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Abstract: Let R be aring and a,b,c € R. We give a novel characterization of group inverses (resp. EP elements) by the
properties of right (resp. left ) c-regular inverses of a and discuss the relation among the strongly left (b, ¢)-invertibility
of a, the right ca-regularity of b, and the (b, c)-invertibility of a. Finally, we investigate the sufficient and necessary

condition for a ring to be a strongly left min-Abel ring by means of the (b, c)-inverse of a.

Key words: Right c-regular element, (b, c)-inverse, group inverse, EP element, left min-Abel ring

1. Introduction

Let S be a semigroup and a,b,c € S. Then a is said to be (b, c)-invertible [4] if there exists y € bSy NySc
such that yab = b and cay = ¢. Such an y is called a (b, c)-inverse of a, which is always unique if it exists,
denoted by all(®€)

In [5], Drazin considered the following problem: in any semigroup S (or any associative ring ) with unit
element 1, and for any given a € S, the properties 1 € Sa (1 € aS) of left (right) invertibility are often useful as
weaker versions of ordinary two-sided invertibility, and it is natural to seek corresponding one-sided versions for
at least some types of generalized invertibility. Hence, Drazin in [5] introduced the left (b, ¢)-inverse as follows:
let S be any semigroup and let a,b,c € S. Then a is said to be left (b, ¢)-invertible if b € Scab, or equivalently
if there exists « € Sc¢ such that xab = b, in which case any such x will be called a left (b, ¢)-inverse of a. The
left (b, c)-inverse of a is not unique [5, Example 3.4]. Dually, a is said to be right (b, ¢)-invertible if ¢ € cabS,
or equivalently if there exists z € bS such that caz = ¢, and any such z will be called a right (b, ¢)-inverse of
a. Related studies of the one-sided (b, ¢)-inverse can be found in [7] and [12]. The main purpose of this article
is to do some further research on the left (right) (b, c)-inverse of a. Therefore, the following concepts need to
be introduced.

Let R be a ring and a,c € R. If there exists b € R such that a = abca (a = acba), then we say that
a is right (left) c-regular and b is a right (left) c-regular inverse of a. We denote by a_ (.a™) the set of all

right (left) c-regular inverses of a.

In [1], an element @ of a ring R is said to be group invertible if there is a# € R such that

aa”a = a, a*aa® = a¥, aa¥ = a*a.
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Denote by R# the set of all group invertible elements of R. An element a € R is group invertible if and only
if a € a?RN Ra? [3, 6]. Clearly, a ring R is strongly regular if and only if R = R¥.

An involution a — a* in a ring R is an antiisomorphism of degree 2; that is,
(a*)*=a, (a+b)* =a* +b*, (ab)* =b*a*.

A ring R with an involution * is called a #-ring. An element p € R is called a projection if p? = p = p*.

An element af in a *-ring R is called the Moore—Penrose inverse (or MP-inverse) [9] of a, if
aa‘a = a, ataa’ = o', aa® = (aa")*, a'a = (afa)*.

In this case, we say a is MP-invertible in R. The set of all MP-invertible elements of R is denoted by R'.

In [2], an element a of a *-ring R is said to be EP if a € RT and a'a = aa, which is equivalent to
a € R* N R and a# = a'. Denote by RFP the set of all EP-invertible elements of R.

An idempotent e € R is called a left minimal idempotent if Re is a minimal left ideal of R. We denote
by ME;(R) the set of all left minimal idempotents of R, and e is said to be left (right) semicentral if ae = eae
(ea = eae) for each a € R. A ring R is said to be (strongly) left min-Abel [10] if either M E;(R) =} or every
element e of ME;(R) is (right) left semicentral.

In this paper, we first study the right (left) c-regular elements by means of left and right (b, ¢)-inverses
of a. Next, with the help of right (left) c-regular elements, we characterize group invertible elements, MP-
invertible elements, and EP elements. Finally, we give some new characterizations of directly finite rings, left

min-Abel rings, and strongly left min-Abel rings.

2. c-Regular inverses

Recall that an element a of a ring R is said to be regular if there exists b € R such that a = aba. Such a b is
called an inner inverse of a. Clearly, if b is an inner inverse of a, then so is bab. We denote by a™~ the set of
all inner inverses of a.

Let R be a ring. For any a,c € R, if there exists b € R such that a = abca (a = acba), then we say that
a is right (left) c-regular and b is right (left) c-regular inverse of a. Obviously, if @ is right c-regular, then a

is regular, but the converse is not true from the following example.

Example 2.1 Let R =T5(Z3) = {( g Z )

z,Y,2 € Zg} . It is easy to check that A = ( (1) (1) ) is reqular.

0 1
0 0

is not right C -regular.

Take C = ( > . Then CA = 0. Consequently, we obtain that ABCA # A, for any B € R. That is, A

In order to study the (b, ¢)-inverse of a in the next section, we first discuss right (left) c-regular inverses

of a in this section.

Remark 2.2 Let R be a ring. For each a,b,c € R, if b is a right c-regular inverse of a, so is bcab. In fact,
a(bcab)ca = (abca)bca = abca = a. If a is right (left) c-regular, then we denote by a; (.a~ ) the set of all

right (left) c-regular inverses of a.
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Example 2.3 Let a be a regular element of a ring R. If d € a™, then a is right ad-regular and left da -reqular.
In fact, a = ada = ad(ad)a = a(da)da, which implies d € a_,; and d €44 a™ .

If a is regular and b € a™, then b € a_, Ny.a”. Conversely, if a is regular and b € R satisfying
becay Npea™,then bea™?

From the following example, we know that the above question is not true.

. 11 2 1
x,y,zeZg}. WmteA—(O 0>,B—<0 O)ER. It

) # A and ABABA = A. Therefore, B€ Az NpaA™, but B¢ A™.

Example 2.4 Let R = Ty(Z3) = {( 55 Z )

2 2

is easy to check that ABA = ( 0 0

Proposition 2.5 Let R be a ring and a,b,c € R. Then the following conditions are equivalent:

(1) ab is right c-regular and Rb = Rab;
(2) ab is right c-regular and Rb = Rcab;
(3) cab is regqular and Rb = Rcab.

Proof (1) = (2) Since ab is right c-regular, we get ab = ab(ab)_ cab. This clearly forces Rb = Rab =
Rab(ab)_ cab C Reab C Rab. That is, Rb = Rcab.

(2) = (3) Since ab is right c-regular, we have ab = ab(ab)_ cab. Premultiplying by ¢, we have
cab = cab(ab), cab. Hence, cab is regular.

(3) = (1) Since Rb = Rcab, b = vcab for some v € R. From the hypothesis that cab is regular, we
have b = vcab(cab)”cab = b(cab)~cab. Premultiplying by a, we get ab = ab(cab)”cab. Therefore, ab is right
c-regular, and (cab)™ C (ab)_ . O

Corollary 2.6 Let R be a ring and a,b,c € R. Then the following conditions are equivalent:

(1) ab is right c-regular, and Rb = Rab;
(2) b€ bReab;
(8) b is right ca-regular.

Proof (1) = (2) Write b = vab. We deduce that
b = vab = vab(ab)_ cab = b(ab), cab € bRcab.

(2) = (3) It is obvious.
(3) = (1) Since b = bb_,cab, we obtain that ab = abb_,cab. Hence, ab is right c-regular and b_, C (ab), .
Moreover, we have Rb = Rbb_,cab C Rab C Rb. That is, Rb = Rab. O

Proposition 2.7 Let R be a ring and a,b,c € R. Then the following conditions are equivalent:

(1) b € bReab;
(2) r(ca) NbR =0, and b is right ca-regular;
(3) r(ab) =7r(b), and ab is right c-regular.
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Proof (1) = (2) Set b= bvcab. Then b is right ca-regular. Assume that ¢ € r(ca) NbR. Writing ¢ = bs, we
get cabs = cat = 0. Moreover, we get bs = bvcabs = 0. This means that ¢ = 0.

(2) = (3) For any y € r(ab), we have aby = 0. Premultiplying by ¢, we get caby = 0. It follows
that by € r(ca) NbR = 0. Thus, y € r(b). This gives r(b) D r(ab). However, r(b) C r(ab) is clear. Hence,
r(b) = r(ab). Moreover, we get that ab is right c-regular, because b = bb_,cab.

(3) = (1) Since ab = ab(ab)_ cab, we obtain that 1—(ab)_ cab € r(ab) = r(b). Therefore, b = b(ab)_ cab €
bRcab. O

Next, we give some characterizations of group invertible elements, MP-invertible elements, and EP-

elements with c-regular inverses.

Proposition 2.8 Let R be a ring and a € R*. Then a_, = {x € R|a*a = aza¥}.

Proof Since a € R¥, a# exists and a = a(a®a)a®a. It follows that a is right a*-regular and a*a € a_, .
Thus, a_, is not empty. For any = € a_,, we have a = ara®a. This gives aa? = ara®aa” = axa®. That
is, € {x € Rla¥a = aza®}. Conversely, if z € {z € R|la¥a = axa™}, then a = a¥a? = axa”a. Therefore,

TEQ . O

Proposition 2.9 Let R be a ring and a be a regular element of R. Then a € R* if and only if there exists
b€ R such that b € a,, N apa™ .

Proof Assume that a € R#. Then o exists. Write b = a# € R. Then we have

ab(ba)a = aa® (a*a®) = aa”a = a,

a(ab)ba = a*a”a*a = aaa = a,

which imply b € a,, Napa™ .
Conversely, since b € a;, N qpa™, we get ab(ba)a = a = a(ab)ba, which yields a € a>R N Ra?. Therefore,
a € R*. O

Proposition 2.10 Let R be a ring and a € R. Then the following conditions are equivalent:

(1) a € R#;
(2) there exist x € R and d € za~, such that ;a~ = aj

- s not empty and dra = axd.

Proof (1) = (2) Assume that a € R#. Then a* exists and a#a € a_, N,#a™. Thus, a_, and ,#a~ are not
empty. Set y € ,#a~. We get a = aa”ya. Premultiplying by a, we have a? = a?a”ya = aya. We conclude
from the above equality that a*a = aa® = a?(a#)? = aya(a¥)? = aya®, which gives y € a_, , and hence that
a#@ Ca_, . In the same manner we can see that a_, C ,#a™, and so ,#a”~ =a_,. Since aa € za”, we
have (a*a)a”a = a”a = aa” = aa? (aa™) = aa®(a*a). Thus, the conclusion is proved by writing x = a?
and d = a*a.

(2) = (1) Let = € R satisfy ,a= = a

x

which is not empty, and let d € ,a~ satisfy dza = axd. Then
a = axda = adzra. Write y = dvaxd. We get
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aya = adxaxda = axda = a,
yay = draxdadraxd = dradxaxd = draxd =y,

ya = draxda = dra = axd = adrazd = ay.

Consequently, a € R and a¥ =y = draxd. O

Proposition 2.11 Let R be a ring and a € R. Then the following conditions are equivalent:

(1) a € RY;

(2) there exists x € a_, such that ax and xa are projections.

Proof (1) = (2) From the hypothesis that a € R, af exists. Write 2 = a'. Tt is easy to check that the
element z satisfies condition (2).
(2) = (1) Assume that there exists * € a_, such that az and xa are projections. Then we get

azx(ar)a = a, ax = axax = (ax)*, and ra = raxa = (za)*. Thus, axa = (axax)a = a. Take b = zax. Then

we obtain
ab = axax = ax = (ax)* = (ab)*,
ba = zaxa = xa = (xa)* = (ba)*,
aba = aza = a, bab = (zazx)(ax) = zax = b.
Consequently, a € RT and af = b = zax. O

Proposition 2.12 Let R be a ring and a € R. Then the following conditions are equivalent:

(1) a € REF;
(2) ac€ R, s1a” = a;, and there exists d € ,ra™ , such that da'a = aa’td = aal.

Proof (1) = (2) Suppose that a € RPF. Then a € R¥ N Rf. From the proof of Proposition 2.10, we
know that ,4+a~ = a_, and there exists d € ,4a~ such that da”a = aa™d = aa®. Accordingly, we have
d € 4ra” = a_;, which satisfies data = aa’d = aal.

(2) = (1) Let d € ,ia~ satisfy dafa = aa’'d = aa’. Then a = aa'da = ada’a follows from
d € ia” =a, . Write x = da'd. Then we get

aza = ada’da = ada’aatda = aatda = a,
rax = datdada’d = d(ataa)dada’d = da'(aatda)datd = daTadatd = daad(ataat)d = da'(adata)a’d =
dataatd = da’d = z,
ar = ada'd = ad(a'aa’)d = aa'd = da'a = da'(aa’da) = d(a'aa’)da = datda = za.

Thus, we deduce that « € R# and a# = z = da'd. Premultiplying by a, we obtain that aa# = ada'd =
aa'd = aa®. That is, a € RPP by [8, Theorem 7.3]. O

Recall that a ring R is quasinormal [11] if eR(1 —e)Re = 0 for each ¢? = e € R. The following theorem
gives a new characterization of quasinormal rings. At the end of this section, we study the quasinormal rings

and the directly finite rings by means of c-regular inverses.

3082



ZHAO et al./Turk J Math

Theorem 2.13 Let R be a ring and e be an idempotent of R. Then the following conditions are equivalent:

(1) R is a quasinormal ring;

(2) if there exists an idempotent g € R such that ec, # 0, then e;, =e_,.

Proof = Assume that R is quasinormal and e? = e,¢? = g € R with ey F (). Choose = € €ey- Then
e = exege. Note that R is quasinormal. Then ex(1—e)ge € eR(1—e)Re = 0, and it follows that exge = exege.

ge’

ge» and

Hence, e = exge = ex(ge)e, which implies that x € e ., so e, C e .. Conversely, assume that y € e
then e = ey(ge)e = eyge. Since R is quasinormal, eyge = eyege = ey(eg)e, one obtains that y € e, . Hence,
€ge - €eg -

< Assume that ¢ = e € R. For any a,b € R, write ¢ = e + (1 — e)ae, f = e + eb(1l —¢). Then

eg=e= fe,ge=g,ef = f,g°> =g, and f? = f. Note that e = ef(eg)e. Then f € €4, Dy hypothesis, and we

have e;, = e .. Hence, f € e, ; that is, e = ef(ge)e = fg = e + eb(1 — e)ae, and we have eb(1 — e)ae = 0 for

any a,b € R. Therefore, eR(1 —e)Re =0, and so R is quasinormal. O

Proposition 2.14 Let R be a ring. Then the following conditions are equivalent:

(1) R is a directly finite ring;
(2) if ab=1 for a,b € R, then a, = {1}.

Proof (1) = (2) Assume that ab = 1. Then we get a = a(ba)ba. That is, ba € a, . Since R is a directly
finite ring, we see that ba = 1. It follows that a and b are invertible and 1 € a, . For any z € a, , we conclude
that a = axba = ax. Thus, x = 1. Hence, a, = {1}.

(2) = (1) Let a,b € R satisfy ab = 1. By the hypothesis, we know a, = {1}. As ba € a; , we have
ba = 1. Consequently, R is a directly finite ring. O

Proposition 2.15 Let R be a ring. Then the following conditions are equivalent:

(1) R is a directly finite ring;
(2) if ab=1 for a,b € R, then a, = b, .

Proof (1) = (2) Suppose that R is a directly finite ring and ab = 1. Then we could find a, = {1} by
Proposition 2.14. Since ba = 1, we have b, = {1} by Proposition 2.14. Hence, a, = b, .

(2) = (1) Let a,b € R satisfy ab=1. Then a, = b, follows from the hypothesis. We have ba € a, =
b, , because a = a(ba)ba. That is, b = b(ba)ab = b*a. This clearly forces 1 = ab = ab*a = (ab)(ba) = ba.
Therefore, R is a directly finite ring. O

3. Characterizations of the (b, c)-inverse of a

Let R be a ring. For each a,b,c € R, a is said to be strongly left (b, ¢)-invertible if there exists « € bRc such

that b= xzab. Such an z is called a strongly left (b, ¢)-inverse of a. Clearly, if x is a strongly left (b, ¢)-inverse

of a, then so is zax. Denote by afu(b’c) the set of all strongly left (b, c)-inverses of a.
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In this section, we will consider the relation among the strongly left (b, c)-invertibility of a, the right
ca-regularity of b, and the (b, ¢)-invertibility of a.

In the following, we give an example in which the strongly left (b, c)-inverse of a is not unique.

Example 3.1 Let R = Mo(Zs). Writ@“:”:(é é)’b:“:(l O)’CZG (1)>

v = ( é (1) ), and u = ( 8 (1) > It is obvious that x1 = buc € bRc, x5 = bvc € bRc, and x1ab = b = xoab.

This gives x1,xq € af”(b’c) , but x1 # xo.

Proposition 3.2 Let R be a ring and a,b,c € R. If a is strongly left (b,c)-invertible and x € alsll(b’c) , then

we have:

(1) x € bRx Nz Re;

(2) raxr = x;
(8) cax is left ab-regular;
(4) xR =bR;

(5) r(c) Cr(x).

Proof It follows from x € alsll(b’c) that x € bRc and b = xab. Write x = buc. Then we get xax = rabvc =

bvc = x. This gives bvcar = raxr = x = bvc = xabvc. Thus, © € bRx Nz Rc. Furthermore, we have
caxr = caxax = cabvcaxr = ca(zab)vcar = caz(ab)vcax.

Hence, caz is left ab-regular. We have R = bR, because R = bvcR C bR = xabR C zR. Finally, for any
d € r(c), we have ed = 0. Premultiplying by bv, we get xd = buved = 0. That is, d € r(x). O

We first give some equivalent conditions for an element to be strongly left (b, c)-invertible.

Corollary 3.3 Let R be a ring and a,b,c € R. Then the following conditions are equivalent:

(1) a is strongly left (b, c)-invertible;
(2) there exists x € R, such that xax =z, l(x) =1(b), Rz C Re, and xR C bR. In this case, x € al‘s”(b’c).

Proof (1) = (2) Fixz € als”(b’c). It follows from Proposition 3.2 that

zax =x, tR =bR, Rx C Re, and I(z) = I()).

(2) = (1) Since 1 — za € l(x) = I(b), it follows that b = xab. Write + = vc = bs. Then we obtain

x = xzax = (bs)a(ve) € bRe. Hence, a is strongly left (b, c¢)-invertible. This means that z € alSH(b’c). O

Corollary 3.4 Let R be a ring and a,b,c € R. Then the following conditions are equivalent:

(1) a is strongly left (b, c)-invertible;
(2) there exists © € R such that xax =z, xR = bR, and Rx C Rc.
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Proof (1) = (2) Let z € a‘;H(b’c). Then b = zab and = € bRc. This gives that bR = R and Rz C Rec.

Again, by Proposition 3.2, we have that x = zax.

(2) = (1) Since xR = bR and Rx C Re, one has that © = zaz € bRc. By 1 —za € I(z) = [(b), we get

that b = zab. Thus, a is strongly left (b, ¢)-invertible, and x € af”(b’c). O

Corollary 3.5 Let R be a ring and a,b,c € R. Then the following conditions are equivalent:

(1) a is strongly left (b, c)-invertible;
(2) b€ bReab.

Proof (1) = (2) It is clear from the definition of strongly left (b, ¢)-invertibility.
(2) = (1) Set b = bvcab and = = bvc. Then we get x € bRc and b = zab. That is, a is strongly left
(b, ¢)-invertible. O

Next, we discuss when a strongly left (b, ¢)-invertible element actually becomes a (b, ¢)-invertible element.

Proposition 3.6 Let R be a ring and a,b,c € R. Then the following conditions are equivalent:

(1) a is (b, c)-invertible;

(2) a is strongly left (b,c)-invertible and caals”(b’c) =c. In this case, a!l(®°) ¢ alsll(b’c).
Proof (1) = (2) Set y = al®°) . It is straightforward that
y € bRyNyRe, y=yay, yab=">, and cay = c.
Thus, y = yay € (bRy)a(yRc) C bRe. Therefore, a is strongly left (b, c)-invertible, y € a‘;H(b’C), and cay = c.

Now, for each x € als‘l(b’c), we get [(z) = I(b) = I(y) by Corollary 3.3. We conclude from 1 — za € l(z) = I(y)
that y = zay, and hence that ¢ = cay = caxay and finally that 1 — azay € r(c) C r(x) by Corollary 3.3. We
thus get * = zaxay = ray = y. Hence, cax = cay = c.

(2) = (1) Since a is strongly left (b, c)-invertible, there exists = € R such that

x = zax, I(z) = (b), Rz C Re, R C bR, and z € a1,

It follows that cax = ¢. Write x = dc = bt. We have

x = xzax = btax € bRx, and x = xax = zadc € zRc.

Namely, b = zab because 1 — za € I(z) = I(b). Thus, a is (b, c)-invertible and al®¢) = z. Tt is obvious that

aH(b’c) =x € alSH(baC) ) "

Proposition 3.7 Let R be a ring and a,b,c € R. Then the following conditions are equivalent:

(1) a is (b, c)-invertible;
(2) a is strongly left (b, c)-invertible and RcNl(ab) =0.
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Proof (1) = (2) It follows from Proposition 3.6 that a is strongly left (b, c)-invertible. Now let all®*) = y.
Then y = yay, yab =b, and cay = c. Assume that z € ReNli(ab). Then we have z = dc and zab =0, where

d € R. Thus, dcab=10. Set y = bs. Then z = dc = dcay = zay = zabs = 0.

s|[(b,c
(2) = (1) Let = € al”( ).

cax = caxazraxr = caxa(bvc)ax. Hence, ca — caxabvea € l(x) = I(b). This gives cab = caxabvcab. We thus get

Then by Proposition 3.2, we get zax = z, z = bve, l(z) = I(b), and

¢ — caxabve € I(ab) N Re = 0. This yields that ¢ = cazabve = carax = cax. By Proposition 3.6, we have that

a is (b, ¢)-invertible. O

Corollary 3.8 Let R be a ring and a,b,c € R. Then the following conditions are equivalent:

(1) a is (b,c)-invertible;
(2) a is strongly left (b,c)-invertible and l(c) = l(cab).

Proof (1) = (2) Take any z € l(cab). We have zcab = 0. Thus, zc € Renl(ab) = 0 by Proposition 3.7.
That is, z € I(c).
(2) = (1) For any y € Rcnli(ab), we know that y = dc and yab = 0, where d € R. Thus, dcab = 0. This

means that d € I(cab) = I(c). Therefore, y = dc = 0. It follows from Proposition 3.7 that a is (b, ¢)-invertible.
O

Corollary 3.9 Let R be a ring and a,b,c € R. Then the following conditions are equivalent:

(1) a is (b, c)-invertible;
(2) a is strongly left (b,c)-invertible and R = Rc @ l(ab).

Proof Assume that a is (b, ¢)-invertible. By Proposition 3.7, we know that Renl(ab) = 0. Write all(®¢) = .
Then we have y € yRc and b = yab. Hence, ab = ayab. It follows that 1 — ay € I(ab). We thus get
1 € Ry +1(ab) C Rc+l(ab). Then R = Rc+l(ab). That R = Rc & I(ab) follows from Proposition 3.7. The

converse is obvious. O

Corollary 3.10 Let R be a ring and a,b,c € R. If a is (b, c) -invertible, then R = Ralsu(b’c) @ l(ad).

Proof Since a is (b,c)-invertible, ¢ = caaf”(b’c) by Proposition 3.6 and R = Rc @ l(ab) by Corollary

b,c)

3.9. Hence, R = Rals”(b’c) + l(ab). For any z € RalsH(b"C) N l(ab), we have z = ya?”( and zab = 0,

where y € R. This gives yals”(b’c)ab = 0. Write af”(b’c) = btc for t € R. Since b = alSH(b’c)ab7 we have
2= ya)' ™ = ybte = ya} 1"V abtc = 0. The result is Ra!!? Ni(ab) = 0. Therefore, R = Ra}'™ @i(ab). O

Naturally, is the converse of the Corollary 3.10 true? The problem has not yet been solved.

Question 3.11 If a is strongly left invertible and Raf‘l(b’c) @ l(ab) = R, then is a (b, c)-invertible?

4. Left min-Abel ring and (b, ¢)-inverse of a

This section is devoted to the study of left (resp. strongly left) min-Abel ring.
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Let R be a ring and €2 = e € R. We denote by E(R) the set of all idempotents of R. If Re is a left
minimal ideal of R, then e is called a left minimal idempotent of R. Denote by ME;(R) the set of all left
minimal idempotents of R. If either M E;(R) is an empty set or every element of MEj(R) is left (resp. right)
semicentral in R, then R is called a left (resp. strongly left ) min-Abel ring.

We first give some conditions to ensure that a ring R is a left min-Abel ring, by means of left semicentral

elements and left (b, c)-invertible elements in R.

Lemma 4.1 Let R be a ring and e € ME;(R) a left semicentral idempotent. If e = abe for a,b € R, then

e = bae.

Proof Since e is left semicentral and e = abe, we have e = aebe. Thus, ae # 0. This gives Re = Rae.
Writing e = cae for ¢ € R, we can assert that ce = c(aebe) = (cae)be = ebe = be. It is obvious that

bae = beae = ceae = cae = e. O

Proposition 4.2 Let R be a ring. Then the following conditions are equivalent:

(1) R is a left min-Abel ring;
(2) e, Cq,e” forany e € ME;(R) and a € R.

Proof (1) = (2) Assume that R is a left min-Abel ring, e € ME;(R), and a € R. Fix x € e, . Then we
have e = (ex)ae. Since R is a left min-Abel ring, we deduce that e is left semicentral. That e = aexe = aze
follows from Lemma 4.1. Thus, e = eaxe. That is, x € e .

(2) = (1) For any e € ME;(R) and a € R, writing h = (1 — e)ae, we can assert that he = h, eh =0,
and h? = 0. If h # 0, then Rh = Re. Taking e = ch for ¢ € R, we get e = eche. That is, ¢ € ¢; . From the
hypothesis, we obtain that e; C pe™. It follows that ¢ € ,e~. We thus get e = ehce = 0. This contradicts
our assumption. From this, we see that h = 0. It follows that (1 — e)ae = h = 0 for any a € R. This gives

(1 —e)Re = 0. Consequently, R is a left min-Abel ring.

Proposition 4.3 Let R be a ring and k € E(R). Then the following conditions are equivalent:

(1) k is a left minimal idempotent of R ;
(2) if ak #0 for a € R, then a is left (k,1)-invertible.

Proof (1) = (2) Suppose that k is a left minimal idempotent of R and ak # 0. Then we get Rk = Rak. It
follows that a is left (k,1)-invertible.

(2) = (1) Let 0 # L be any left ideal of R contained in Rk. Then we get 0 # y € L C Rk. Write
y = ak. It follows that ak # 0. From the assumption, we know that a is left (k,1)-invertible and k # 0. Then
it is easy to see that 0 # Rk C Rlak = Ry C L. That is, Rk = L. Hence, Rk is a left minimal ideal of R. O

Proposition 4.4 Let R be a ring. Then the following conditions are equivalent:

(1) R is a left min-Abel ring;
(2) if ae #0 for e € ME;(R) and a € R, then there exists ¢ € Re such that e = cae.
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Proof (1) = (2) Suppose that ae # 0. It follows from Proposition 4.3 that a isleft (e, 1)-invertible. For each

v € alD

, we get e = zae. Since R is a left min-Abel ring, we know that e is a left semicentral idempotent,
i.e. e =zeae. Taking c = ze € Re, the result holds.

(2) = (1) For any e € ME;(R), if (1 —e)Re # 0, then there exists a € R such that h = (1 — e)ae # 0.
By assumption, there exists ¢ € Re such that e = che for he = h # 0. Write ¢ = te. It is easy to show that

e =tehe = te(1 — e)ae = 0. It is a contradiction, so we have (1 —e)Re = 0. Hence, R is a left min-Abel ring.
O
Motivated by Propositions 4.2—4.4, in the following, we give the main result for this section.

Theorem 4.5 Let R be a ring. Then the following conditions are equivalent:

(1) R is a strongly left min-Abel ring;
(2) if ea #0 for e € ME;(R) and a € R, then a is right (e, e)-invertible.

Proof (1) = (2) We first show that eR is a minimal right ideal of R. Assume that 0 # K is an arbitrary
right ideal of R contained in eR. For every 0 # x € K, we know & = ex. Since R is a strongly left min-Abel
ring, e is a right semicentral idempotent. It follows that = = xe and 0 # Rx = Rxe = Re. Write e = yx and

g = xy, where y € R. It is clear that

9> =ayzy=zey=ay =g, g =1y =ery = eg and e = (yz)(yz) = ygz.
Moreover, ge = ege = eg = g. It follows that 0 # Rg = Rge C Re. That is, Rg = Re. Thus, g € ME|(R).
This means that g is also a right semicentral idempotent. Furthermore, we get
e=ygr =ygrg =eg=g,and eR=gR=xzyR C 2R C K CeR.

Thus, eR is a minimal right ideal of R.

Now we assume that ea # 0. Then we get eaR = eR and write e = eac for some ¢ € R. Since e is
central, we have e = eaec, which means that a is right (e, e)-invertible.

(2) = (1) Suppose that e € ME;(R). If eR(1 —e) # 0, then there exists some a € R such that
h =ea(l—e)#0. Since eh = h, we have that h is right (e, e)-invertible by (2). This clearly forces e € eheR),
so e = 0, which is a contradiction. It follows that eR(1 —e) = 0. Hence, R is a strongly left min-Abel ring. O

Corollary 4.6 Let R be a ring. Then the following conditions are equivalent:

(1) R is a strongly left min-Abel ring;
(2) for each e € ME|(R) and x,y € R, e = xy implies that e = yx.

Proof (1) = (2) The proof is straightforward from Theorem 4.5.
(2) = (1) For any a € R, we denote g = e + ea(l — e). It follows that eg = g and ge = e. By
assumption, we get e = ge = eg = g. It is obvious that eR(1 —¢e) = 0. O
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