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Abstract: Mechanical cooling is responsible for a significant fraction of the energy consumption of data centers (DCs).
Free cooling systems take advantage of ambient conditions to reduce the need for compressor-based cooling. This study
utilizes thermodynamic models of major free cooling systems such as the direct air-side economizer (ASE), indirect
air-side economizer (IASE), indirect evaporative cooler (IEC), and indirect water-side economizer (WSE) integrated
with the existing cooling infrastructure of a typical 1 MW IT load DC. Proposed models utilize hourly weather data of
various cities in Turkey to compute annual energy consumption and cost-saving potentials of each free cooling method
with respect to the baseline DC with both open aisle (OA) and enclosed aisle (EA). Results confirm the energy-saving
potential by IEC leading to less than 10% of annual chiller hours across Turkey and less than 1% in half of the ten
cities studied, especially in EA DCs. However, despite greater energy-saving potential, IEC has more extended payback
periods of 1.5 to 3.7 years due to the high capital investment compared with those of ASE and WSE with less than 1.4
years.
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1. Introduction
Data centers (DCs) are indispensable in today’s world, where information technology (IT) is at the center of
people’s lives. Power usage effectiveness (PUE) is the most common energy efficiency metric for DCs, which
is the ratio of the annual energy consumption of the DC facility (PDC ) to that of the IT equipment (PIT ).1

Recent reports indicate a shift towards hyperscale cloud DCs with high-efficiency infrastructure and an average
PUE of about 1.2 [1]. However, smaller DCs are responsible for almost 80% of DC energy use with average PUE
values ranging from 1.7 to 2.5 [1]. Reports on in-house DCs constituting close to 80% of the installed capacity2

roughly confirm the validity of these numbers for Turkey. Since the cooling energy used can be as much as 50%
of that of IT equipment, there is a significant potential for energy savings through more efficient cooling, which
is relevant for the Turkish DC sector with an annual growth rate higher than 30%.2 3

∗Correspondence: erdenh@itu.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License.

1Belady C, Rawson A, Pfleuger D, Cader T. Green Grid Data Center Power Efficiency Metrics: PUE and DCiE, White Paper
6, The Green Grid, 2008.

2Data Center Dynamics (2011). DCD Industry Census 2011 [online]. Website http://archive.datacenterdynamics.com/
white-papers/2011/11/dcd-global-census-market-growth-figures

3Data Center Dynamics (2013). DCD Intelligence: 2013 Census Report, Global Data Center Power 2013 [online]. Website
https://www.datacenterdynamics.com/news/dcd-industry-census-2013-data-center-power/
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Free cooling/economization methods are becoming an essential component of the DC cooling infras-
tructure since they reduce or eliminate the need for mechanical cooling. The American Society of Heating,
Refrigerating, and Air-Conditioning Engineers (ASHRAE) publish thermal guidelines for IT equipment [2].
The maximum and minimum recommended temperatures for IT equipment are 27 ◦C and 18 ◦C [2]. The
upper limit for humidity is 60% relative humidity and 15 ◦C dew point (DP) temperature, and the lower limit
is –9 ◦C DP temperature.

Figure 1a provides a schematic view of a conventional baseline (BL) DC coupled with a cooling plant that
consists of a water-cooled chiller with a cooling tower (CT) on the condenser side. Server racks form hot and
cold aisles in conventional DCs. Perforated tiles in the cold aisle allow cold air from the plenum into the cold
aisle, where cold air mixes with some hot air recirculated from the hot aisle before entering various servers. The
cold air heats up flowing through servers and ends up in the hot aisle. Computer room air handling (CRAH)
units have filters to reduce the particles in the room air, cross-flow heat exchangers to cool the warm room air
by rejecting its heat to the chilled water supplied by the chiller plant, and fans to feed cold air into the plenum.

Figures 1b–1d include the schematics of four free cooling methods retrofitted into the BL DC. The
most widely used method for free cooling in DCs is the direct air-side economizer (ASE)4 (Figure 1b), which
supplies the ambient air into DC when ambient conditions permit. However, there is a risk of exposing the IT
equipment to contaminants and a need for advanced filtering [3], which translates into an increase in fan energy
consumption. Intake of cold and dry ambient air in winter creates the need for humidification.

An indirect air-side economizer (IASE) consists of an air-to-air heat exchanger (HX) to reject heat from
the DC return air to ambient when outside conditions permit (Figure 1c), which is limited by the thermal
effectiveness of the HX. The IASE HX sets a physical barrier between the inside and outside air and eliminates
the risk of contamination due to outside air conditions. Meanwhile, the IASE system fans should overcome the
pressure drop due to the HX and additional filters to keep the HX clean on both sides. Air-side economizers can
benefit from integrated evaporative cooling.5 This study focuses on the indirect evaporative cooler (IEC), which
has advantages of enhanced heat transfer compared to the IASE through a wetted-surface HX (Figure 1c).

Another method of evaporative cooling for DCs is the indirect water-side economizer (WSE), which uses
CT water in plate-frame HXs to reject heat from the chilled water into the condenser water when ambient
conditions permit. This study focuses on the WSE in the series mode allowing part-load operation in the case
where the condenser water temperature is insufficient to handle the entire cooling load.

Techniques used for the energy assessment of ASEs typically overlook the off-design performance of
cooling equipment [4, 5]. Based on the count of favorable hours, Siriwardana et al. [4] studied the energy-saving
potential of ASEs in various cities of Australia, concluding with mostly favorable results except in humid and
tropical regions. Similarly, Sorell [5] focused on four big cities across the United States and the United Kingdom
to identify the potential of wasting energy using inaccurate sensors in ASEs. Another study utilized a more
advanced method using simulation software [6], where the authors investigated ASEs for DCs in 17 climate
zones specified by the ASHRAE [7] to meet the previous thermal guidelines of the ASHRAE [8].

Off-design performance modeling of major cooling equipment was part of a few studies, where authors
compared a few of the free cooling methods. Shehabi et al. [9] compared ASEs and WSEs for five locations

4Kaiser J, Bean J, Harvey T, Patterson M, Winiecki J. Survey Results: Data Center Economizer Use, White Paper No. 41, The
Green Grid, 2011.

5Niemann J, Bean J, Avelar V, Economizer Modes of Data Center Cooling Systems, Schneider Electric, 2011 [online]. Website
http://www.apc.com/salestools/VAVR-5UDTU5/VAVR-5UDTU5_R2_EN.pdf
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Figure 1. Representative drawings for various DC cases studied: (a) BL, (b) ASE, (c) IASE or IEC, and (d) WSE.

in California, identifying humidity constraints as the bottleneck of the ASE performance. Ham et al. [10]
focused on the optimization of ASE and IASE in South Korea. Durand-Estebe et al. [11] also utilized energy
simulation software to minimize the energy consumption of WSEs through adaptive control for a small DC in
France. Agrawal et al. [12] compared WSEs and IECs based on annual energy simulations for 17 climate zones,
indicating better performance of IECs overall. Gözcü et al. [13] also reported superior performance by IECs
compared to ASEs, IASEs, and WSEs at high-temperature operation based on their analysis in 19 climate zones
specified by the most recent ASHRAE Standard 169 [14] and updated thermal guidelines [2]. Gözcü and Erden
[15] extended their work to several cities in Turkey to evaluate the energy performance of various free cooling
methods. Güğül presented the only other study for data centers in Turkey assessing the free cooling potential
of six cities based on a simplistic model without considering off-design performance [16].

In one of the few studies assessing the economics of free cooling methods, Spangler and Jeffers [17]
computed the total cost of ownership (TCO) of various DC configurations including ASEs and WSEs for three
cities of the United States. They identified the economic advantage of using WSE applications because of
increased energy costs for ASEs due to humidification and dehumidification requirements and higher initial
cost. Cho et al. [18] compared ASEs, WSEs, and combinations of them for a DC that operates at relatively
low temperatures (5 ◦C chilled water temperature (Tchw )). They concluded that an ASE with additional
mechanical cooling is the most economical option. Khalaj et al. [19] studied energy, exergy, environment, and
economic impact of various air-side economizers for DCs in Australia. They concluded with a gradual increase
in energy-saving potential as they moved south in the country and a strong correlation between the capital cost
and payback period.

This study utilizes hour-by-hour annual energy simulations considering the off-design performance of DCs
with ASE, IASE, IEC, and WSE retrofits using energy simulation software, TRNSYS [20], and provides the
economic value of each method in ten cities of Turkey. The existing literature does not address the energy
and economic assessment of major free cooling methods in Turkey to the best knowledge of the authors. The
following sections introduce the methodology followed by the results and conclusions.
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2. Methodology

2.1. Modeling

This study considers the 1 MW IT load BL DC as well as each of four free cooling retrofit solutions. Hence, BL
DC components (i.e. Room and Rack, CRAH fan and HX, water cooled chiller, pumps, and CT) are common
in each free cooling method. Table 1 provides a summary of the design information of each item as well as the
associated TRNSYS types used for modeling. The fluid flow paths in Figure 1 set the basis for the connections
between various components linked on the software user interface.

Table 1. DC configurations and design parameters.

Cases Components Type Parameters
BL Room and Rack 88 1000 kW IT; 120 kW misc. load; adiabatic walls

66.1 m3/s rack air flow
CRAH fan 642 87.9 m3/s air flow rate; 114.4 kW power
CRAH HX 508 17.5% BP fraction
Water-cooled chiller 53 3 × 500 kW capacity; 4.0 COP
Chilled water pump 114 15.6 kW power; 44.6 kg/s water flow rate
Cooling water pump 114 13.8 kW power; 44.4 kg/s water flow rate
Cooling tower 51 18.6 kW power; 40.7 m3/s air flow rate

ASE ASE 684
Economizer fan 744 1 × 39 kW power; 87.9 m3/s air flow rate
Humidifier 641 165 kg/h moisture rate; 124 kW power

IASE Air-Air HX 760 0.69 effectiveness
Economizer fans 744 2 × 55 kW power; 87.9 m3/s air flow rate

IEC IEC 757 0.70 WB effectiveness
Economizer fans 744 2 × 55 kW power; 87.9 m3/s air flow rate

WSE Water-water HX 699 0.80 effectiveness
WSE pumps 743 3.6 kW power (CW); 3.5 kW power (CHW)

Enclosing aisles reduce the mixing of hot and cold air and lead to more uniform temperatures at the rack
inlet. More uniform temperatures allow the DCs to operate at higher temperatures, which not only increases
the efficiency of the cooling system but also increases the number of free cooling hours. This study investigates
the impact of enclosing the aisle by simulating open (OA) and enclosed (EA) aisle configurations for each free
cooling method. BL-H and BL-L represent baseline EA and OA configurations, where -H and -L stand for high-
and low-temperature operation, respectively. Tchw for EA is 20 ◦C, maintaining a CRAH exit air temperature
of 25 ◦C, whereas OA needs 10 ◦C Tchw to keep the CRAH exit air temperature at 15 ◦C, which are in
line with the temperatures based on computational fluid dynamics modeling of a typical air-cooled data center
by Ahmadi and Erden [21]. These assumptions help the server inlet air temperatures remain below the 27 ◦C
maximum recommended limit considering fluctuations during free cooling operation.

The cooling load contribution of the IT equipment is 1 MW. Other electrical sources (e.g., electrical
losses and lighting) dissipate 120 kW of heat at room level. The heat dissipated by racks leads to a 12.5
◦C temperature rise in the airflow rate across the racks. CRAH units supply 33% more than rack airflow to
compensate for a representative leakage airflow [22, 23] from the plenum into the room. Internal loads dominate
the cooling load of DCs leading to the assumption that DC walls are adiabatic [23, 24].

CRAH fan power is constant assuming that economizers are retrofit with their own fans handling the
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increased flow resistance. The CRAH fan power depends on the representative information in the literature for
typical system resistance [25], fan, and efficiency curves [26]. The CRAH HX thermal model utilizes the bypass
(BP) method. Accordingly, the airflow through the HX consists of two parts, one bypassing the HX and the
other one exiting the coil saturated at the average temperature of the chilled water in the coil, before they mix
at the exit. The representative value for the BP fraction relies on the thermal performance for a CRAH unit
[27].

The water-cooled chiller model [28] runs on the normalized performance map experimentally validated by
Demetriou et al. [29] to compute the off-design chiller power as a function of part-load ratio and the normalized
temperature difference between the condenser and evaporator water exit temperatures. Three parallel chillers
each with 500 kW design cooling capacity and a design COP of 4.0 enhance the part-load performance.

The chilled and condenser water flow rates are constant. The chilled water experiences a 6.6 ◦C
temperature rise across the CRAH unit based on the typical unit specifications [27]. Temperature rise across the
condenser at full load is 8.3 ◦C as recommended by Taylor as a life-cycle optimum value [30]. When operational,
pumping power is constant, and it depends on the baseline design pump power by the ASHRAE [31].

The coefficients of mass transfer correlations [32] govern the effectiveness of the CT model [33], for which
a commercially available unit sets the basis for the rated power and airflow rate.6 CT fan power varies with the
cube of the fan speed. The control signal governing the CT fan speed is a high-order polynomial of ambient
wet-bulb (WB) temperature, which keeps the condenser inlet temperature above 21 ◦C at low WB temperatures
to avoid freezing. It also leads to linearly varying approach temperature as recommended by the ASHRAE [31]
at higher temperatures to prevent significant variations in chiller performance.

2.1.1. Air-side economizer (ASE)

The ASE model computes the fraction of outdoor air needed based on the ambient conditions, DC return air
temperature, and set-point temperature of the supply air. The model prevents outside air intake above 15
◦C DP to avoid the need for the energy-intensive process of dehumidification. In cold and dry climates, the
humidifier adds moisture to the air stream to keep the air temperature above –9 ◦C DP, where the capacity
and power depend on the selection of a humidifier that can meet the maximum humidification requirements in
the coldest ASHRAE climate zone.7 ASE fans overcome the pressure drop due to the additional components
such as humidifiers and MERV 8 and 11 filters based on catalog data.8 ASE fan power depends on the catalog
data for a typical fan along with the efficiency curves by the manufacturers.9

2.1.2. Indirect air-side economizer (IASE)

The IASE includes an air-to-air cross-flow HX model and two additional fans for both streams to overcome the
pressure drop due to the HX and MERV 8 filters8 as shown in Figure 1c. The sensible heat transferred between

6BAC (2017). PT2 Cooling Tower Performance at Standard Conditions [online]. Website www.baltimoreaircoil.com/english/
wp-content/uploads/2017/02/PT2_CTI_Tables_20170220.pdf

7Nordmann ES4 [online]. Website www.nordmann-engineering.com/en/pdf/brochure-es4-en/?wpdmdl=1109
8Trane (2015). Performance Climate Changer™ Air Handlers [online]. Website https://www.trane.com/content/dam/Trane/

Commercial/global/products-systems/equipment/air-handling/cataloged-air-handlers/performance/CLCH-PRC022B-EN_
092015_Performance{%}20CSAA{%}20catalog.pdf

9Ebm-papst (2016). EC centrifugal fans - RadiPac [online]. Website http://www.ebmpapst.se/sv/dat/site_common/upload/
EC_centrifugal_fans_-_RadiPac_2016.pdf
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the DC return air and the ambient across the HX is

Q̇iase = εiaseĊmin(Tr,db − To,db), (1)

where εiase is a constant effectiveness value based on vendor data for a typical unit,8 Ċmin is the smaller of the
two heat capacity rates, and Tr,db and To,db are dry-bulb (DB) temperatures of DC return and the ambient air,
respectively. When the ambient temperature is colder than needed for the IASE to meet the cooling demand
of the DC, a fraction of the air returned from the room bypasses the IASE HX, and the other fraction passes
through the HX to maintain the supply air temperature set-point and avoid freezing temperatures inside the DC.
Representative pressure drop for commercially available HX and MERV 8 filters leads to the system pressure
for the IASE fans.8 The rated fan power for each fan depends on the fan efficiency at the design airflow rate.9

Both IASE fans operate at the same speed, and their power varies with the cube of the fan speed.

2.1.3. Indirect evaporative cooler (IEC)

The only difference between the IEC and IASE is the type of HX and the supporting equipment for the IEC
such as a water circulation pump (Figure 1c). The HX model for IEC relies on WB effectiveness,

εiec =
Tr,db − Ts,db

Tr,db − To,wb
, (2)

to compute the DB temperature of the supply air Ts,db , where Tr,db is the DB temperature of the return air
and To,wb is the WB temperature of the outdoor air. The effectiveness of 70% is determined based on typical
values in the literature [34, 35]. In order to avoid the risk of freezing, the IEC system operates dry in IASE
mode.

2.1.4. Indirect water-side economizer (WSE)

The thermodynamic model of the WSE consists of a plate-frame HX with constant effectiveness based on the
manufacturer’s data10 (Figure 1d). A fraction of the condenser water bypasses the WSE HX to prevent the
chilled water from overcooling in case the CT provides condenser water at a lower temperature than needed.
The WSE includes two additional pumps on the chilled water and condenser side to overcome the additional
pressure drop across the HX. The guidelines in the ASHRAE Standard 90.1-2013 [31] set the basis for the
rated power of these pumps according to the recommended values per unit flow. Overall, CT fans operate at
higher speeds and lower approach temperatures in the WSE compared to other configurations to increase the
utilization of ambient conditions.

2.2. Climate data
The Meteonorm database is the source of hour-by-hour climate data of cities of Turkey in this study.11 Adana
(ADA), Ankara (ANK), Antalya (ANT), Bolu (BOL), Diyarbakır (DIY), Erzurum (ERZ), İstanbul (IST), İzmir
(IZM), Konya (KON), and Van (VAN) are ten relatively populous cities studied in detail and their acronyms
are used in this study. This study also presents an excerpt of results for 30 additional sites in Turkey to cover
a range of locations sufficient to create a map of annual chiller hours during economizer operation, presented in
Section 3.

10Bell & Gossett, Plate and Frame Heat Exchanger Specification Sheet, 2009.
11Remund J, Müller S, Kunz S, Huguenin-Landl B, Studer C, et al., Meteonorm Handbook Part 1: Software. Meteotest, 2015

[online]. Website: http://www.meteonorm.com/images/uploads/downloads/mn71_software.pdf
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2.3. Economic assessment
The objective of the assessment is to compute the TCO of each retrofit free cooling application with respect to
BL DC for each city. TCO analysis utilizes three metrics, the net present value (NPV), internal rate of return
(IRR), and discounted payback period. Considering the time value of money based on a discount rate (r ), NPV
is the present value of cash flow over the economic life of the investment:

NPV =

t∑
n=m+1

Fn

(1 + r)n
−

m∑
n=0

Mn

(1 + r)n
, (3)

where Fn is the present value of the cost savings at the nth year, Mn is the present value of expenditures at
the nth year, m is the duration of the investment period, and t−m is the economic life of the investment [36].
The investment period is zero and cost savings start at the end of the first year. For a favorable investment,
NPV is expected to be positive. The discount rate that leads to NPV of zero is the IRR [36]. The IRR assumes
reinvestment of any income (i.e. cost savings in this analysis) at the rate of IRR, which is rarely practical [37].
The modified internal rate of return (MIRR) addresses this issue by assuming a separate reinvestment rate on
income [37]. The discounted payback period is the time until the discounted cash flow becomes positive [38].

2.3.1. Capital costs
The Turkish Ministry of Environment and Urbanization publishes capital cost estimates of construction items
including mechanical infrastructure equipment including systems and components of various free cooling systems
[39]. Table 2 lists the initial costs of components in each free cooling application. Personal communication with
vendors is the basis for maintenance costs (Table 2).12 13

Table 2. Initial capital and annual maintenance costs of components in various free cooling methods (Turkish lira (TL)).

Component name ASE IASE IEC WSE
Air handling unit 253,760 318,886 318,886 -
Fans 48,400 96,800 96,800 -
Filters 31,627 23,276 23,276 -
Humidifier 76,340 - - -
Water-to-water HX - - - 25,440
Air-to-air HX - 452,870 452,870 -
Pumps - - 483 6,040
Total capital cost 410,128 891,832 892,315 31,480
Annual maintenance cost 7,280 7,580 11,195 2,000

2.3.2. Labor costs
This study assumes that labor costs change at the rate of change in the minimum wage in Turkey. Based on the
change in the minimum wage in Turkey between 2005 and 2017, the annual average rate of increase in labor rate
is assumed to be 11.5%.14 The resultant assumption is that maintenance costs increase at this rate annually.

12T. Aynacı, Interviewee, Personal Communication at Flaktgroup [interview]. 2017.
13Y. Evrim, Interviewee, Personal Communication at Ecoserv [interview]. 2017.
14KPMG Vergi (2017). Yıllar itibarıyla günlük ve aylık asgari ücretler [online]. Website https://www.kpmgvergi.com/

PratikBilgiler
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2.4. Operational costs (energy and water)

This study uses a constant annual electricity cost of 0.3166 TL/kWh as published by the Turkish Electricity
Distribution Company (TEDAŞ) for medium voltage user commercial customers.15 Historical data lead to an
average rate of increase in the associated cost (6.1%) to project future electricity costs. Water unit costs are
from public data of the associated municipalities or based on personal communication16 (Table 3).

Table 3. Water unit costs for 10 cities (TL/m3).

ADA a ANK b ANT c BOL 16 DIY d ERZ e IST f IZM g KON h VAN 16

7.20 13.70 3.85 8.80 6.45 5.34 9.70 8.28 7.20 3.60
aAdana Su ve Kanalizasyon İdaresi. http://www.adana-aski.gov.tr/web/tarifelistesi.aspx
bAnkara Su ve Kanalizasyon İdaresi. http://www.aski.gov.tr/tr/ucretler.aspx
cAntalya Su ve Atık Su İdaresi. https://www.asat.gov.tr/tr/kurumsal/tarifeler-45.html
dDiyarbakır Su ve Kanalizasyon İdaresi. https://www.diski.gov.tr/icerik/detay.aspx?Id=1276
eErzurum Su ve Kanalizasyon İdaresi. http://www.eski.gov.tr/tarife/
fİstanbul Su ve Kanalizasyon İdaresi. https://www.iski.gov.tr/web/tr-TR/musteri-hizmetleri/su-birim-fiyatlari
gİzmir Su ve Kanalizasyon İdaresi. http://www.izsu.gov.tr/Pages/standartPage.aspx?id=65
hKonya Su ve Kanalizasyon İdaresi. https://www.koski.gov.tr/abonehizmetleri/sufiyatlari

2.5. Economic parameters
2.5.1. Discount and inflation rates
The discount rate is the minimum internal rate of return expected by the investor. Spangler and Jeffers used
an 8% discount rate for the 15-year economic assessment of ASE and WSE [17]. In another study investigating
the impact of filters on energy consumption and air quality in DCs, the authors used an 8% discount rate for
a 20-year TCO analysis [40]. Similarly, this study assumes an 8% discount rate for the economic assessment of
free cooling retrofits. This study assumes that the finance and reinvestment rates to compute MIRR are also
8%. Based on the data of the Turkish Statistics Institute for years of 2004–2016, the annual average inflation
rate is 8.3%.17 The yearly replacement costs of equipment such as filters during maintenance and water costs
are assumed to increase at this rate.

2.5.2. Economic life
Table 4 lists the economic lives of various equipment, which appear to be typically greater than 15 years.18

Spangler and Jeffers assumed 15 years of economic life for the TCO analysis assessing the economic benefit
of two economizer applications in DCs [17]. Hence, 15 years of life for economic assessment is a reasonable
assumption for this study.

Table 4. Free cooling system components and economic lives.18

System components Fans Filters Air-air HX Humidifier Water-water HX Pumps
Economic life (years) 17 0.5 30 15 25 19

15TEDAŞ (2017). Elektrik Tarifeleri [online]. Website http://www.tedas.gov.tr/#!tedas_tarifeler
16F. Unkar, Interviewee, Personal Communication at Türk Telekomünikasyon A.Ş. [interview]. 2016.
17Türkiye İstatistik Kurumu (2016). Enflasyon ve fiyat [online]. Website http://www.tuik.gov.tr/UstMenu.do?metod=temelist
18ASHRAE (2017). Service life data query [online]. Website http://xp20.ashrae.org/publicdatabase/system_service_life.

asp?selected_system_type=1
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3. Results and discussion
Figure 2a presents proportions of annual energy consumption associated with the components of BL-L in IST.
The proportions consist of the contribution of IT equipment (IT), electrical losses and lighting (MISC), chiller
compressor (CHILLER), fans in the CRAH units (CRAHFAN), chilled and cooling water pumps (CHWPUMP
and CWPUMP), and cooling tower fans (CT). The PUE value of the BL-L in IST is 1.54, which is relatively
better than average [1]. Figure 2b presents PUE values for ten cities considering OA and EA configurations
(i.e. BL-L and BL-H). Operating the DC at a higher temperature (BL-H) leads to roughly 15% energy savings.

a) b)
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Figure 2. a) Proportions of annual energy for BL-L in IST, b) PUE for different climates and BL-L vs. BL-H.

Figure 3 presents the normalized cooling energy, which is the ratio of the annual cooling energy con-
sumption for each configuration to that of the BL-L configuration in the climate conditions of IST. Among OA
configurations, ASE-L leads to the highest energy savings, whereas IEC-H stands out as the best performer at
higher temperatures with EA. Overall, higher temperature operation provides favorable results in all cases.
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Figure 3. Annual energy consumption of various configurations in IST normalized by that of BL-L.

Figure 4 presents the normalized cooling energy for each free cooling configuration. In a previous study
by Lee and Chen [6], the humidification requirement, especially in cold climates, was considerably high. Current
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results for ASE-L indicate the reduced need for humidification due to the relaxed lower limit of recommended
humidity by the ASHRAE [2]. This modification increased the energy efficiency of the ASE in cold cities like
ERZ (Figure 4a).
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Figure 4. Energy consumption of a) ASE-L, b) IASE-L, c) IEC-L, and d) WSE-L with respect to BL-L and PUE values.

The variations in the ambient DB temperatures have a significant impact on the performance of IASE-L
due to the sensible heat exchanging process. The additional fans to overcome the flow resistances of IASE HX
and filters lead to a considerable amount of fan power beyond the existing CRAH fans (Figure 4b). Since DC
and ambient are isolated, there is no humidification requirement in IASE. The IEC performs better than IASE
due to the enhanced heat transfer via evaporative cooling (Figure 4c).

Unlike the IEC, where evaporative cooling removes heat directly from the DC air, the process in the WSE
produces cold water at the CT that absorbs heat from the chilled water stream. Due to the indirect nature of
the evaporative cooling process, results indicate relatively lower performance by the WSE compared to other
methods for OA configurations, which is in line with the literature (Figure 4d)[12].

Figure 5 provides the cooling energy savings of all configurations with respect to the case of BL-L. ASE-L
provides the highest energy savings in 9 out of 10 cities for the OA configuration. EA leads to better performance
overall but ASE’s improvement is relatively lower than that of other methods due to upper limits on humidity
set by the ASHRAE [2]. IEC-H is the best performer among the ten cities. Even the warmest city, ADA,
promises 50% reduction in annual cooling energy consumption with IEC-H.

The chiller is the primary electricity consumer in the DC cooling infrastructure. Hence, chiller-less
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Figure 5. Energy savings of all free cooling configurations with respect to the case of BL-L.

operation is a trending objective. Figure 6 provides contours of annual percentage of the chiller operating hours
(either partial or full load) based on annual energy simulation results of 40 sites in Turkey. Warmer locations
in the southern coastal areas like ANT and ADA depend on the chiller operation for at least 60% of the time
for all OA configurations. ERZ is the only city to achieve chiller operation of less than 10% of the time with
ASE and OA configurations.
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Figure 6. The annual percentage of chiller operating hours (partial and full).
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On the other hand, higher temperature operation via EA configuration dramatically improves the po-
tential of energy savings, leading to as much as 54% additional annual hours without the need for a chiller.
Except cities in the warm regions in the southern coastal areas (e.g., ADA and ANT) and humid northern
coastal areas, all cities resulted in less than 10% of annual chiller operating hours with the IEC method in the
EA configuration. Other free cooling methods may still require mechanical cooling.

Water consumption can also be a significant cost factor. CTs, IEC HX, and humidifiers consume water.
Figure 7 provides city-by-city annual water consumption of all free cooling methods normalized by that of the
BL-L. The WSE method stands out as the most aggressive consumer of water due to the heavy use of CTs.
Even though the IEC depends on an evaporative cooling process, the associated increase in water consumption
is negligible because of the reduced number of chiller hours.

3.1. Economic assessment results
The previous section provided the operational cost-saving potential of each free cooling method. By combining
operational, capital, and maintenance costs, Figure 8 presents the cumulative discounted cash flow diagram of
free cooling applications in IST for OA (L) and EA (H) configurations with respect to the BL-L and BL-H,
respectively. All cases in IST lead to payback periods of less than four years and NPVs greater than 2.5 million
TL in 15 years of lifetime. WSE and ASE have payback periods of less than a year due to their lower initial
cost.
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Figure 7. The annual water consumption of all free cool-
ing methods normalized by that of the BL-L.

Figure 8. Cumulative discounted cash flow diagram for
free cooling applications in IST.

The results indicate similar cash flows for ASE-L and ASE-H, which is due to the higher cost savings
by ASE-L with respect to BL-L than that by ASE-H with respect to BL-H. It is important to note that the
economic analysis of enclosing the aisle is not within the scope of this study. Figure 9 presents NPV (million
TL), MIRR (percentage), and discounted payback period (years) for all cases with respect to the BL-L and
BL-H, respectively. Color formatting highlights the worst case in red and best case in blue for each metric.

NPV values of IEC are the best in all cities for EA cases. For all cities except ERZ and VAN (where
WSE-L is comparable to IEC-L), ASE-L and IEC-L present higher NPV values among OA configurations (L)
(Figure 9a). However, WSE stands out economically considering MIRR (Figure 9b) and payback period (less
than one year for all cases) (Figure 9c) due to its lower capital cost, in line with the literature [17]. ASE, IASE,
and IEC require air handling units integrated with CRAH units. Contrarily, WSE requires modifications of the
chilled and condenser water circuits and installation of the WSE HX in between, which allows for both a cost-
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a) b) c)

Figure 9. TCO of free cooling methods: (a) NPV (million TL), (b) MIRR (%), (c) discounted payback period (years).

effective and operationally less disruptive investment. If DC operators are reluctant to see higher temperature
operation (EA), and they can take measures to mitigate contamination risks, ASE may be a decent free cooling
approach. IEC is the better option among indirect air-side economizers (IASE and IEC), primarily due to more
efficient HX with evaporative cooling. The operational cost reduction is far more significant than the slight
increase in the capital and maintenance cost for the IEC configuration.

The impact of regional water consumption on the NPV can be seen especially in cities like ANK where
water costs are high. To illustrate, even though ANK is not the best regarding energy consumption, NPV is
better than that of ERZ in some cases, especially for EA, due to the high price of water in ANK. Depending on
the company policies, discount rates may vary and lead to different NPVs. MIRR values give hints about the
effect of the discount rates on the feasibility of applications. For instance, a slight increase of up to 10%–15% of
discount rate may lead to unfavorable NPV for the retrofit applications of IASE in ANT and ADA. Similarly,
IEC is an unfavorable option for companies seeking high rates of return with payback times of less than a year.
Despite the high energy-saving potential, the IEC retrofit has a payback period between 1.5 and 3.7 years as
opposed to ASE and WSE with less than 1.4 years due to the high capital investment.

4. Conclusions

The goal of this study was to investigate the energy-saving potential and economic advantages of four major free
cooling methods in data centers located in Turkish climates. Thermodynamic models in this work utilize the
off-design performance of key mechanical infrastructure and provide annual energy savings with respect to the
baseline data center based on hour-by-hour simulations. The IEC method provided the highest annual energy
savings, leading to less than 1% of annual hours of chiller operation in half of the cities. Based on the TCO
analysis for 15 years, IEC and ASE stand out with the highest NPV values among other air-side economizer
options. However, it is notable that IEC has a higher upfront cost than other methods, leading to lower rates of
return and more extended payback periods (i.e. 1.5 to 3.7 years) compared to that of ASE and WSE (i.e. less
than 1.4 years). WSE application provided the most cost-effective option regarding the MIRR metric and the
payback period of less than a few months due to its lower capital cost. Future work may include the analysis of
other free cooling methods applicable to legacy and other types of data centers as well as waste heat recovery
methods for emerging liquid-cooled data centers.
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Nomenclature
Abbreviations

ADA Adana ERZ Erzurum
ANK Ankara H High temperature operation
ANT Antalya HX Heat exchanger
ASE Air-side economizer IASE Indirect air-side economizer
ASHRAE American Society of Heating, Refrigerating, IEC Indirect evaporative cooler

and Air-Conditioning Engineers IST İstanbul
BL Baseline IT Information technology
BOL Bolu IZM İzmir
BP Bypass KON Konya
CHW Chilled water L Low temperature operation
CRAH Computer room air handling OA Open aisle
CT Cooling tower TCO Total cost of ownership
CW Cooling tower water TEDAŞ Turkish Electricity Distribution Company
DC Data center TL Turkish lira
DIY Diyarbakır WB Wet-bulb
DP Dew-point WSE Water-side economizer
EA Enclosed aisle

Latin and Greek letters

Ċ Heat capacity rate P Energy consumption
COP Coefficient of performance PUE Power usage effectiveness
F Present value of cost savings Q̇ Heat transfer rate
IRR Internal rate of return r Discount rate
M Present value of expenditures T Temperature
MIRR Modified internal rate of return ε Effectiveness
NPV Net present value

Subscripts

chw Chilled water n nth year
db Dry-bulb o Outside
iase Indirect air-side economizer r Return
iec Indirect evaporative cooler s Supply
m Investment period t Time
min Minimum wb Wet-bulb
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