fi.(c) — . Fr(c
FE = lim inf 220, F7' = limsup to)

c—+oo % 0+ CBi

At the end of Section 3, we also give examples to illustrate that f;(u) satisfies the assumption (H).

Finally, for radial solution u(r) with r = \/Zf[ x?, the Monge-Ampere operator simply becomes

(u/)N—lu// 1

det(D%u) =~ = s (W)Y,

Inspired by [11, 14], in the rest of this paper, we mainly pay more attention to the boundary value problems,
respectively,

)
), t€(0,1),
(1.6)
u(t) > 0,v(t) >0, te(0,1),
w'(0) =u(l) =0,v'(0) =v(1) =0
and
(=0t O)N) = NtV fi(vr, 02, vn),
(—o3())N)" = NtV favr, v, ... vn),
(1.7)

((_v;z(t))N), = NtNilfn(’UlvUQ? s 7Un)7
vi(0)=wv;(1)=0, i=1,2,...,n.

The discussion is based on the following lemmas.

Lemma 1.1 [}/ Let E be a Banach space and K C E be a cone in E. Assume 1, Qo are bounded, open

subsets of E with 0 € Q1,91 C Qy, and let A: KN (Q2\ Q) — K be a completely continuous operator such
that either
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(i) ||Aul] < |Jull, vwe KN and ||Au|| > |lull, ve KNIQs; or
(i) ||Au|| > |jull, v€ KNoQ and ||Au|| < ||lul|, uv€ KNINs.
Then A has a fized point in K N (Q \ Q7).

Definition 1.2 [/ Let K be a cone in a real Banach space E. With some uy € K positive, A: K — K s
called g -sublinear if

(a) for any u > 0,there exists 01 > 0,05 > 0 such that O1ug < Au < Oaugp;

(b) for any Orug < u < baug and t € (0,1), there always exists some n = n(u,t) > 0 such that A(tu) >
(1+n)tAu.

Lemma 1.3 [}/ An increasing and ug-sublinear operator A has at most one positive fized point.
2. Results of (1.6)
Theorem 2.1 Assume that o, B; >0 (i = 1,2) with
ooy < N2, Bifs < N2
If f(l) > 0, fg = 400, ] < 400, Py =0, then (1.6) has at least a solution.
Proof Define a mapping A : C[0,1] — C[0, 1] by
A(u)(t) = Ay o Ax(u)(t),

where

1 s
A)(t) = / (/ NN o(r))dr) s, e [0, 1],
t Jo
1 s .
As(u)(t) = / ( / NNy (ru(r))dr) R ds, ¢ e [0, 1],
t Jo
Now our main goal is to look for nontrivial fixed points of A in a subcone K C C[0,1] defined by

K ={ueC[0,1] : u(t) > 0, min_ u(t) > iHuH},

<t<

IS[)

1
1

where [lu(t)|| = max;e(o,1) [u(t)|. From the standard process (see [11]), it follows that A : K — K is completely

continuous.
For any ~ > 0, in the following paragraphs, we set

Q) ={uec 0] : [lul <},

and
0, ={ue C0,1] : |lul| =~}

On one hand, by the definitions of 9(1) >0, gg = +00, there exist C1; > 0 and 7, € (0,1) such that
fi(t,v) = (@) — v, forte0,1], 0 <v <y,
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fa(t,u) > Cru?, forte0,1], 0 <u <ry,

where C7 satisfies

2~

3
1 @] @ 1 1 S
4&1N+a1a2 Clmr l;N (fg - 6)W Z 17:[‘ = ﬁ (ﬁ NTN_1d7—> ds.
1 1

N2
Since fo is continuous and f2(t,0) = 0, there exists an ro € (0,71) such that
fat,u) <V, Vit e0,1], u€[0,rs)].

For any uw € K NO%,.,, we have

u(t) = Az (u)(t) = /t (/OS NN fo(r,u(r))dr) ™ ds

1 s
/ (/ NTNflr{VdT)%dsgrl.
0o Jo

IN

Furthermore, we can get

AW(G) = /1</OSNTN‘1f1<T,v<T>>dT)Ms
> [ N el s
> () -aF(p Tl ¥

and

1 s
() = Aa(u)() = /(/0 NN fo(r,u(r))dr) N ds

v

% S 1 (%) 1
[ (/1 NTN_lCl(ZHuH) dr)~ds
4 1

]
N

) Tllull¥.

|

> (C1)™(

Thus for any u € K N 0Y,,, from the above inequalities it follows that

JA@@] > Ao As(u)(})

1 o) a1+N

CL VT (00 — ¥ [Jul| 32 > ull.

>

ol Ntajas
-~z

4

On the other hand, by the definitions of cho < 400, E;o =0, there exist €; > 0 and R; > 0 such that

filt,v) < @7 €)™, forte0,1], v> Ry,
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fao(t,u) < equP?, forte0,1], u> Ry,

where ¢ satisfies
By o 1
e (¥ +e)V <L

Since f; is continuous, let
My = max{fi(t,v) : 0<t<1, 0<v <Ry},
My = max{fo(t,u) : 0<t<1,0<u< Ry}

Then we have
filt,0) < (@ + )0 + My,

fot,u) < eu? + My,
Furthermore, we have

A(u)(t) = Ay o Ag(u)(t)

1 s
_ /t ( /0 NEN=Lf (r, Ay () (7))dr) ¥ ds
< [/0 NTVH(@] 4 &) (Aa(u) (7)) + My)dr] ¥

< </0 NTN L) ¥ (7 + &) || Aa(w) [P + My] ¥

= (@7 + o)l Az(u)|? + M) ¥

and
A(u)(t) = /t K /0 NNy (r u(r))dr) R ds
< [/01 NN (eyu(r)™ + My)dr] ¥
< NVl e Jull + Ml

[e1[|ull®2 + My

From the above inequalities, it is clear that the term with the highest index is

1 818 818
—~5 ,—00 1 182 182
e (P, +e)Nu N <wu N7

Hence we can choose a sufficiently large Rs > 0 such that

[A)(@) < [lull, ve KNOQR,.

Therefore, by Lemma 1.1, the operator A has at least one fixed point in K N (Qp, \ Q). O
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Corollary 2.2 Assume that f;(t,c) satisfies the following conditions:

(i) fi(t,c) is continuous and nondecreasing on c;

(ii) there exist positive constants «, f3, ki, l;(i =1,2), such that
kl’l)a S fl(t,’U) S kQUaJl’U,B S fz(t/u) S lguﬂ.

If a3 < N?, then (1.6) has a unique positive solution.

Proof The existence result can be obtained from Theorem 2.1. Now we just give the proof of uniqueness of
solutions.

Let P ={u € C[0,1],u(t) > 0,¢ € [0,1]}. Now we show that A has at most one fixed point in P. Since
fi(t,¢) is nondecreasing on ¢, the operator A = A; o As is nondecreasing. By Lemma 2.2, we only need to
verify that A is wug-sublinear for ug =1 —t¢.

Let M = max;c(o1{f1(t,v(t))}. Then

A(u)(t)

/t 1(/08 NTNTL (7, Ag(u)(7))dr) > ds

1 s
/ (/ NN Mdr)~ds
t 0

< MW(1-1t).

IA

Therefore, we take 0y = M ~.
Choose any ¢ € (0,1) and set

m = (/OCNTN_lfl (v)dTY.

Since (Au)(t) is strictly decreasing in ¢ and vanishes at ¢ = 1, we have
(Au)(t) > (Au)(c) > m(1l —¢), forallt € [0,c],
1
(Au)(t) > / mds =m(1 —t), foranyt € [c,1].
t

It is clear that (Au)(t) > m(1 —¢)(1 —t), for all ¢ € [0,1]. Thus we choose 6; =m (1 —c).
Finally, for u € [01uq, Oaug], £ € (0,1), we have

1 s
Ay(€u) = /t ( /0 NNty (7, €u)dr) ¥ ds

1 s
- / </0 NN (Gu(r))Pdr) ¥ ds
> (BFefa
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and

A(fu) = Al o Ag(fu)
1 s
> /t(/o NTNflklAg(fu)dT)%ds
ki1 liy o a8
> E)N(E)N Enz A(u).

Further, since a8 < N?, for any £ € (0,1), there always exists some 7 > 0 such that A(¢u) > (1 + n)éAu.
Therefore, by Lemma 1.1 and 1.3, (1.6) has a unique positive solution. O
Theorem 2.3 Assume that oy, B; >0 (i = 1,2) with

oo > N2, 182 > N2

If 79 < 400, 9 =0, y‘fo > 0, y;o = +o00, then (1.6) has at least a solution.

Proof On one hand, from the definitions of @ < 400, 73 = 0, there exist €3 > 0 and r3 € (0,1) such that

fi(t,v) < (@Y +e)v*r, fortel0,1], ve[0,1],

fo(t,u) < eu®?, forte0,1], u € [0,rs],
where ey satisfies

1 % L 0 .
562 S 1 and W62 (SDI + E)N S 1.
N
Then for any u € K N0<Q,,, we have

u(t) = Az (u)(t) = /t (/05 NN fo(r,u(r))dr) ™ ds

1 S
< /(/ NTN71€2’UJa2dT)%dS
0 0
1 s .
< /(/ NN Loy ul|®2dr)* ds
0 0
1 a
< geVu|¥ <1
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Furthermore, we have

1 s
A(w)(t) = /t(/o NTN=LE (7, 0(7))dr) N ds
1 s )
= /(/ NTNTY @Y + e)v® (1)dr) N ds
t 0
1 s .
= /(/ NTNVH@) + o) v dr) ~ ds
0 0
< 5(¢?+6)WIIUIIW1
1 R 1 ajoy
< — e @ +e)V|u| ™
N
Qa2
<l <l

namely, [|A(u)(t)|| < [Jull, uve K NoQ,.
On the other hand, from the definitions of yio > 0, y;o = +o00, it follows that there exist Cy, C3 > 0

and R3 > 1 such that
fi(t,v) > CovP', fort €0,1], v > Rs,

fa(t,u) > Csu®, forte [0,1], w > Rs,

where Cs, C3 satisfy

1
CF =T >4,
4%
B
ORGSR )

B1B2+BI N —
47 N2

N
Set R4 = max{4R3, R;*}. Then for any u € K N g, , we have

min u(t) > =Ry > R3

te[1,2

o~ =

and

1 s
ol > o) = Aa)(q) = [ ([ NPt arar) s

> [(/OS NTN=1C5uP2(7)dr) ™ ds
4% s 1 ,
> /(/ NTN—ch,EHuHﬂZdT)Ms
1 1
> OF 2Tl ® > 4fu| ¥ > 4R..
N
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Furthermore, we also get

1
min v(t) > —||v|| > R
i o0) > {lol > Ry

and

= o N-1 v(7))dr) ™ ds
m = [ N Rt

3
ry S
> /(/ NTN=1CoP (r)dr) ¥ ds
i /3
E LV | ;
> (| NrN7ICy—|v||Prdr)~ ds
1)1 461
4 4
11 By
> Oy ﬁFHU”N'
N
From the above inequalities, we have
1 B pi4N L 1 B1B2
A)(y) = C TV Oy —gmr llull ~2
N2
8162
=l = full.

Hence, we have ||A(u)(t)| > |lull, u€ K NONg,.

Therefore, by Lemma 1.1, the operator A has at least one fixed point in K N (Qp, \ Q).

Theorem 2.4 Assume that oy, 8; >0 (i = 1,2) with

aras < N?, 1B > N2

In addition, the following conditions hold:

00 0_ oo oo _ )
(i) v, >0, g, =+00, ¥” >0, ° = +00;
(ii) there exists an R such that

where

N%:max{fz(t,u):()gtg 1,0 <u < R}

Then (1.6) has at least two solutions.
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Proof For any u € K NS5, we have

1 s
o(t) = As(u)(t) = /t ( /0 NNy (7 u(r))dr) ¥ ds

1 s
/ (/ NrN=INZdr)~ds
0 0

(N2)¥.

IN

1
< —
-2
Furthermore, we can get

A(u)(t) = Ay o Ax(u)(t)

- /tl(/osNTN1f1<TvA2<u><r>)dT)fvds

1 s

< /(/ NTNilNI%dT)%dS
0 0

< 7(N~)W§§’

namely, [|A(u)(@)| < |ull, ve KnNoQg.

Since ajay < N2%, (132 > N2, 9(1) > 0, gg = +00, g;}o > 0, %;o = 400, from the proof of
Theorem 2.1 and Theorem 2.3, there exist ro > 0 (sufficiently small) and R4 > 0 (sufficiently large) such
that || A()(@)]] > lull, v e KNoQ., and ||Aw)(@)|| > ||ull, v € K NIQg,. Therefore, by Lemma 1.1, the
operator A has at least two fixed points in K N (Q3\ Qr,) and KN (Qg, \ Qf). O

Theorem 2.5 Assume that a;, 8; >0 (i = 1,2) with
oo > N2, B18s < N2

In addition, the following conditions hold:

(i) B9 < 400, B3 =0, P < +oo, Py = 0;

(ii) there exists an R such that

where

K}% = min{ fo(¢,u) :

Then (1.6) has at least two solutions.
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Proof For any u € K NS5, we have

u(t) = Az(u)(t) = /t (/OS NN fo(r,u(r))dr) ™ ds

1 s
< /(/ NTN=INZdr)~ ds
0o Jo
1 1
< i(NI%)N~
Furthermore,
: 1 | AN L
min v(t) > o] > = [ ([ NtN"Ufa(r,u(r))dr) ¥ ds
te[d,3) 4 4Jo Jo

3
1 B ) N—-17-2 L
D <
> 4/411 (/}1 Nt KRdT)Nds

> 1F(K%)%.
4 R
For t € [1,3], we have the estimates
KDY <o) < SV
and
1 1

A(W)() = Aro Aau)(7)

_ /;(/OS NTNLE () Ay (u) (7)) dr)  ds

Y

ER
/ (/ NTN_lKlﬁdT)%dS
1 Ji

> T(KYT,

2|~

namely, [|[A(u)(t)| > [|ull, ve KNoQg.

Since ajay > N2, B8 < N2, 3 < +oo, 7% = 0, @To < 400, E;O = 0, from the proof of
Theorem 2.1 and Theorem 2.3, there exist Ry > 0 (sufficiently large) and r3 > 0 (sufficiently small) such
that [|[A(u)(@)| < [lul, v € KNoQg, and [[A(u)(@)|| < [lul, u € KN OQy,. Therefore, by Lemma 1.1, the

operator A has at least two fixed points in K N (Qz\ Qr,) and KN (Qr, \ Qp). o

Now we give some examples to illustrate our main results.
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Example 2.6 If N =3, then (1.6) is related to the second-order system

(—u'(1)*) =3t fi(t,v),  t€(0,1),
(—v'(1)%) =32 fo(t,u), t€(0,1),
u(t) > 0,v(t) >0, te(0,1),

' (0) =u(1) =0,v(0) =v(1) =0,

o~ o~

where fy (t,v) = (sinv)? +12, f5 (t,u) = u+t. Choosing oy = 2,00 = 3,31 = 4,32 = 2, it is easy to verify that

t inv)?
@Y = lim inf min filt,v) = lim inf (sinv) =1>0,
=1 w0+ tefo,1] v v—0+
t
@Y = liminf min Bty _ liminf — = +o0,
=2 u—0+ tefo,1]  u%2 u—0+ u
sinv)? + 1
1111 = lim sup max hitv) = lims (1nv)4 =0< 400
v—oo t€[0,1] U'Bl V=00 v
t, ) 1
1/12 = lim sup max fo () = lim sup u — =0,
u—oo t€[0,1] uP2 U—00

which implies that the assumptions of Theorem 2.1 hold. Therefore, the problem (2.1) has at least one positive

solution.<
Example 2.7 If N =3, then (1.6) is related to the second-order system

€ (0,1),
€ (0,1),

o~ o~

(—u'(1)?) =3t filt,v), te
(—v'(1)°) =38 fa(t,u), te
ult) > 0,0(t) >0, te(0,1),
u'(0) = u(1) = 0,v'(0) = v(1) =

where fi (t,v) = (v* +0°)sin(t + 5 — 1), fo (t,u) = u’(t* + t +1). Choosing a; =3, a0 =4,81 =5,08 =3, it
1s easy to verify that

t 3 5
<p1fhmsup max hitv) :hmsupv J;v =1 < o0,
v—0+ t€[0,1] VN v—0+ v
t 3ud
79 = lim sup max 2 (tw) = limsup —- v 0,
u—0+ t€[0,1]  u*? u—s0t+ ut
t v3 4+ %) sin(Z — 1
1° = liminf min h(tv) :liminf( Jsin(5 — 1 :sin(z—l) > 0,
-1 v—oo tel0,1]  vPL V—»00 v 2
t.u 5
¢ = liminf min fltw) _ = lim 1nf—3 = 400,
- u—oo tel0,1] U2 uU—00 U

which implies that the assumptions of Theorem 2.8 hold. Therefore, the problem (2.2) has at least one positive

solution.<
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Example 2.8 If N =3, then (1.6) is related to the second-order system

(2.3)

where

v, 0<w<l, w2, 0<u<l,
fl(t’v)_{v4, 1 <. and fa(t,u) = ul, 1<

Choosing ay = 2,0 = 3,81 = 4,82 =5, it is easy to verify that

t 2
Y = liminf min hilt,v) — liminf & =1 > 0,
=1 w0+ tefo,1] v v—0+ 12

f2 (ta u) ?

0 .. . R
. = liminf min = liminf — = +o0,
=2 u—0+ tef0,1] U2 u—0+ U

t 4
¥ = liminf min fi(t,v) —liminf - =1 > 0,
=1 V—00 tG[O,l] vPL V—00 1)4

t,u ul
1 = lim inf min fa (t,u) = liminf — = 400,
—2 u—oo te[0,1]  uP? u—00 U

which implies that (i) of Theorem 2.4 holds.

Choosing R = %, via some computations we can get

NZ =max{fa(t,u): 0 <t <1,0<u<R}=R?

1 E 10
Ni =max{fi(t,v) : 0<t<1,0<v< §(N}%)N}:Rs7

%(N}%)% —R¥ <R

which yields that (ii) of Theorem 2.4 holds. Therefore, the problem (2.3) has at least two positive solutions.<

Example 2.9 If N =3, then (1.6) is related to the second-order system

o~ o~

(—u'())3) = 3t2f1(t,v), te€(0,1),
(=v'(4))3) = 3t2 fa(t,u), te€(0,1),
u(t) > 0,v(t) >0, te(0,1),

' (0) = u(1) = 0,v'(0) = v(1) =0,
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where
7.)3, 0<ov< 23387
filt,) = (BE)3, 2048 ) < (2048)3
02, (21%8)3 <
uS, 0<u<$
Bltu) =1 (80, % <u< (87,
W (B <

Choosing aq = 3,0 = 5,81 = 2,82 = 4, then it is easy to verify that

t,v v3
¢(1) = lim sup max filt,v) = limsup — =1 < 400,
v—0+ t€[0,1]  vM v—0+ U
t,u u®
@3 = lim sup max falt, w) = limsup — =0,
u—0+ t€[0,1]  u*? u—04+ U
fi(t,v) v?

— . .
1, = limsup max = limsup — =1 < +o0,
v—oo t€[0,1] Uﬁl v—oco U

- t,u . u?
¥s = limsup max fQ(B ) = limsup — =0,
u—soo t€[0,1] U2 U—00

which implies that (i) of Theorem 1.5 holds.

Choosing R = %, via some computations we can get

NZ = max{fa(t,u) : 0 <t <1,0 <u < R} = R°,

1 3 14 ~ R
K2 = min{ f5(t, u) ZStSZ’ZRSUSR}:(Z)G’
1 37T s 1 1 r. R
1 _ : . 2 2 _ 3 6
ng—mln{fl(t’v)-Zﬁtﬁzvz(Kﬁ)N Svgi(Nﬁ)N}_(Z) (Z) )
P(KL)Y = R,

which yields that (it) of Theorem 2.5 holds. Therefore, the problem (2.4) has at least two positive solutions.<

3. Main results of (1.7)
Theorem 3.1 Assume that (H) holds. In addition, 0 < oy, 5; < N (i=1,...,n). If Lﬁ = +00, Fii*(><> =0,

then (1.7) has at least one positive solution.
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n

Proof Let E denote the Banach space C0,1] x --- x C[0,1] with the norm ||#]] = maxi<;<n{|vi|1}, where
|vil1 = max,epo,1] |vi(t)|. Define a mapping A: £ — E by

A(0)(t) = (A (V) (2), - .., An(V)(1)),
where

Ai(ﬁ)(t):/t (/OSNTN—lfi(vl(T),...,vn(r))df)fvds, teo,1].

Define a subcone K C E by K = Ky X --- x K,,, where K; = {v;(t) : minigtg% vi(t) > i|vi|1}. From the
standard process (see [11]) and the Arzela—Ascoli theorem, it follows that A : K — K is completely continuous.

On one hand, from the definition of FT-*OO = 0, there exist a sufficiently small ¢ > 0 and R > 0 such that
Ff(v,) < eviﬁoi, for vy, > R. For the given R, let

Then we have

£:(@) < Ff(viy) < el + M;.

Furthermore, we have the estimates

1 s
A(D)(t) = /t(/o NN (01 (7), . .. v (7))dr) N ds

IN

1 s
/(/ NTN=Yew' + M;)dr)~ ds
0 0

IA

. 1
AL

1
§(€|’Ui0

Therefore, combining with the assumption §; < N, there exists a sufficiently large R > 0 such that, for
any v € 0Qr N K,

[A(@D)]]

IN

1 ) 1
121?§n{§(€|vio 7+ M)~ }

1 , i -
S (ER% + M)V} < R = 7.

A
\B
|93
"

—~—

On the other hand, since Fii?k = +00, there exist M > 0 and r < 1 such that

Fi(vig) > Mugt, for 0 <wv;, <,
where M satisfies
1, o

1
i N(2)FT} > 1.
121;1”{MN(4)NF}_1
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Then for any v € 092, N K, we have

A@) )

/il(/os NNV (01(7), .., v (7))dr) ¥ ds

1 s

> /(/ NTNilFl'*(’UiO)dT)%dS
+Jo
3 s

> / ( / NTN=1E,, (v;,)dr) ¥ ds
i 73
3 s

> /(/ NTNfleg")dT)%ds
1 71
1 Tia o

> MF(F T

Furthermore, there exists an index iy such that
Qg a;
ﬁ T AU
[A@N > max (joa ¥} =¥ =7

Therefore, for any ¢ € 99, N K, we have ||A(7)| > ||7].

Therefore, by Lemma 1.1, the operator A has at least one fixed point in K N (Qg \ 2,.). O

Theorem 3.2 Assume that (H) holds. In addition, «;, B; > N. If FY = +o0, FT-*O =0, then (1.7) has at

least one positive solution.

Proof On one hand, from the definition of FTv*O =0, there exist a sufficiently small € > 0 with %e% <1 and

r < 1 such that
Fl(v;,) < evfoi, for 0 <w;, <.

Then, for any v € 0Q2,. N K, we have

Aiy(v)(t)

/tl(/os NTY U fi(or(7) o ())dr) ¥ ds

1 s
< /(/ NTN71€’U§;dT)%dS
0o Jo
1 1
< el 7)™

Therefore, combining with the assumption §; > IV, we have
A %
, _ <r
JA@) < max {Joi |} < r
On the other hand, from the definitions of F° = +o00, there exist M > 0 and R > r such that
Fi(vig) > Muii, for vy, > R,
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where M satisfies

1 ]. 23
. rlsm s
121£n{MN(4) N >1

Set R=4R+ 1. Let
Di = min Fi*(vio).

0<v;y <R

Then for any ¢ € 0Qr N K, if ||¥]| = |vi |1 = R, then
. 1 =
min v;,(t) > Z|vi0|1 > R.

tel$.3

Further, we have

1 s
(D) (=) = N (o (), .. on(T VN ds
A0 = [N

1 s

> /(/ NtN=UE, (v;,)dr) ¥ ds
1 Jo
2 s

> / ( / NtN=1E,, (v;,)dr) ¥ ds
i 73
E R

> /1 (/1 NTN_IMUgi)dT)%dS
1 1

> MN(Z)NF|vi0|1N 2 |Ui0|1N

and for j # 1,

1 s
(U)(=) = TN (o (7). . o (T VN ds
4@ = [ ([ NPTt

Y

1 s
/1(/0 NTNile*(vjo)dT)%dS
1

ES

Y

[ (/ N7N=1D,dr)¥ds = D¥T.
1

4

-

Furthermore, we obtain

1 o1
max (4@} > max{jus, |, DFT)

i

> |vi ¥ = RY 2 R.

Hence, for any v € Qg N K, we have [|A(7)| > ||7]].

Therefore, by Lemma 1.1, the operator A has at least one fixed point in K N (Qg \ 2,.). O
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Example 3.3 Assume that o, >0, N =4. Then for the problem

NtV =Y(sin(u + v) + 2)v(t),

= NtNV=1(e7? 4+ arctan(u + 1))uP(t), t € (0,1),

u(t) > 0,v(t) >0, te(0,1),
w'(0) = u(1) =0,v(0) = v(1) =0,

It is obvious that
(v) =v*(t) < fi(u,v) = (sin(u+v) + 2)v(t) < Fy (v) = 3v°(1),

Fou(u) = ZuP(t) < fo(u,v) = (e + arctan(u + 1))u?(t) < Fy(u) = (1 + g)uﬁ (t).

i +4 3at4 4B+4
Choosing a1 =4, as = ﬁT’ By =3t B, = BT

Case . If «, B < 4, then it is easy to verify that

«

.. Fe(e .U
FY, = liminf (c) = liminf — = o0,
c—0+t ¢t v—0t VU
Fy,(c u?
FY, = liminf +(0) = liminf — = +o0,
c—=0t ™2 u—0t o

* [e3

—00 . C .
F} =limsup 1; ) = limsup —7 =0,
c—+oo CPL v—=>4o00 V4

* uﬁ

——00 . C .
Fy =limsup 2ﬁ( ) = limsup —557 = 0.
c—4o00 C u—+oo U~ 5

Thus, by Theorem 3.1, the problem (3.1) has at least a positive solution.
Case II. If o, 8 > 4, then it is easy to verify that

F1. o
e = liminfli(c) = liminfv—4 = 400,

c—>+oo0 ™ v—+o00 U
R N o I

F5Y = lim inf +(0) = lim inf — = +o0,
c—+oo X2 u—+00 4,5

e

*
—0 .. c ) v
Ff =limsup 1/3( ) = limsup —7 =0,
c—0t ot v—0t v 4

=0 .. F3(c i ub
Fy =limsup Qﬂ( ) = limsup —57 = 0.
cm0t €72 u—0t U5

Thus, by Theorem 3.2, the problem (3.1) has at least a positive solution.
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