
Turkish Journal of Electrical Engineering and Computer Sciences Turkish Journal of Electrical Engineering and Computer Sciences

Volume 27 Number 3 Article 36

1-1-2019

Queue length feedback-based solution of TCP Incast in data Queue length feedback-based solution of TCP Incast in data

center networks center networks

HASNAIN AHMED

JUNAID ARSHAD

Follow this and additional works at: https://journals.tubitak.gov.tr/elektrik

 Part of the Computer Engineering Commons, Computer Sciences Commons, and the Electrical and

Computer Engineering Commons

Recommended Citation Recommended Citation
AHMED, HASNAIN and ARSHAD, JUNAID (2019) "Queue length feedback-based solution of TCP Incast in
data center networks," Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 27: No. 3,
Article 36. https://doi.org/10.3906/elk-1712-232
Available at: https://journals.tubitak.gov.tr/elektrik/vol27/iss3/36

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for
inclusion in Turkish Journal of Electrical Engineering and Computer Sciences by an authorized editor of TÜBİTAK
Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.

https://journals.tubitak.gov.tr/elektrik
https://journals.tubitak.gov.tr/elektrik/vol27
https://journals.tubitak.gov.tr/elektrik/vol27/iss3
https://journals.tubitak.gov.tr/elektrik/vol27/iss3/36
https://journals.tubitak.gov.tr/elektrik?utm_source=journals.tubitak.gov.tr%2Felektrik%2Fvol27%2Fiss3%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=journals.tubitak.gov.tr%2Felektrik%2Fvol27%2Fiss3%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=journals.tubitak.gov.tr%2Felektrik%2Fvol27%2Fiss3%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=journals.tubitak.gov.tr%2Felektrik%2Fvol27%2Fiss3%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=journals.tubitak.gov.tr%2Felektrik%2Fvol27%2Fiss3%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.3906/elk-1712-232
https://journals.tubitak.gov.tr/elektrik/vol27/iss3/36?utm_source=journals.tubitak.gov.tr%2Felektrik%2Fvol27%2Fiss3%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:academic.publications@tubitak.gov.tr

Turk J Elec Eng & Comp Sci
(2019) 27: 2068 – 2080
© TÜBİTAK
doi:10.3906/elk-1712-232

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Queue length feedback-based solution of TCP Incast in data center networks

Hasnain AHMED∗ , Muhammad Junaid ARSHAD
Department of Computer Science & Engineering, University of Engineering and Technology, Lahore, Pakistan

Received: 18.12.2017 • Accepted/Published Online: 15.11.2018 • Final Version: 15.05.2019

Abstract: The Internet offers a large number of applications and services that we use on a daily basis. These widely
used applications are hosted on large-scale, high-performance computing systems called data centers. The performance of
TCP is inefficient in many-to-one communication, which is a common traffic pattern in data center networks. This many-
to-one communication causes significant packet losses followed by timeouts, which consequently results in throughput
collapse in data center networks; this problem is known as TCP Incast. In this paper, we present a queue length feedback-
based solution to mitigate TCP Incast. The scheme has two parts: i) a novel queue length-based congestion parameter,
which accurately measures congestion along the path from source to destination, and ii) a congestion control scheme
that effectively uses the new congestion parameter to prevent throughput collapse due to Incast traffic patterns. Results
are compared with TCP and DCTCP, the two most common transport protocols deployed in data center networks. The
results show that the proposed scheme minimizes packet drops and achieves high utilization and burst tolerance.

Key words: Data center networks, TCP, Incast, many-to-one communication, queue length, explicit congestion notifi-
cation

1. Introduction
The number of Internet users has grown to hundreds of millions, all around the world, and is increasing.
The Internet offers a large number of services; a few popular services are e-mail, Web searching, audio/video
hosting and streaming, text/audio/video chatting, providing storage and computation resources, and social
networking. These services are hosted on large-scale, high-performance computing systems called data centers.
A data center, in simple terms, is a large collection of servers, interconnected through switches and routers,
providing computation, storage, and distribution services for huge volumes of data. Data center networks
(DCNs) provide the communication infrastructure for today’s high-performance parallel computing and current
Internet applications [1–5].

All the popular Web applications and services that are used daily by millions of people around the world
are hosted on large-scale data center networks. The performance of these Web applications depends on the
performance of the underlying DCN. These services may lose revenue of millions of dollars due to even a small
lapse in performance. A delay of 100 ms costs Amazon 1% in sales. An extra half of a second in generating
responses to Google searches dropped traffic by 20% [5–8]. Therefore, optimized performance in terms of latency
and throughput is the most important requirement for these services.

Many applications in DCNs use a many-to-one communication pattern, in which many servers send data
to one client in units of data blocks and no server can transmit the next block of data until all the servers have
∗Correspondence: tohasnain@yahoo.com

This work is licensed under a Creative Commons Attribution 4.0 International License.
2068

https://orcid.org/0000-0003-2060-7523
https://orcid.org/0000-0003-3858-3478

AHMED and ARSHAD/Turk J Elec Eng & Comp Sci

completely transmitted the current data block. With the increase in the number of concurrent senders, the
data transfer workload can exceed the buffer capacity at the bottleneck switch, resulting in packet losses and
subsequent timeouts and retransmissions. This problem is known as TCP Incast and it results in significant
throughput degradation [9–11]. TCP Incast is also known as barrier synchronized transmission. Figure 1
illustrates a TCP Incast scenario. Here servers are interconnected through a leaf-spine topology. L1 to L4 are
leaf switches and S1 to S3 are spine switches, and each server (or client) is directly connected to a leaf switch.
There are two many-to-one traffic flows: i) servers S11 , S12 , …, S15 are sending data to client C1 , and ii) servers
S21 , S22 , …, S27 are sending data to client C2 . The width (weight) of the arrow depicts the number of flows
(i.e. a thin arrow represents a single flow and a thicker arrow represents a higher number of flows). As shown
in the figure, synchronized traffic from servers S11 , S12 , …, S15 competes for the bottleneck link L1 -C1 and
consequently buffer overflow occurs at the output port associated with the link. Similarly, traffic from servers
S11 , S12 , S13 , S21 , S22 , …, S27 competes for the bottleneck link S2 -L1 and as a result buffer overflow occurs
at the output port associated with the link. The packet losses result in RTOs and retransmissions, which in
turn cause drastic throughput degradation.

L1

C2 C1S 12S 11

L4

S 26 H16H15S 27

L3

S 22 S 25S 24S 23

L2

S 13 S 21S 15S 14

S 1 S 2 S 3

Figure 1. TCP Incast scenario in data center networks.

2. Related work
Many solutions have been proposed by researchers to solve TCP Incast. These solutions can be grouped on
the basis of the underlying approach used. Some [12,13] used the ECN marking mechanism for congestion
notification. The ECN mechanism only informs about whether the queue length is above a certain level or not;
it does not tell about the ‘extent’ of congestion or rate of increase in queue length and thus ECN-based packet

2069

AHMED and ARSHAD/Turk J Elec Eng & Comp Sci

drop prevention schemes are not very effective. Other works [14,15] proposed centralized schemes. Centralized
schemes are quite effective in small-scale networks, but in large-scale cloud/cloud service data center networks,
where thousands of requests are processed simultaneously, centralized schemes can cause bottlenecks and single
points of failure. Some authors [16,17] proposed solutions that require certain information from the application
like beforehand information of flow size and number of concurrent senders/receivers. This requires changes
in existing applications. Others [18–20] described switching hardware-based solutions. Switch fabric-based
schemes can be most accurate and effective, since switching hardware can track the number of current flows
and traffic load, and this information can be used to precisely adjust the sending rates. However, these schemes
require changes in the switch fabric for their operation, which is quite an expensive option. Another study [21]
suggested an SDN-based Incast congestion control framework. SDN’s centralized platform enables access to
network traffic information at flow-level granularity. This information can be used to carry out precise traffic
engineering [22], but this scheme requires the data center to be SDN-enabled, which limits the domain of the
solution. One work [23] proposed a TCP pacing-based solution to mitigate TCP Incast. The scheme uses RTT
for TCP pacing, but RTTs in data center networks are on the scale of a few hundred microseconds and some
studies [11,24] suggested that the current operating systems do not support fine-grained (i.e. microsecond level)
timers. Thus, RTT-based schemes are not very applicable in current data center networks.

In this paper, a queue length feedback (QLF)-based solution is proposed to alleviate the TCP Incast
problem that is caused due to many-to-one communication patterns. The solution has two components: i) a
novel queue length-based congestion parameter, and ii) an end-host-based congestion control scheme that uses
the new congestion parameter. The proposed queue length-based congestion parameter gives a precise measure
of congestion. The congestion control scheme effectively utilizes the congestion parameter to minimize packet
drops and achieve high utilization and burst tolerance. Results are compared with TCP and DCTCP, the two
most widely deployed DCN transport protocols. The results show that the proposed scheme effectively prevents
Incast throughput collapse.

3. Materials and methods
In this section, we first give the design rationale and then discuss the proposed scheme in detail.

3.1. Design rationale

The objective here is to formulate a new parameter for measuring congestion along the path, which should be
more informative and effective than ECN marking, and then use that parameter in a congestion control scheme
at the end-host. The congestion control scheme is aimed to: i) minimize the chances of packet drops, ii) achieve
high utilization, and iii) ensure a certain degree of burst tolerance.

3.1.1. Queue length feedback (QLF)

The ECN (explicit congestion notification) marking is the basic congestion notification approach used in many
transport solutions, most notably DCTCP. The ECN marking scheme checks whether the queue length is above
a certain predefined level or not; if it is above the level, the ECN bit is marked in the packet and the packet
is forwarded [25]. The scheme only tells whether the queue length is above a certain level or not but does not
give the exact measure of queue length. Having explicit information of the exact value of queue length at the
bottleneck link can give precise information about congestion along the path and enable much better control

2070

AHMED and ARSHAD/Turk J Elec Eng & Comp Sci

over minimizing packet drops. In such a scheme, the sender’s congestion window can be increased or decreased
proportionally based on the value of the queue length at the bottleneck link. Large-scale DCNs mostly opt for
commodity switches for interconnecting the servers. These commodity switches have buffer sizes in the range
64 KB to 512 KB associated with each output port. In addition, the typical maximum transmission unit in
DCNs is 1500 bytes. Therefore, the lower order 10 or 11 bits of queue length can be ignored as they do not
give much information about queue length in terms of packets. Thus, it is the higher order bits (i.e. all the bits
higher than the lower order 10 or 11 bits) that give us queue length on the scale of packets. This queue length
can be written in a transport header field of the data packet and propagated to the sender in the ACK packet.

3.1.2. Queue length-based congestion control

QLF, received at the sender, can be very effective in measuring congestion along the path from source to
destination; this information can be used to minimize the probability of packet drops and at the same time
achieve high utilization. The idea here is to control the traffic rate so as to keep the queue length at a certain level
(desired queue length). The value of desired queue length is chosen in such a way that it should simultaneously
ensure a certain degree of burst tolerance without packet drops and high utilization. The technique here is to
increase or decrease traffic rate so as to bring the current queue length to the desired queue length.

Inflight data have two parts: i) data (packets) in queues, and ii) data travelling along links (inflight
packets). Each flow has one bottleneck link (the link having highest value of queue length along the path).

Let
Cb = buffer capacity of output port at bottleneck link
Lcr = current queue length at output port of bottleneck link
LA = allowed (desired) queue length at output port of bottleneck link
N = number of flows having the same bottleneck link
BDP i = bandwidth-delay product of path of flow i

Di = current value of amount of inflight data of flow i

Objective I: High utilization
For high utilization: LA ≥ MAX (BDP 1 , BDP 2 , …, BDPN)

Objective II: To bring Lcr to LA

Case 1 Lcr <LA

If current queue length is less than allowed queue length then the flows having the same bottleneck link
may increase (LA – Lcr) the amount of inflight data, or each flow may increase Di × LA−Lcr

Lcr
amount of data

Proof Queue length with Di amount of data = Lcr

Queue length with Di

(
1 + LA−Lcr

Lcr

)
amount of data = Lcr

Di
×Di

(
1 + LA−Lcr

Lcr

)
= LA 2

Case 2 Lcr >LA

If current queue length is greater than allowed queue length then the flows having the same bottleneck link
should decrease (Lcr – LA) the amount of inflight data, or each flow may decrease Di× Lcr−LA

Lcr
amount of data

Proof Queue length with Di amount of data = Lcr

2071

AHMED and ARSHAD/Turk J Elec Eng & Comp Sci

Queue length with Di

(
1− Lcr−LA

Lcr

)
amount of data = Lcr

Di
×Di

(
1− Lcr−LA

Lcr

)
= LA

Degree of burst tolerance = Cb − LA 2

3.2. Queue length feedback-based scheme
We give a QLF-based solution to the Incast throughput collapse problem in DCNs. The objectives of this
scheme are: i) to avoid packet drops (and consequently RTOs), ii) to maintain high utilization, and iii) to
provide a certain degree of burst tolerance. The first objective is achieved by controlling and adjusting the
congestion window according to the degree of congestion along the path, i.e. decreasing the sender’s congestion
window if there is high congestion along the path to avoid packet drops. The second objective is achieved by
maintaining the allowed queue length greater than or equal to the delay bandwidth product of links along the
path. The third objective is achieved by keeping current queue length to approach allowed queue length; this
gives a degree of burst tolerance equal to buffer capacity (max. queue size) minus allowed queue length.

The scheme has two parts: collecting the feedback of queue lengths of output ports at switches along the
path from source to destination, and adjusting the sender’s congestion window (C_w) based on the received
feedback of queue lengths ‘R_qlf ’. The scheme makes a few changes in the TCP protocol: i) an eight-bit QLF
field is added in the TCP header of the data packet, ii) the QLF field in the transport header is updated at
switches along the path from source to destination, iii) the receiver receives the value in the QLF field and sends
it back to the sender in a similar field in the ACK, iv) the sender receives the value in the QLF field sent in the
ACK and adjusts its congestion window ‘C_w’ based on the value of ‘R_qlf ’. The proposed scheme allows a
sender to continue sending data even when its congestion window goes below 1 MSS (maximum segment size);
this can happen when there are too many concurrent flows competing for the same bottleneck link. The two
parts of the solution are discussed in detail subsequently.

3.2.1. Collecting queue length feedback (QLF)

The QLF field is updated along the path from source edge switch to destination edge as follows: the switches
along the path compare the QLF field in the packet with the higher order bits (i.e. bits higher than the lower
order 10 bits) of queue length of the output port, overwrite the former with the latter if the latter is greater,
and forward the packet. Figure 2 illustrates the process of QLF collection. In the figure, L1 to L4 are leaf
switches, S1 to S3 are spine switches, and H1 to H16 are servers connected to leaf switches. Traffic is flowing
from H4 to H16 and H6 to H13 . Queue lengths of output ports are shown along their respective uplinks. The
queue length of the output port of the S3 -L4 link at spine switch S3 is depicted as higher than others due to
two flows competing for the link. The mechanism of QLF collection is illustrated from source H4 to destination
H16 : initially, the QLF field in the transport header (TH) of the data packet contains 0 as shown, leaf switch
L1 updates the field before placing the packet in the queue of the output port, spine switch S3 updates the
QLF field, and finally leaf switch L4 compares the QLF field in the data packet with the queue length of the
output port and does not overwrite the QLF field since the latter is not greater than the value in the QLF field
of the packet. H16 simply sends back to H4 the value in QLF field in the ACK packet.

3.2.2. Sender’s congestion window ‘C_w’ calculation
The sender’s congestion window ‘C_w’ is calculated using the received QLF ‘R_qlf ’. In addition, two constants
are maintained: i) ‘AL’ (allowed limit for R_qlf) and ii) ‘ML’ (maximum limit for R_qlf). ‘AL’ is the reference

2072

AHMED and ARSHAD/Turk J Elec Eng & Comp Sci

L1

H1

H4

H3

H2

L4

H13

H16

H15

H14

L3

H9

H12

H11

H10

L2

H5

H8

H7

H6

S 1 S 2 S 3

0
D
a
ta

T
H

H
1
6

H
4

Da
ta

H16
H4

TH
48

D
a
ta

H
1
6
H

4

T
H

8
0

D
a
ta

H
1
6
H

4

T
H

8
0

8
0

T
H

H
4

H
1
6

8
0

T
H

H
4

H
1
6

80
TH

H4

H16

H
1
6

H
4

T
H

8
0

Figure 2. Process of collecting the queue length feedback (QLF).

value to increase or decrease ‘C_w’ when ‘C_w’ is greater than or equal to 1 MSS and ‘ML’ is the reference value
to increase or decrease ‘C_w’ when ‘C_w’ is below 1 MSS (i.e. too many concurrent flows competing for the
same bottleneck link). Let ‘BUFFER_SIZE’ be the buffer size at an output port of switch. ‘BUFFER_SIZE’
minus ‘AL’ tells about the degree of burst tolerance. ‘C_w’ is calculated as shown in Algorithm 1 and the
flowchart of Figure 3. In brief terms, the principle is to bring the current queue length at bottleneck link
‘R_qlf ’ to the desired level (i.e. ‘AL’ if ‘C_w’ is greater than or equal to 1 MSS and ‘ML’ if ‘C_w’ is less than
1 MSS).

3.2.3. Overhead of QLF-based scheme

The proposed scheme adds one byte to the 20-byte TCP header (i.e. both TCP data packet header and
acknowledgment header). The overhead in a network of typical 1500-byte packet size is as follow:

Overhead in data packet = 1 / 1459 = 0.0685%
Overhead in acknowledgement = 1 / 40 = 2.5%

4. Results and discussion
The proposed scheme is implemented in network simulator ns-2 and compared with DCTCP and ECN-enabled
TCP. The proposed scheme is called QLF-TCP in the results.

4.1. Topology and workload

The details of the topology and other parameters are as follows: i) a leaf-spine topology is created having two
spine switches, each connected with three leaf switches using 40-Gbps duplex links, and 40 servers are directly
connected with each leaf switch using 10-Gbps duplex links; ii) the buffer size at the output port of the switch

2073

AHMED and ARSHAD/Turk J Elec Eng & Comp Sci

Figure 3. Flowchart of congestion window calculation.

is taken to be 128 KB, which makes a queue limit of ~87 packets (packet size = 1500 bytes); iii) ‘AL’ and
‘ML’ values for the proposed scheme are set to 30 and 60, respectively; iv) similarly, ‘K ’ and ‘thresh’ values for
DCTCP and ECN-enabled TCP respectively are taken as 30; v) ‘minRTO’ for all the schemes is set to 1 ms.

Four different workloads are simulated on each of the three schemes and their results are compared. The
four workloads are: a) 80 short flows each of 10 KB, b) 80 short flows each of 50 KB, c) two long flows (each
1 MB) and 50 short flows each of 10 KB, d) two long flows (each 1 MB) and 50 short flows each of 50 KB.
Figures 4 and 5 show goodput graphs of the flows for the first two workloads, respectively. Figures 6 and 7
show goodput graphs of the short flows and long flows, respectively, of the third workload. Similarly, Figures 8
and 9 show goodput graphs of the short flows and long flows, respectively, of the fourth workload.

4.2. Observations
1. The QLF-based scheme closely tracks queue length at the bottleneck link and promptly adjusts sending

rates in the event of high values of queue length, thus minimizing the chances of packet drops. When the
queue length is below the desired level, the scheme quickly and proportionally increases sending rates, thus
maintaining high utilization. Since congestion windows are adjusted on the basis of received QLF, the

2074

AHMED and ARSHAD/Turk J Elec Eng & Comp Sci

Algorithm 1 CONGESTION_WINDOW_CALCULATION

Input: R_qlf � Received value of QLF
C_w � Congestion window
AL ← 30 � Allowed limit for R_qlf
ML ← 60 � Maximum limit for R_qlf

Output: C_w
1: IF R_qlf <AL
2: IF (R_qlf ×2) ≤ AL
3: IF C_w ≥ 1
4: C_w ← C_w + 1
5: ELSE
6: C_w ← C_w ×2
7: ELSE
8: IF C_w <1
9: IF (C_w ×2) ≤ 1

10: C_w ← C_w ×2
11: ELSE
12: C_w ← MAX (C_w + (C_w ×((AL – R_qlf) / R_qlf)), 1)
13: ELSE
14: C_w ← C_w + ((AL – R_qlf) / R_qlf)
15: ELSE
16: IF (R_qlf <ML) AND (R_qlf ≥ AL)
17: IF C_w >1
18: IF (C_w – ((R_qlf – AL) / R_qlf)) >1
19: C_w ← C_w – ((R_qlf – AL) / R_qlf)
20: ELSE
21: C_w ← 1
22: ELSE
23: IF C_w <1
24: IF (C_w + (C_w ×((ML – R_qlf) / R_qlf))) <1
25: C_w ← C_w + (C_w ×((ML – R_qlf) / R_qlf))
26: ELSE
27: C_w ← 1
28: ELSE
29: IF R_qlf ≥ ML
30: IF C_w >1
31: C_w ← C_w – 0.5
32: ELSE
33: C_w ← C_w – (C_w ×((R_qlf – ML) / R_qlf))

competing flows receive a fair share of available bandwidth; hence, all flows achieve almost the same/equal
throughput. In addition, the QLF-based congestion control scheme anticipates a burst of new flows; hence,
when such a burst of new flows arrives, the scheme accommodates it without causing packet drops by
promptly adjusting the sending rates of all the flows having the same bottleneck link. DCTCP and ECN-
enabled TCP are ECN-based schemes and, as discussed in previous sections, the ECN marking scheme
has no clue of the extent of congestion. In addition, TCP and DCTCP do not anticipate for a burst of new
flows, and when such a burst arrives, both schemes experience packet drops and RTOs. Since congestion

2075

AHMED and ARSHAD/Turk J Elec Eng & Comp Sci

0

50

100

150

200

250

300

350

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

G
o

o
d

p
u

t
(M

b
p

s)

Flow ID

TCP (ECN-enabled) DCTCP QLF-TCP

Figure 4. Eighty short flows, each 10 KB.

0

100

200

300

400

500

600

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

G
o

o
d

p
u

t
(M

b
p

s)

Flow ID

TCP (ECN-enabled) DCTCP QLF-TCP

Figure 5. Eighty short flows, each 50 KB.

0

50

100

150

200

250

300

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

G
o

o
d

p
u

t
(M

b
p

s)

Flow ID

TCP (ECN-enabled) DCTCP QLF-TCP

Figure 6. Fifty short flows, each 10 KB.

windows of flows in all four workloads are not big enough to trigger a fast retransmit mechanism, the
number of RTOs is equal to the number of packet drops. Table 1 shows the number of packet drops for
each of the four workloads. Thus, the throughput of flows that experience RTOs significantly degrades as
shown in the goodput graphs of all four workloads.

2. In DCTCP and ECN-enabled TCP, when packet drops occurred simultaneously in many flows, these flows
were blocked for the duration of the timeout period, which allowed the rest of the flows to increase their
throughput during that period. This is why some DCTCP and ECN-enabled TCP flows achieved very
high throughput in all the four workloads as shown in Figures 4, 5, 6, and 8.

3. Surprisingly, ECN-enabled TCP performs slightly better than DCTCP. This is because TCP halves the
congestion window if the ECN bit of a packet sent in the previous RTT has been marked, thus resulting

2076

AHMED and ARSHAD/Turk J Elec Eng & Comp Sci

0

1000

2000

3000

4000

5000

1 2

G
o

o
d

p
u

t
(M

b
p

s)

Flow ID

TCP (ECN-enabled) DCTCP QLF-TCP

Figure 7. Two long flows, each 1 MB.

0

100

200

300

400

500

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

G
o

o
d

p
u

t
(M

b
p

s)

Flow ID

TCP (ECN-enabled) DCTCP QLF-TCP

Figure 8. Fifty short flows, each 50 KB.

Table 1. Number of packet drops.

Workload
1 2 3 4

TCP 52 77 20 28
DCTCP 62 95 37 37
QLF-TCP 0 0 0 0

in fewer packet drops and consequently fewer retransmission timeouts than in the case of DCTCP, which
reduces the congestion window proportional to the fraction of packets marked.

4. There is not much difference in throughput of long flows in the three schemes. In the 3rd and 4th
workloads, the two long flows achieve almost equal goodput for all the three schemes as shown in Figures
7 and 9.

2077

AHMED and ARSHAD/Turk J Elec Eng & Comp Sci

5. In many-to-one barrier synchronized communication, data block transfer time (DBTT) is the time from
the start of transmission of the first server to the time of completion of transmission of the last finishing
server. DBTT depends on the completion time of the flow that finished last among all the flows of the
many-to-one barrier synchronized task. The flow that achieves the lowest throughput for a scheme is
the main determinant of DBTT for that scheme. For example, in the goodput graph of Figure 4, flow
number 44 achieves the lowest goodput for ECN-enabled TCP, flow number 41 gets the lowest goodput
for DCTCP, and flow number 55 achieves the lowest goodput for the proposed QLF-based scheme. Figure
10 shows the DBTT for each of the four workloads. In the 3rd and 4th workloads, since long flows are
not part of the many-to-one barrier synchronized task, they are not included in the calculation of DBTT.
It is shown in the graph of Figure 10 that, for all four workloads, the QLF-based scheme significantly
improves DBTT compared to the other two schemes. Table 2 shows the percentage of improvement in
DBTT for all four workloads. Overall, the QLF-based scheme improves DBTT by 37.92% and 38.89%
over ECN-enabled TCP and DCTCP, respectively.

0

500

1000

1500

2000

2500

1 2

G
o

o
d

p
u

t
(M

b
p

s)

Flow ID

TCP (ECN-enabled) DCTCP QLF-TCP

0

1000

2000

3000

4000

5000

1 2 3 4

D
at

a
B

lo
ck

 T
ra

n
sf

er
 T

im
e

(μ
s)

Workload

TCP (ECN-enabled) DCTCP QLF-TCP

Figure 9. Two long flows, each 1 MB. Figure 10. Data block transfer time for each workload.

Table 2. Percentage of improvement in data block transfer time.

Workload
1 2 3 4

QLF-TCP improvementover ECN-enabled TCP 51.05% 24.88% 56.54% 19.19%
QLF-TCP improvement over DCTCP 52.28% 26.07% 57.07% 20.13%

4.3. Conclusion
In this paper, we presented a QLF-based solution to the TCP Incast throughput collapse problem. We presented
a new queue length-based congestion parameter, which accurately measures the congestion along the path from
source to destination, and a congestion control scheme that uses the new congestion parameter to prevent

2078

AHMED and ARSHAD/Turk J Elec Eng & Comp Sci

throughput collapse due to many-to-one communication by minimizing packet drops. The scheme also ensures
high resource utilization and burst tolerance. The results show that our scheme significantly improves DBTT
compared to the most widely used transport protocols in DCNs. As future work, we aim to modify the scheme
to cater for flow priorities.

References

[1] Al-Fares M, Loukissas A, Vahdat A. A scalable, commodity data center network architecture. ACM Sigcomm Comp
Com 2008; 38: 63-74.

[2] Greenberg A, Hamilton J, Maltz DA, Patel P. The cost of a cloud: research problems in data center networks. ACM
Sigcomm Comp Com 2008; 39: 68-73.

[3] Guo C, Wu H, Tan K, Shi L, Zhang Y. Dcell: a scalable and fault-tolerant network structure for data centers. ACM
Sigcomm Comp Com 2008; 38: 75-86.

[4] Abts D, Felderman B. A guided tour of data-center networking. Commun ACM 2012; 55: 44-51.

[5] Zhang Y, Ansari N. On architecture design congestion notification TCP Incast and power consumption in data
centers. IEEE Commun Surv Tut 2013; 15: 39-64.

[6] Zhang J, Ren F, Lin C. Survey on transport control in data center networks. IEEE Network 2013; 27: 22-26.

[7] Ousterhout J, Agrawal P, Erickson D, Kozyrakis C, Leverich J, Mazières D, Mitra S, Narayanan A, Ongaro D,
Parulkar G et al. The case for RAMCloud. Commun ACM 2011; 54: 121-130.

[8] Bilal K, Khan SU, Zhang L, Li H, Hayat K, Madani SA, Min-Allah N, Wang L, Chen D, Iqbal M et al. Quantitative
comparisons of the state-of-the-art data center architectures. Concurr Comp-Pract E 2013; 25: 1771-1783.

[9] Zhang J, Ren F, Lin C. Modeling and understanding TCP Incast in data center networks. In: Proceedings of IEEE
INFOCOM; 10–15 April 2011; Shanghai, China. New York, NY, USA: IEEE. pp. 1377-1385.

[10] Ren Y, Zhao Y, Liu P, Dou K, Li J. A survey on TCP Incast in data center networks. Int J Commun Syst 2014;
27: 1160-1172.

[11] Chen Y, Griffith R, Liu J, Katz RH, Joseph AD. Understanding TCP Incast throughput collapse in datacenter
networks. In: Proceedings of the 1st ACM Workshop on Research on Enterprise Networking; 16–21 August 2009;
Barcelona, Spain. New York, NY, USA: ACM. pp. 73-82.

[12] Alizadeh M, Greenberg A, Maltz DA, Padhye J, Patel P, Prabhakar B, Sengupta S. Data center TCP (DCTCP).
ACM Sigcomm Comp Com 2010; 40: 63-74.

[13] Sreekumari P, Jung JI, Lee M. A simple and efficient approach for reducing TCP timeouts due to lack of duplicate
acknowledgments in data center networks. Cluster Comput 2016; 19: 633-645.

[14] Xu L, Xu K, Jiang Y, Ren F, Wang H. Throughput optimization of TCP Incast congestion control in large-scale
datacenter networks. Comput Netw 2017; 124: 46-60.

[15] Huang J, He T, Huang Y, Wang J. ARS: Cross-layer adaptive request scheduling to mitigate TCP Incast in data
center networks. In: 35th Annual IEEE International Conference on Computer Communications; 10–14 April 2016;
San Francisco, CA, USA. New York, NY, USA: IEEE. pp. 1-9.

[16] Li S, Li D, Du Z. Adaptive rate control for TCP Incast based on selective ECN-marking. In: 7th IEEE International
Conference on Software Engineering and Service Science; 26–28 August 2016; Beijing, China. New York, NY, USA:
IEEE. pp. 353-356.

[17] Tseng HW, Chang WC, Peng I, Chen PS. A cross-layer flow schedule with dynamical grouping for avoiding TCP
Incast problem in data center networks. In: Proceedings of the International Conference on Research in Adaptive
and Convergent Systems; 2016; Odense, Denmark. New York, NY, USA: ACM. pp. 91-96.

2079

AHMED and ARSHAD/Turk J Elec Eng & Comp Sci

[18] Zhang J, Ren F, Yue X, Shu R, Lin C. Sharing bandwidth by allocating switch buffer in data center networks.
IEEE J Sel Area Comm 2014; 32: 39-51.

[19] Zou S, Huang J, Zhou Y, Wang J, He T. Flow-aware adaptive pacing to mitigate TCP Incast in data center networks.
In: 37th IEEE International Conference on Distributed Computing Systems; 5–8 June 2017; Atlanta, GA, USA.
New York, NY, USA: IEEE. pp. 2119-2124.

[20] Adesanmi A, Mhamdi L. M21TCP: Overcoming TCP Incast congestion in data centres. In: IEEE 4th International
Conference on Cloud Networking; 5–7 October 2015; Niagara Falls, Canada. New York, NY, USA: IEEE. pp. 20-25.

[21] Abdelmoniem AM, Bensaou B, Abu AJ. Mitigating Incast-TCP congestion in data centers with SDN. Ann Telecom-
mun 2018; 73: 263-277.

[22] Hafeez T, Ahmed N, Ahmed B, Malik AW. Detection and mitigation of congestion in SDN enabled data center
networks: a survey. IEEE Access 2018; 6: 1730-1740.

[23] Huang J, Huang Y, Wang J, He T. Adjusting packet size to mitigate TCP Incast in data center networks with
COTS switches. IEEE T Cloud Comput 2018; 1: 1-1.

[24] Shukla S, Chan S, Tam ASW, Gupta A, Xu Y, Chao HJ. TCP PLATO: Packet labelling to alleviate time-out.
IEEE J Sel Area Comm 2014; 32: 65-76.

[25] Floyd S. TCP and explicit congestion notification. ACM Sigcomm Comp Com 1994; 24: 8-23.

2080

	Queue length feedback-based solution of TCP Incast in data center networks
	Recommended Citation

	Introduction
	Related work
	Materials and methods
	Design rationale
	Queue length feedback (QLF)
	Queue length-based congestion control

	Queue length feedback-based scheme
	Collecting queue length feedback (QLF)
	Sender's congestion window `C_w' calculation
	Overhead of QLF-based scheme

	Results and discussion
	Topology and workload
	Observations
	Conclusion

