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Abstract: In this work, by using Pauli matrices, we introduce four families of polynomials indexed over the positive
integers. These polynomials have rational or imaginary rational coefficients. It turns out that two of these families are
closely related to classical Lucas and Fibonacci polynomial sequences and hence to Lucas and Fibonacci numbers. We
use one of these families to give a geometric interpretation of the 200-year-old class number problems of Gauß, which is
equivalent to the study of narrow ideal classes in real quadratic number fields.
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1. Introduction
A number field, K , is a finite extension of Q . Elements of K that are roots of monic polynomials with integral
coefficients form a subring of K called the ring of integers of K , denoted by ZK . Being an extension of Z ,
ZK shares many properties with Z . However, determining for which K ZK is a unique factorization domain
(which is in this case equivalent to being a principal ideal domain) is one of the most fundamental open questions
of algebraic number theory. A measure for this property is the class number of K , denoted hK , that is the
order of the ideal class group H(K) , which is the multiplicative group of ideals of ZK modulo the subgroup of
principal ideals. The class number hK = 1 if and only if ZK is a unique factorization domain.

As ZK is a Dedekind domain, every fractional ideal of K can be generated by at most two elements.
Hence, one has a map from projectivized ordered pairs of elements of ZK , which is a group under ideal
multiplication denoted by H+(K) , to HK . This map is bijective exactly when ZK admits a unit of norm −1 .
Otherwise, this map becomes a 2-to-1 map and the group H+(K) is called the narrow class group. Analogously,
the order of H+(K) , denoted h+(K) , is called the narrow class number.

Let us now restrict the extension degree to 2 , i.e. consider the quadratic case. Any such number field
K is equal to Q(

√
d) for some square-free integer d . In this case, both the narrow class group and the class

group are computed using the corresponding binary quadratic forms of Gauß [4]. Whenever d > 0 , K is called
real quadratic, and whenever d < 0 , K is called imaginary. In fact, for the imaginary quadratic case Gauß
determined “almost” all such number fields with class number one. It turns out that ZK is a principal ideal
domain if and only if d ∈ {−3,−4,−7,−8,−11,−19,−43,−67,−163} . However, the question of determining
real quadratic number fields of class number one is still open and is referred to as the class number one problem
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of Gauß. It must be noted that the number of such number fields is expected to be infinite.
In this paper, we introduce four families of multivariate polynomials named Ak, Bk, Ck , and Dk . This

work is focused on studying the family Ak , though we point out properties of the remaining three polynomial
families, too. For instance, we will see that the polynomial family Bk is closely related to Fibonacci polynomials.
The family Ak will be called multivariate Lucas polynomials. This naming stems from the fact that if one reduces
these polynomials to one variable, then the classical Lucas polynomials are obtained. A similar phenomenon
occurs for the family Bk ; that is, they restrict to classical Fibonacci polynomials. Our main motivation for
introducing such a family of polynomials is that given any real quadratic number field K we use multivariate
Lucas polynomials to define an affine surface, called the çark surface of K , whose integral points are in one-to-
one correspondence with narrow ideal classes in K . This allows us to access the more than 200 years old class
number problems of Gauß from a completely different point of view. Indeed, çark surfaces produce high degree
projective surfaces, which are conjecturally Kobayashi hyperbolic. By a conjecture of Lang they have finitely
many Q -rational points. The reader is suggested to consult [13] and the references therein for further details
on this point of view.

This paper is organized as follows: the next section is devoted to defining and establishing basic properties
of the aforementioned polynomial sequences. In particular, multivariate Lucas and Fibonacci polynomials are
defined. In the last section, after a quick review of narrow ideal classes and the narrow ideal class group of a
quadratic number field, we define the automorphism group of a narrow ideal class. In the real quadratic case,
this group is isomorphic to Z generated by a hyperbolic element of PSL2(Z) . Using this we attach an infinite
bipartite ribbon graph, called çark in a joint work of the author with Uludağ and Durmuş [11], to a narrow
ideal class and show how they give rise to integral points of an appropriate affine surface.

2. Multivariate Lucas and Fibonacci polynomials

In this section, we will introduce four families of polynomials, Ak , Bk , Ck , and Dk , indexed over positive
integers. These polynomials have either rational or imaginary rational coefficients. The second part is devoted
to listing certain properties that will be required in upcoming sections.

2.1. The families Ak, Bk, Ck , and Dk

Pauli matrices, which have proven themselves to be useful tools in the context of quantum mechanics, are
defined as

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −

√
−1√

−1 0

)
, σ3 =

(
1 0
0 −1

)
.

They are of order two and satisfy σ1σ2σ3 =
√
−1 . They are traceless and their determinant is −1 ; hence, their

eigenvalues are ±1 .
Together with the identity matrix Pauli matrices form a basis for the vector space of matrices of size

2× 2 with complex entries. In particular, for the matrix M(x, y) =

(
1 + xy x

y 1

)
with x and y being complex

variables, the coefficients of I , σ1 , σ2 , and σ3 become A = 1
2 (2 + xy) , B = 1

2 (x + y) , C =
√
−1
2 (x − y) , and

D = xy
2 , respectively. More generally, for a sequence of even number of complex numbers x1, y1, . . . , xk, yk we

define
M(x1, y1, . . . , xk, yk) := M(x1, y1) · . . . ·M(xk, yk).
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Then there should exist polynomials Ak, Bk, Ck , and Dk in x1, y1, . . . , xk, yk so that

M = Ak · I +Bk · σ1 + Ck · σ2 +Dk · σ3.

For instance, for M(x1, y1, x2, y2) , one finds immediately that

A2(x1, y1, x2, y2) =
1

2
(2 + (x1 + x2)(y1 + y2) + x1x2y1y2),

B2(x1, y1, x2, y2) =
1

2
((x1 + x2) + (y1 + y2) + x2y1(x1 + y2)),

C2(x1, y1, x2, y2) =

√
−1

2
((x1 + x2)− (y1 + y2) + x2y1(x1 − y2)),

D2(x1, y1, x2, y2) =
1

2
(x1(y1 + y2)− x2(y1 − y2) + x1x2y1y2).

The four families of polynomials satisfy the following recursive relations:

A1,2,...,k+1
k+1 = A1,2,...,k

k Ak+1
1 +B1,2,...,k

k Bk+1
1 + C1,2,...,k

k Ck+1
1 +D1,2,...,n

k Dk+1
1

B1,2,...,k+1
k+1 = B1,2,...,k

k Ak+1
1 +A1,2,...,k

k Bk+1
1 +

√
−1(C1,2,...,k

k Dk+1
1 −D1,2,...,n

k Ck+1
1 )

C1,2,...,k+1
k+1 = C1,2,...,k

k Ak+1
1 +A1,2,...,k

k Ck+1
1 +

√
−1(D1,2,...,k

k Bk+1
1 −B1,2,...,n

k Dk+1
1 )

D1,2,...,k+1
k+1 = D1,2,...,k

k Ak+1
1 +A1,2,...,k

k Dk+1
1 +

√
−1(B1,2,...,k

k Ck+1
1 − C1,2,...,n

k Bk+1
1 );

where Ai1,i2,...,ik
k stands for Ak(xi1 , yi1 , . . . , xik , yik) . This set of relations can be obtained directly from the

relations among Pauli matrices. It must be pointed out that this is not the only set of equations that define the
families Ak, Bk, Ck , and Dk . In fact, if we let p(k) denote the number of partitions of the positive integer k ,
then there are 1

2p(k) -many different such formulations.
We refer to Tables 1, 2, 3, and 4 for the first four members of these families, in which to avoid rational

coefficients we multiplied each polynomial by 2 .

Table 1. First few members of the family Ak .

2A1 x1y1 + 2
2A2 x1x2y1y2 + x1y1 + x2y1 + x1y2 + x2y2 + 2
2A3 x1x2x3y1y2y3+x1x2y1y2+x2x3y1y2+x1x2y1y3+x1x3y1y3+x1x3y2y3+

x2x3y2y3+x1y1+x2y1+x3y1+x1y2+x2y2+x3y2+x1y3+x2y3+x3y3+2
2A4 x1x2x3x4y1y2y3y4 + x1x2x3y1y2y3 + x2x3x4y1y2y3 + x1x2x3y1y2y4 +

x1x2x4y1y2y4 + x1x2x4y1y3y4 + x1x3x4y1y3y4 + x1x3x4y2y3y4 +
x2x3x4y2y3y4+x1x2y1y2+x2x3y1y2+x2x4y1y2+x1x2y1y3+x1x3y1y3+
x2x4y1y3 + x3x4y1y3 + x1x3y2y3 + x2x3y2y3 + x3x4y2y3 + x1x2y1y4 +
x1x3y1y4 + x1x4y1y4 + x1x3y2y4 + x2x3y2y4 + x1x4y2y4 + x2x4y2y4 +
x1x4y3y4 + x2x4y3y4 + x3x4y3y4 + x1y1 + x2y1 + x3y1 + x4y1 + x1y2 +
x2y2+x3y2+x4y2+x1y3+x2y3+x3y3+x4y3+x1y4+x2y4+x3y4+
x4y4 + 2
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Table 2. First few members of the family Bk .

2B1 x1 + y1
2B2 x1x2y1 + x2y1y2 + x1 + x2 + y1 + y2
2B3 x1x2x3y1y2+x2x3y1y2y3+x1x2y1+x1x3y1+x1x3y2+x2x3y2+x2y1y2+

x2y1y3 + x3y1y3 + x3y2y3 + x1 + x2 + x3 + y1 + y2 + y3
2B4 x1x2x3x4y1y2y3 + x2x3x4y1y2y3y4 + x1x2x3y1y2 + x1x2x4y1y2 +

x1x2x4y1y3 + x1x3x4y1y3 + x1x3x4y2y3 + x2x3x4y2y3 + x2x3y1y2y3 +
x2x3y1y2y4 + x2x4y1y2y4 + x2x4y1y3y4 + x3x4y1y3y4 + x3x4y2y3y4 +
x1x2y1+x1x3y1+x1x4y1+x1x3y2+x2x3y2+x1x4y2+x2x4y2+x2y1y2+
x1x4y3+x2x4y3+x3x4y3+x2y1y3+x3y1y3+x3y2y3+x2y1y4+x3y1y4+
x4y1y4+x3y2y4+x4y2y4+x4y3y4+x1+x2+x3+x4+y1+y2+y3+y4

Table 3. First few members of the family Ck .

2C1

√
−1(x1 − y1)

2C2

√
−1(x1x2y1 − x2y1y2 + x1 + x2 − y1 − y2)

2C3

√
−1(x1x2x3y1y2−x2x3y1y2y3+x1x2y1+x1x3y1+x1x3y2+x2x3y2−

x2y1y2 − x2y1y3 − x3y1y3 − x3y2y3 + x1 + x2 + x3 − y1 − y2 − y3)

2C4

√
−1(x1x2x3x4y1y2y3 − x2x3x4y1y2y3y4 + x1x2x3y1y2 + x1x2x4y1y2 +

x1x2x4y1y3 + x1x3x4y1y3 + x1x3x4y2y3 + x2x3x4y2y3 − x2x3y1y2y3 −
x2x3y1y2y4 − x2x4y1y2y4 − x2x4y1y3y4 − x3x4y1y3y4 − x3x4y2y3y4 +
x1x2y1+x1x3y1+x1x4y1+x1x3y2+x2x3y2+x1x4y2+x2x4y2−x2y1y2+
x1x4y3+x2x4y3+x3x4y3−x2y1y3−x3y1y3−x3y2y3−x2y1y4−x3y1y4−
x4y1y4−x3y2y4−x4y2y4−x4y3y4+x1+x2+x3+x4−y1−y2−y3−y4)

Table 4. First few members of the family Dk .

2D1 x1y1
2D2 x1x2y1y2 + x1y1 − x2y1 + x1y2 + x2y2
2D3 x1x2x3y1y2y3+x1x2y1y2−x2x3y1y2+x1x2y1y3+x1x3y1y3+x1x3y2y3+

x2x3y2y3+x1y1−x2y1−x3y1+x1y2+x2y2−x3y2+x1y3+x2y3+x3y3
2D4 x1x2x3x4y1y2y3y4 + x1x2x3y1y2y3 − x2x3x4y1y2y3 + x1x2x3y1y2y4 +

x1x2x4y1y2y4 + x1x2x4y1y3y4 + x1x3x4y1y3y4 + x1x3x4y2y3y4 +
x2x3x4y2y3y4+x1x2y1y2−x2x3y1y2−x2x4y1y2+x1x2y1y3+x1x3y1y3−
x2x4y1y3 − x3x4y1y3 + x1x3y2y3 + x2x3y2y3 − x3x4y2y3 + x1x2y1y4 +
x1x3y1y4 + x1x4y1y4 + x1x3y2y4 + x2x3y2y4 + x1x4y2y4 + x2x4y2y4 +
x1x4y3y4 + x2x4y3y4 + x3x4y3y4 + x1y1 − x2y1 − x3y1 − x4y1 + x1y2 +
x2y2−x3y2−x4y2+x1y3+x2y3+x3y3−x4y3+x1y4+x2y4+x3y4+x4y4

2.2. Properties

The following is a list of properties satisfied by these polynomials:

• Bk, Ck , and Dk do not have any degree 0 term. That of Ak is equal to 1
2 · 2 .

• For any integer k > 1 neither of the families contain a term of the form xk
i or yki .

• The families of polynomials Ak(x, y, x, y, . . . , x, y) and Dk(x, y, x, y, . . . , x, y) comprise only monomials of
the form xlyl for every 1 ≤ l ≤ k . As a result, all monomials in Ak and Dk are of even degree.
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• The families of polynomials Bk(x, y, x, y, . . . , x, y) and Ck(x, y, x, y, . . . , x, y) comprise only monomials of
the form xlyl+1 for every 1 ≤ l ≤ k − 1 and xl+1yl for every 1 ≤ l ≤ k − 1 . Moreover, the number of
terms of the form xlyl+1 is equal to the number of terms of the form xl+1yl . As a result, all monomials
in Bk and Ck are of odd degree.

• The degrees of Ak and Dk are 2k , whereas those of Bk and Ck are 2k − 1 .

• 2Ak, 2Bk,
2√
−1

Ck , and 2Dk are elements of the ring Z[x1, y1, . . . , xk, yk] and are irreducible in this ring.

Proofs of the facts listed above can be obtained by induction, which we leave to the reader. The proof
of the following theorem exemplifies arguments involved in such proofs. For its statement let us recall that the

kth Lucas polynomial, Lk(x) , is defined as Lk(x) = 2−k((x−
√
x2 + 4)k + (x+

√
x2 + 4)k) . For k ≥ 1 , Lucas

polynomials satisfy the recursion Lk+1(x) = xLk(x) + Lk−1(x) , with initial conditions being L0(x) = 2 and
L1(x) = x . The first few Lucas polynomials are L2(x) = x2 + 2 , L3(x) = x3 + 3x , L4(x) = x4 + 4x2 + 2 .

Theorem 2.1 The polynomial 2Ak(x, x, . . . , x) is equal to the 2kth Lucas polynomial, denoted by L2k(x) .

Proof We know that L2k(x) = xL2k−1(x) + L2(k−1)(x) . Writing the same recursion formula for L2k−1(x) ,
multiplying by x , and subtracting from the first, we obtain L2k(x) = (x2 +1)L2(k−1) + xL2k−3(x) . Solving for
xL2k−3(x) from the recursion for L2(k−1)(x) we finally obtain the recursion formula for the even terms in the
Lucas polynomial sequence, which reads L2k(x) = (x2 + 2)L2(k−1)(x) − L2(k−2)(x) for k ≥ 2 . On the other
hand, by definition, we have M(x, x, . . . , x) = M(x, x)k . As noted above for k = 1 , 2A = 2 + x2 , B = 2x ,
C = 0 , and 2D = x2 . Suppose that Mk−1 = fk−1(x) + Bgk−1(x)σ1 + Cgk−1(x)σ2 +Dgk−1(x)σ3 . If we write
Mk with respect to the basis consisting of identity and the Pauli matrices then we obtain the following set of
equations:

fk(x) = Afk−1(x) +B2gk−1(x) + C2gk−1(x) +D2gk−1(x)),

gk(x) = Agk−1(x) + fk−1(x).

We rewrite the first equality using det(M) = 1 = A2 − (B2 + C2 + D2) and get fk(x) = Afk−1(x) + (A2 −
1)gk−1(x) . This establishes the fact that there are polynomial families fk and gk indexed over the set of
positive integers so that Mk = fk(x) + Bgk(x)σ1 + Cgk(x)σ2 +Dgk(x)σ3 . A short algebraic manipulation of
these equations gives us the recurrence relation fk+1(x) = 2Afk(x)− fk−1(x) , subject to the initial conditions
of f0(x) = 1 and f1(x) = 2A = 2 + x2 . 2

Let us remark that the above method can be applied in a slightly more general setup where one obtains
polynomials fk and gk of A and det(M) ; see [5]. One may immediately ask analogous questions for the
remaining polynomial families. It is immediate to prove that Ck(x, x, . . . , x) = 0 for any positive integer
k . The probably more interesting result is the following result, whose proof is almost identical (the only
essential difference being determining the initial condition) to the proof of Theorem 2.1 and therefore will be

omitted. For the statement of the theorem let us note that the kth Fibonacci polynomial is defined as Fk(x) =

2−k (x+
√
x2+4)k−(x−

√
x2+4)k√

x2+4
. For k ≥ 1 Fibonacci polynomials satisfy the recursion Fk+1(x) = xFk(x)+Fk−1(x)
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subject to the initial conditions F0(x) = 0 and F1(x) = 1 . The first few Fibonacci polynomials are F2(x) = x ,
F3(x) = x2 + 1 , F4(x) = x3 + 2x .

Theorem 2.2 The polynomial Bk(x, x, . . . , x) is the 2kth Fibonacci polynomial, denoted by F2k(x) .

Encouraged by Theorem 2.1, we give the following:

Definition 2.3 For k ∈ Z≥1 we call the polynomial 2Ak the 2kth multivariate Lucas polynomial and denote

it by L2k . Similarly, we define the 2kth multivariate Fibonacci polynomial as Bk and denote it by F2k .

To answer the analogous question for Dk we note the following:

Proposition 2.4 For any positive integer k we have

Bk(x, x, . . . , x)

2x
=

Dk(x, x, . . . , x)

x2
.

Proof [Sketch of proof.] Using the method above, one obtains a recursion formula for the polynomial
2Dk(x,x,...,x)

x , which is exactly the same as Fibonacci polynomials with the same initial conditions. 2

Lucas numbers are defined recursively as L1 = 1 , L2 = 3 and Lk+1 = Lk + Lk−1 . The multivariate
Lucas and Fibonacci polynomial families enjoy the expected properties of their one variable versions, which are
consequences of Theorems 2.2 and 2.1. For instance, L2k(0, 0, . . . , 0) = 2 , L2k(1, 1, . . . , 1) = L2k , where L2k

denotes the 2kth Lucas number. We also have:

L2k(x1, y1, . . . , xk−1, yk−1, 0, 0) = L2(k−1)(x1, y1, . . . , xk−1, yk−1).

We may then obtain the following using induction:

Lemma 2.5 For any positive integer l we have

L2(k+l)(x1, y1, . . . , xk, yk, 0, 0, . . . , 0, 0︸ ︷︷ ︸
2l−many

) = L2k(x1, y1, . . . , xk, yk).

Fibonacci numbers are defined recusively as Fk+1 = Fk + Fk−1 subject to the initial conditions F0 = 0

and F1 = 1 . Similar properties hold also for the Fibonacci family F2k . Namely, F2k(1, 1, . . . , 1) = F2k , where

F2k stands for the 2kth Fibonacci number. We finally have

F2k(x1, y1, . . . , xk−1, yk−1, 0, 0) = F2(k−1)(x1, y1, . . . , xk−1, yk−1).

We invite the reader to discover the related phenomenon for the families Ck and Dk .
The generator 1 of the group Z/kZ acts on the ordered pair (x1, y1, . . . , xk, yk) by sending it to

(xk, yk, x1, y1, . . . , xk−1, yk−1) . This action leaves L2k invariant; that is,

L2k(1 · (x1, y1, . . . , xk, yk)) = L2k(x1, y1, . . . , xk, yk). (2.1)
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Indeed, this symmetry can be seen easily by considering the action on the matrix M(x1, y1, . . . , xk, yk)

and noting that the trace is invariant within a conjugacy class. This property has the consequence that for any
1 ≤ i ≤ k :

L2k(x1, y1, . . . , xi−1, yi−1, 0, 0, xi+1, yi+1, . . . , xk, yk)

= L2(k−1)(x1, y1, . . . , xk−1, yk−1).

Although Bk and Ck do not enjoy such a property, let us state, without the proof, the following symmetry
of Dk :

1 ·Dk(y1, x1, . . . , yk, xk) = Dk(x1, y1, . . . , xk, yk).

3. Çark surfaces

The main aim in this section is to define çark surfaces using the multivariate Lucas polynomials and obtain a
one-to-one correspondence between integral points of these surfaces and narrow ideal classes. Throughout K

stands for a real quadratic number field. We will only explain the theory of narrow ideal classes in such fields,
although a much more general theory exists. Interested readers may consult [6–8].

3.1. Narrow ideal classes.

For such a number field K , there is a square-free positive integer d so that K = Q(
√
d) . Since the extension

degree is two its Galois group is of order 2 , and for any element α ∈ K , by α we denote the image of α

under the unique nontrivial element. The ring of integers, ZK , of K = Q(
√
d) depends on d . More precisely,

ZK = 1 · Z +
√
d · Z whenever d ≡ 2, 3 mod 4 and ZK = 1 · Z + 1+

√
d

2 Z if d ≡ 1 mod 4 . A subset a of K

is called a fractional ideal of ZK (or K ) if a is a 2-dimensional Z -module and for which there is an integer
ξ ∈ Z so that ξa ⊂ ZK . Note that the product of two fractional ideals is again a fractional ideal. The norm of
a fractional ideal a , denoted by N(a) , is defined as 1

ξ2 [ZK : ξa] , where [ZK : ξa] stands for the index of ξa in

ZK . As ξa is an ideal in a Dedekind domain, there are at most two elements α, β ∈ ξa so that (α, β) = ξa . In
this case, we say that a = (αξ ,

β
ξ ) and the elements are called the generators of a .

For a fractional ideal a generated by α, β ∈ K , the function fa defined on the ideal a sending any
element ν ∈ a to νν

N(a) is an integral valued binary quadratic form on a . If we write ν = Xα+Y β then we have

fa(X,Y ) = aX2 + bXY + cY 2 , where a = αα
N(a) , b = αβ+αβ

N(a) , and c = ββ
N(a) . One finds that the discriminant of

this form, ∆(fa) := b2 − 4ac , is equal to 4d if d ≡ 2, 3 mod 4 and is equal to d if d ≡ 1 mod 4 , i.e. is equal
to the discriminant of K . Given a square-free d , the discriminant of the corresponding number field is called a
fundamental discriminant. As a result of the choice of α and β , fa is integral; that is, a, b, c ∈ Z and as d > 0

the form fa is indefinite. The binary quadratic form fa is, in addition, primitive, i.e. the greatest common
divisor of the coefficients a, b , and c is 1.

To avoid ambiguity caused by the ordering of generators, we say that a basis (α, β) of a is oriented if
αβ − αβ > 0 . Any element of K of positive norm, say λ , maps an oriented basis to an oriented basis via
sending (α, β) to (λα, λβ) . We define two fractional ideals a and b to be equivalent if there is an element
λ ∈ K of positive norm so that a = λb . The set of equivalence classes of fractional ideals in K is denoted by
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H+(K) and is a group under multiplication called the narrow class group. An element of H+(K) is denoted by
[a] = [α, β] and is called a narrow ideal class. Note that whenever ZK has a unit of norm −1 , H+(K) turns
out to be isomorphic to the classical ideal class group H(K) , or else it is a degree two extension of the class
group. In either case, we say that a narrow ideal class of [a] in H+(K) lies above its ideal class in H(K) .

We refer to [12] for details and proofs of the facts above.

3.2. Automorphisms of narrow ideal classes

The group PSL2(Z) acts on the set of indefinite integral primitive binary quadratic forms via change of variable.
The PSL2(Z) -orbit of f is denoted by [f ] . For such a form f(X,Y ) = aX2 + bXY + cY 2 its stabilizer
is isomorphic to Z . We call the equation X2 − ∆Z2 = 4 the corresponding Pell equation, where ∆ is the

discriminant of f . The map sending an integral solution (x, z) to the matrix W (x, z) =

(
x−zb

2 −cz
az x+zb

2

)
gives

a bijection from the set of integral solutions of the corresponding Pell equation and the stabilizer of f . By
(xo, zo) we denote the solution that has the smallest positive second component among all solutions. It is called
the fundamental solution. The matrix Wf = W (xo, zo) is called the fundamental automorphism of f , which is
the generator of the stabilizer of f [1, Theorem 2.5.5]. The other generator is W−1

f = W (xo,−zo) . A direct
result of this is the following:

Corollary 3.1 If f is an integral primitive indefinite binary quadratic form of discriminant ∆ and W is an
automorphism of f , then tr(W )2 − 4 = z2∆ for some z ∈ Z .

If f = fa for some narrow ideal class a of K , then an element W of the stabilizer ⟨Wf ⟩ is called an
automorphism of a and the matrix W (xo, zo) (with zo > 0) is called the fundamental automorphism of a .
We remark that the fundamental automorphism of all narrow ideal classes of K arises from the same solution;
hence, the fundamental solution (xo, zo) is an invariant of the number field.

The two matrices S =

(
0 −1
1 0

)
and L =

(
1 −1
1 0

)
generate the modular group PSL2(Z) freely and

therefore induce the isomorphism PSL2(Z) ∼= Z/2Z ∗ Z/3Z . In particular, Wf can be written as a word in
S,L , and L2 . Without loss of generality, we may assume that Wf has no cancellations.

The action of PSL2(Z) on the set of narrow ideal classes of K is defined as γ ·(α, β) 7→ (pα+qβ, rα+sβ) ,

where γ =

(
p q
r s

)
. Note that fγ·a = γ · fa . The correspondence defined as [a] 7→ [fa] is one-to-one; see [12,

§10, Satz]. This correspondence is far from being onto as there are many primitive forms of the non-square-free
discriminant. For instance, if f = (a, b, c) is an indefinite binary quadratic form arising from Q(

√
d) with d

being square-free (hence, its discriminant ∆ is either d or 4d depending on the class of d ∈ Z/4Z), then for
any prime number p > 2 not dividing a , the form (a, bp, cp2) is a primitive form of discriminant p2∆ .

One can also prove that the correspondence [a] 7→ [Wfa ] , where [Wfa ] stands for the conjugacy class of
the stabilizer of fa , is one-to-one [11, Proposition 2.1]. As above, this correspondence is not surjective even
when one restricts to primitive elements (i.e. elements that are not powers of other elements).
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3.3. Çarks

The modular group PSL2(Z) acts on the upper half plane h = {z ∈ C : Im(z) > 0} . An element γ =

(
p q
r s

)
sends an element z ∈ h to pz+q

rz+s ∈ h . Fixed points of the matrices S and L are
√
−1 and ζ3 = e2π

√
−1/3 ,

respectively. We mark
√
−1 by a ◦ and ζ3 by • . These points are on the unit circle centered at 0 ∈ C .

The PSL2(Z) orbit (in h) of the part of the circle between ◦ and • is defined as the Farey tree, which will be
denoted by F ; see Figure 1.

Figure 1. The Farey tree, F .

The Farey tree is by construction bipartite and planar. Moreover, it admits a free action of PSL2(Z) in
such a fashion that edges of the Farey tree can be identified with elements of PSL2(Z) . A similar correspondence
holds between vertices of type ◦ (resp. •) and cosets of the torsion subgroup {I, S} (resp. {I, L, L2}). Hence,
for any subgroup Γ of PSL2(Z) , one may talk about the quotient graph, Γ\F , which is again bipartite but
not necessarily planar as a ribbon graph. In such a graph, every vertex of type • is of order 1 or 3 and every
vertex of type ◦ is of order 1 or 2 . In particular, the full quotient, PSL2(Z)\h , is called the modular orbifold.
Let us remark that the covering category consisting of étale covers of the modular orbifold is so rich that the
whole absolute Galois group can be recovered from it; see [10]. In [9], a project that outlines a is discussed.
The quotient PSL2(Z)\F has only two vertices; one is ◦ and the other is • with a single edge joining the two.

The conjugation action of PSL2(Z) on its subgroups is equivalent to the translation action of PSL2(Z)

on the set of edges of the corresponding graph, [11, Theorem 2.2]. Let us give the following:

Definition 3.2 Let a be a narrow ideal class in K . Then the graph ⟨Wfa⟩\F is called the çark corresponding
to a . This graph is denoted by Ca .

Similar to other correspondences stated, this is again one to one but far from being surjective, as there
are çarks that come from binary quadratic forms of the non-square-free discriminant. Nevertheless, çarks that
come from a narrow ideal class inherit all invariants of ideal classes and corresponding binary quadratic forms,
e.g., discriminants and traces. The graph Ca is planar, can be embedded in an annulus conformally, see[11,
§3.2], and has a unique cycle called a spine. The number of vertices on the spine is finite and the number of
vertices of type ◦ on the spine is equal to the number of vertices of type • . The graph Ca is then formed by
attaching Farey trees to all vertices of type • on the spine so that they should expand both inside and outside
the spine. Each such attached Farey tree is called a Farey branch. The number of consecutive Farey branches
that point in the same direction is called a Farey bunch. The graph Ca and hence the conjugacy class of Wfa

is completely determined by the formation of these Farey bunches and the number of Farey branches within
these bunches.
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Figure 2. The çark representing a = (2,
√
30) .

Example 3.3 For K = Q(
√
30) , we set a = (2,

√
30) . N(a) = 2 . This gives rise to the indefinite binary

quadratic form fa(X,Y ) = 2X2 − 15Y 2 . We have Wfa =

(
11 30
4 11

)
and in terms of the generators one has

Wfa = (LS)2L2S(LS)2L2S(LS)2 . Figure 2 depicts the corresponding çark.

3.4. Çarks as integral points

Let a be a narrow ideal class in K and Wfa ∈ PSL2(Z) be its fundamental automorphism. Elements in the
conjugacy class [Wfa ] can be partially ordered according to their lengths (i.e. number of letters S,L , and L2

that appear). Under the correspondence between the edges of the çark Ca and [Wfa ] one may observe that
those that are of smallest length (called minimal words) correspond exactly to edges on the spine. Minimal
words are not unique because if W is such a word then so is SWS . In fact, minimal words can be written as a
disjoint union of those that start with S and those that start either with L or with L2 . Among the latter there
are those that can be written of the form (LS)m1(L2S)n1 . . . (LS)mk(L2S)nk , where m1, n1, . . . ,mk, nk ≥ 1 .
To each such element in the conjugacy class, we associate the ordered pair (m1, n1, . . . ,mk, nk) and call k the
length of the çark. Observe that the integers mi represent the number of Farey trees in consecutive Farey
bunches that expand in the direction of the outer boundary. Analogously ni stands for the number of Farey
tree in the Farey bunches that expand in the direction of the inner boundary.

A couple of remarks are in order. If the conjugacy class of a word W gives rise to the sequence
(m1, n1, . . . ,mk, nk) , then W l gives rise to the same sequence repeated l times, and in particular it is represented
by a 2kl -tuple. Let us define a çark to be primitive if it is not a repetition of a shorter çark. Therefore, although
W and W l give rise to the same binary quadratic form, their çarks are different. Secondly, the number ka := k

is fixed for a narrow ideal class a and the length of the minimal word is equal to 2
∑k

i=1(mi + ni) . However,
different narrow ideal classes of the same number field K may be represented by minimal words of different
lengths, e.g., for K = Q(

√
30) H+(K) ∼= (Z/2Z)2 , with two narrow ideal classes that lie above the class of the

principal ideal being represented by a 2-tuple, and as we have seen earlier (Example 3.3), the two narrow ideal
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classes lying above [(2,
√
30)] being represented by a 4-tuple. We are now ready to prove our main theorem:

Theorem 3.4 Let K be a real quadratic number field of discriminant ∆ . Then each narrow ideal class in K

gives rise to an integral solution of the equation

L2k(x1, y1, . . . , xk, yk)
2 − 4 = z2∆, (3.1)

for some positive integer k and for some z ∈ Z , which depends only on K .

Proof We let k = kK be the maximum of ka as a runs through H+(K) and let ∆ be the discriminant of
K . Set (xo, zo) to be the fundamental solution of the corresponding Pell equation X2 − ∆Z2 = 4 . Remark
that for any narrow ideal class, the fundamental automorphism will be obtained using (xo, zo) . For each çark
represented by a 2l -tuple, say (ma,1, na,1, . . .ma,l, na,l) , for l < k we complete it to a 2k -tuple by appending
2(k− l) many zeros to the end of the tuple and obtain (ma,1, na,1, . . .ma,l, na,l, 0, . . . , 0) . Given such a 2k -tuple,
say (m1, n1, . . . ,mknk) , we set:

W = (LS)m1(L2S)n1 . . . (LS)mk(L2S)nk .

By construction the matrix W ∈ PSL2(Z) is a fundamental automorphism of the binary quadratic form fa .
Using the correspondence between automorphisms and solutions of the Pell equation X2 + ∆Z2 = 4 , see
Section 3.2, we obtain tr(W ) = x = xo and this satisfies x2

o − 4 = ∆z2o .
Now we observe that M(m,n) = (LS)m(L2S)n . The multivariate Lucas polynomial L2k = 2Ak

is merely the trace of the matrix M(x1, y1, . . . , xk, yk) and hence the trace of the matrix W is equal to
L2k(m1, n1, . . . ,mk, nk) . 2

Definition 3.5 We let CK ⊂ C2kK denote the solution set of the equation

L2kK
(x1, y1, . . . , xkK

, ykK
)2 − 4 = z2∆;

we refer to it as the affine çark hypersurface.

Recall that there is an action of Z/kZ on L2k . This means that the set CK admits an action of Z/kKZ ;
see Equation 2.1.

Definition 3.6 The affine çark surface of K is defined as the quotient CK/(Z/kKZ) . This surface will be
denoted by CK .

Corollary 3.7 Let K be a real quadratic number field. Then there is a one to one correspondence between
integral points of the çark surface CK and narrow ideal classes in K .

Proof One way this correspondence can be obtained is by using Theorem 3.4 and noting the fact that the
action of Z/kKZ does not change the conjugacy class of the fundamental automorphism of narrow ideal classes.

Conversely, if (m1, n1, . . . ,mkK
,mkK

) is an integral point on CK , one can construct the element

W = (LS)m1(L2S)n1 . . . (LS)mk(L2S)nk
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and look at the narrow ideal class that arises from the binary quadratic form whose fundamental automorphism

is W ; namely, if W =

(
p q
r s

)
then the corresponding indefinite primitive binary quadratic form is f(X,Y ) =

1
δ

(
rX2 + (s− p)XY − qY 2

)
, where δ is the greatest common divisor of r , s− p , and q . Since this point is a

solution of Equation 3.1, where by definition zo is minimal, the discriminant of this form must be square-free.
2

Let us conclude the paper with a few remarks. Instead of considering the fundamental solution we may
consider other z arising from nonfundamental solutions of the corresponding Pell equation. Even more generally,
we may treat z as variable in the equation and consider the affine hypersurface with equation

L2k(x1, y1, . . . , xk, yk)
2 − 4 = z2∆

in C2k+1 . Each integral point on the quotient of this hypersurface with the obvious action of Z/kZ gives rise
to a binary quadratic form whose discriminant’s square-free part is equal to ∆ . Such integral points give rise
to nonmaximal orders in ZK . One may then intersect the hypersurface with z = λ planes, where λ ∈ Z , and
then consider integral points of the intersection. In this case, again each integral point gives rise to a narrow
ideal class in an appropriate class group; see [2, Theorem 5.2.9]. One may generalize Corollary 3.7 immediately
to this case. Indeed, assuming one can compute the class number for K , or almost equivalently find the number
of integral points on the çark surface of K , one can determine the number of integral points of this surface; see
[3, Corollary 7.28].
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