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Abstract: Let (βn)n≥2 be a sequence of nonnegative real numbers and δ be a positive real number. We introduce
the subclass A(βn, δ) of analytic functions, with the property that the Taylor coefficients of the function f satisfies∑∞

n≥2 βn|an| ≤ δ , where f(z) = z +
∑∞

n=2 anz
n . The class A(βn, δ) contains nonunivalent functions for some choices

of (βn)n≥2 . In this paper, we provide some general properties of functions belonging to the class A(βn, δ) , such as the
radii of univalence, distortion theorem, and invariant property. Furthermore, we derive the best approximation of an
analytic function in such class by using the semiinfinite quadratic programming. Applying our results, we recover some
known results on subclasses related to coefficient inequality. Some applications to starlike and convex functions of order
α are also mentioned.

Key words: Analytic function, starlike function of order α , convex function of order α , coefficient inequality , quadratic
programming, Karush–Kuhn–Tucker conditions

1. Introduction
Let H(D) be the class of analytic functions in the open unit disk D = {z ∈ C : |z| < 1} and A be the class of
analytic functions normalized by the conditions that f(0) = 0 and f ′(0) = 1 ; that is, f ∈ A can be written in
the form

f(z) = z +

∞∑
k=2

anz
n, z ∈ D. (1)

We denote by S the subclass of A consisting of functions that are univalent on D . Let T be a subset of A
containing negative coefficient functions; that is, an ≤ 0 for n ≥ 2 .

A considerable number of publications have focused on finding sufficient conditions via coefficient inequal-
ity for understanding the construction and its properties of subclasses of univalent functions. In [13], Goodman
derived a sufficient condition for starlike functions via coefficient inequality. In [27], Silverman obtained some
results on coefficient inequality for univalent functions with negative coefficients that are starlike and convex
of order α . Darwish [8] established the quasi-Hadamard product results of starlike and convex functions of
order α type β . Some coefficient estimates and related properties of the class of bounded starlike functions
of complex order were obtained by Attiya [6]. Recently, Dzjok et al. [10] applied the extreme points theory
to obtain coefficients estimate and other properties for some generalizations of starlike harmonic functions. To
∗Correspondence: ben.wongsaijai@gmail.com
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date, the coefficient inequality is one of the essential tools to study subclasses of univalent functions, especially
subclasses involving differential-integral operators (see [3, 5, 6, 9, 15, 18, 20, 28, 30–33]).

In addition, many sufficient conditions for subclasses of analytic functions, which perhaps contain nonuni-
valent functions, can be derived in the form of coefficient inequality, especially subclasses of analytic functions
defined by the q -derivative operator. For example, Purohit and Raina [23] introduced a subclass of analytic
functions defined by the q -analogue operator of fractional calculus and derived some results including the coef-
ficient inequality. In [35], the authors obtained some relations between various types of q -starlike functions of
order α by using the coefficient inequality. Recently, Mahmood and Sokol [19] defined a new class of analytic
functions by using the Ruscheweyh q -differential operator, while Govindaraj and Sivasubramanian [14] applied
the concept of q -calculus to define the new class of analytic functions that are closely related to the domains
bounded by conic sections. Some convolution properties for the classes of bounded q -starlike and q -convex
univalent functions of complex order were investigated by Aouf and Seoudy [4]. For some interesting properties
and recent related works on subclasses of analytic functions associated with the q -difference operator, we refer
to [1, 2, 4, 14, 19, 24, 26, 29, 34–36].

In [11], Frasin introduced the class Hϕ(ck, δ) of S consisting of functions f satisfying the coefficient
inequality

∑∞
k=2 ck|ak| < δ , where the function ϕ(z) = z +

∑∞
k=2 ckz

k is fixed in S . Later, Frasin and Aouf
[12] followed the idea in [11] by introducing the classes M0

ψ(cn, δ) , N 0
ψ(cn, δ) , and Bkψ(cn, δ) and studied some

results related to the quasi-Hadamard product of functions in these classes. However, these classes can not be
used to describe properties of the nonunivalent functions such as the q -extension starlike function and convex
function and related subclasses. From the literature, it is therefore natural to define the following subclass of
A , which contains nonunivalent functions:

A(βn, δ) =

{
f(z) = z +

∞∑
n=2

anz
n ∈ S :

∞∑
n=2

βn|an| ≤ δ

}
,

where (βn)n≥2 is a fixed nonnegative real sequence and δ is a fixed positive real number. In the Table, some
particular cases of A(βn, δ) are mentioned.

For a nonunivalent analytic function, it is interesting to study the problem of finding the best approxi-
mation to show how far an analytic function is from a subclass of univalent functions. In [21], Pascu and Pascu
first paid attention to the problem of finding the best approximation of an analytic in the subclass of starlike
functions by extending the Karush–Kuhn–Tucker conditions to semiinfinite quadratic programming. Later, they
solved this kind of problem on the subclass of convex functions (see [22]). Recently, Kargar et al. [17] solved
the best approximation of analytic functions by a locally univalent normalized analytic function. To date, the
study of the best approximation has not been widely studied.

This paper has been arranged as follows. In Section 2, we provide some general properties of functions
belonging to the class A(βn, δ) , such as the radii of univalence, distortion theorem, and invariant property. In
Section 3, we adopt the idea in [17, 21, 22] to solve the semiinfinite quadratic programming to obtain the best
approximation in the class A(βn, δ) . In Section 4, we apply our results to classes of starlike and convex function
order α to obtain their general properties. Some examples of polynomial functions are presented. We finish
the paper with observations and concluding remarks.
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Table. Some typical classes included in A(βn, δ) .

βn δ Refs.
1. T ∗(α) n− α 1− α [27]
2. C∗(α) n(n− α) 1− α [27]
3. P∗(α) n 1− α [25]
4. P∗(α, β) n(1 + β) 2β(1− α) [15]
5. G(α) n[2(n− 1)− β] α [20]
6. R[α] (n− β)

∏n
j=2

j−2α
(n−1)! 1− α [28]

7. C∗
0 (α, β) (a1 = 1) n[(1− β)n− αβ] β(1− α) [8]

8. S∗
k(α, β) (a1 = 1) nk[(1− β)n− αβ] β(1− α) [8]

9. Sk(α, β) (a1 = 1) nk[(n− 1) + β(1 + αn)] β(1 + α) [3]
10. Hb

k(A,B) nk((n− 1) + |(A−B)b−B(n− 1)|) (A−B)|b| [6]
11. Srs (λ, κ, µ) (2n(1 + κ)− (µ+ κ)[1− (−1)n])(λ[φn − 1] + 1)ψn 2(1− µ) [9]
12. T S∗(α) [n]q − α 1− α [35]
13. Kq(α) (g(z) = z) [n]q 1− α [36]
14. Sq(b,M) [n]q + |b| − 1 |b| [4]
15. Rδ,m

q,λ,l,1(α) [n]qΨ
δ,m
q,λ,l,1 1− α [34]

16. J α
q,δ (1 + β)

Γq(k+1)Γq(2−α)
Γq(2)Γq(k−α+1) 2β(1− δ) [23]

17. k − UST λ
q (γ) [q[n− 1, q](k + 1) + |γ|] |Ψn−1| |γ| [19]

18. Sq(k, α,m) [n]mq ([n]q(k + 1)− k − α) 1− α [14]

2. Properties on the classes A(βn, δ)

In this section, we provide some basic properties on A(βn, δ) . We begin to derive the radii of univalence for
the function A(βn, δ) .

Theorem 1 If f ∈ A(βn, δ) , then f is univalent and starlike in |z| < r0 , where

r0 = inf
n≥2

[
βn
δn

] 1
n−1

. (2)

Proof To obtain the result, we observe that if Re{f ′(z)} > 0 on Dr0 , where Dr0 = {z ∈ C : |z| < r0} , then
f is univalent due to the following formula:

Re
{
f(z1)− f(z2)

z1 − z2

}
=

∫ 1

0

Re {f ′(z1 + t(z2 − z1))} dt. (3)

Therefore, we have

Re{f ′(z)} = Re
{
1−

∞∑
n=2

nanz
n−1

}
≥ 1−

∞∑
n=2

n|an|rn−1
0 , (4)

for all |z| < r0 . By the definition of A(βn, δ) and Eq. (4), the inequality Re{f ′(z)} > 0 holds on Dr0 , where

r0 = inf
n≥2

[
βn
δn

] 1
n−1

.

This completes the proof. 2
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Using Eq. (2), it is easy to see that r0 is greater than unity when βn > δn . We directly obtain the
following result.

Corollary 2 If βn > δn , for all n ≥ 2 , then A(βn, δ) ⊂ S .

Next, we derive the distortion inequalities for functions in the class A(βn, δ) that will be given by the
following results.

Theorem 3 If β0 = infn≥2 βn > 0 , then

|z| − δ

β0
|z|2 ≤ |f(z)| ≤ |z|+ δ

β0
|z|2 (5)

and

1− 2δ

β0
|z| ≤ |f ′(z)| ≤ 1 +

2δ

β0
|z|, (6)

for all f ∈ A(βn, δ) .

Proof Suppose that β0 = infn≥2 βn > 0 . Letting f ∈ A(βn, δ) , we see that

β0

∞∑
n=2

|an| ≤
∞∑
n=2

βn|an| ≤ δ. (7)

From Eq. (7), the consequence is that
∞∑
n=2

|an| ≤
δ

β0
, (8)

which yields

|z| − |z|2
∞∑
n=2

|an| ≤ |f(z)| ≤ |z|+ |z|2
∞∑
n=2

|an|. (9)

The conjunction of inequalities Eqs. (8) and (9) implies the assertions (5) of Theorem 3. Hence, inequality (6)
follows from

1− |z|
∞∑
n=2

n|an| ≤ |f ′(z)| ≤ 1 + |z|
∞∑
n=2

n|an|.

The proof is completed. 2

Remark 4 By letting z → 1− , Theorem 3 demonstrates that the disk |z| < 1 is mapped onto a domain that
contains the disk

|w| < 1− δ

β0
,

under any analytic function f ∈ A(βn, δ) .
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In the following results, we focus on the invariant property of the class A(βn, δ) . We shall consider some
operators in terms of the standard convolution formula.

Definition 5 Let f(z) = z +
∑∞
n=2 anz

n and g(z) = z +
∑∞
n=2 bnz

n be the function in A . The convolution
formula of f and g can be defined by f ∗ g = z +

∑∞
n=2 anbnz

n.

According to the definition of A(βn, δ) , we easily obtain the following properties.

Theorem 6 Let f ∈ A(βn, δ) and g(z) = z+
∑∞
n=2 µnz

n ∈ A . Then for |µn| ≤ 1 (n ≥ 2) (f∗g)(z) ∈ A(βn, δ) .

Example 1 (The Bernardi–Libera integral operator) The Bernardi–Libera integral operator Lγ : A → A is
defined as follows:

Lγf(z) =
γ + 1

zγ

∫ z

0

tγ−1f(t)dt, (10)

which was studied by Bernardi in [7]. It is clear that

Lγf(z) := (f ∗ g)(z) = z +

∞∑
n=2

γ + 1

γ + n
anz

n,

where g = z +

∞∑
k=2

γ + 1

γ + n
zn . Combining the formula of Lγ and Theorem 6, we obtain the invariant properties

under integral operator Lγ as
Lγ [A(βn, δ)] ⊂ A(βn, δ).

3. Best approximation problem in the classes A(βn, δ)

In this section, we investigate the problem of the best approximation of an analytic function by a function in
the class A(βn, δ) and f ∈ A . To define a measure of the nonunivalency of a function, we recall the definition
introduced in [17, 21, 22]:

dist(f,A(βn, δ)) = inf
g∈A(βn,δ)

(∫
D
|f(x+ iy)− g(x+ iy)|2dxdy

)1/2

, (11)

for any sublclass A(βn, δ) of S . In [21], it was also shown that dist(f,S) = 0 if and only if f ∈ S . In terms of
the coefficients of the Taylor series of f , we obtain that

∫
D
|f(x+ iy)|2dxdy = π

∞∑
n=0

|an|2

n+ 1
, (12)

where the calculation can be obtained by using Fubini’s theorem and the orthogonality of the trigonometric
functions. Then, by making use definition (11), the above identity leads us to consider the problem of finding

inf
(xn)n≥2

∞∑
n=2

|xn − an|2

n+ 1
, (13)
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subject to
∞∑
n=2

βn|xn| ≤ δ, (14)

where the infimum is taken over all sequences (xn)n≥2 of complex numbers.
For the convenience, we provide some basic definitions and concept details of the Karush–Kuhn–Tucker

conditions (see [16]) for quadratic programming, which are used in this paper. Given a minimization problem

f(x) = xTQx+ cx (15)

subject to
Ax ≤ b and x ≥ 0, (16)

where x ∈ Rn , Q is an n×n symmetric matrix, A is an m×n matrix, and b and cT are column vectors m×1

and n × 1 , respectively. It is well known that the problem has a unique global minimum when the objective
function f is strictly convex. Consider the Lagrangian function L for the quadratic problem (15)–(16):

L = xTQx+ cx+ µ(Ax− b). (17)

The solution is given by the Karush–Kuhn–Tucker conditions:

∂L

∂xi
≥ 0,

∂L

∂µj
≤ 0,

xi
∂L

∂xi
= 0,

µ(Ax− b) = 0,

xi ≥ 0, µj ≥ 0,

for i = 1, 2, . . . , n and j = 1, 2, . . . ,m . We also note that the Karush–Kuhn–Tucker conditions are the necessary
conditions for the global minimum. The sufficient condition for a global minimum is given by the positive definite
property of Q .

We are ready to prove the following theorem.

Theorem 7 Let f ∈ A be a function of the form

f(z) = z +

∞∑
n=2

anz
n, z ∈ D.

Suppose that limn→∞
|an|
nβn

= 0 and
∑∞
n=2 nβ

2
n = +∞ .

If
∑∞
n=2 βn|an| ≤ δ , then dist(f,A(βn, δ)) = 0 when the minimum is attained for the function g = f ∈

A(βn, δ) .
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If
∑∞
n=2 βn|an| > δ , then

dist(f,A(βn, δ)) =

(
π
∑
n∈Ic

|an|2

n+ 1
+ π

(∑
m∈I(βm|am|)− δ

)2∑
m∈I(β

2
m(m+ 1))

)1/2

, (18)

where I = {i2, i3, . . . , iN}, and (in)n≥2 is a permutation of the indices in P = {n ≥ 2 : |an| > 0} such

that αn = 2|an|
(n+1)βn

, n = 2, . . . , |P| + 1 is a nonincreasing sequence. The infimum is attained for the function

g(z) = z +
∑∞
n=2 bnz

n ∈ A(βn, δ) , where

bn =

{ (
|an| − (n+ 1)βn

∑
n∈I (βn|an|)−δ∑
m∈I β

2
m(m+1)

)
ei arg an for n ∈ I,

0 for n ∈ Ic.
(19)

Proof It is obvious if
∑∞
n=2 βn|an| ≤ δ . Assume that

∑∞
n=2 βn|an| > δ . By using Eq. (12) and the triangle

inequality, we get

dist(f,A(βn, δ)) = inf
g∈A(βn,δ)

(∫
D
|f(x+ iy)− g(x+ iy)|2dxdy

)1/2

=

(
π inf

∞∑
n=2

|xn − an|2

n+ 1

)1/2

≥

(
π inf

∞∑
n=2

(|xn| − |an|)2

n+ 1

)1/2

.

In fact, the equality holds in the triangle inequality if argxn = arg an . It follows that

dist(f,A(βn, δ)) =

(
π inf

∞∑
n=2

|xn − an|2

n+ 1

)1/2

=

(
π inf

∞∑
n=2

(|xn| − |an|)2

n+ 1

)1/2

. (20)

Therefore, it is natural to replace the complex sequence (xn)n≥2 by the nonnegative sequence satisfying∑∞
n=2 βnxn ≤ δ . This leads us to study the best approximation problem on the class A(βn, δ) with nonnegative

coefficient. Explicitly, the quadratic problem (13)–(14) can be replaced by the problem of finding

inf
(xn)n≥2

∞∑
n=2

(xn − an)
2

n+ 1
, (21)

subject to
∞∑
n=2

βnxn ≤ δ, (22)

where f(z) = z +
∑∞
n=2 anz

n , an ≥ 0 and xn ≥ 0 , for all n ≥ 2.

Without loss of generality, we assume |an| ̸= 0 for all n ≥ 2 . The proof can be followed by introducing
the set of indices P∗ = {n : |an| > 0} . Here, the infimum problem becomes

inf
∞∑
n=2

(xn − an)
2

n+ 1
= min

{
0, inf

∑
n∈P∗

(xn − an)
2

n+ 1

}
.
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See more details in [17, 21, 22]. Thus, the objective function can be defined by f(x) =
∑∞
n=2

(xn−an)2
n+1 . which

is a quadratic function, and the constrained inequality can be written as Ax ≤ δ , where A = (β2 β3 β4 . . . )

and x = (x2 x3 x4 . . . )′ . The corresponding Lagrangian in the problem is given by

L =

∞∑
n=2

(xn − an)
2

n+ 1
+ µ

( ∞∑
n=2

βnxn − δ

)
.

In this case, the Karush–Kuhn–Tucker conditions are

2
xn − an
n+ 1

+ µβn ≥ 0, n ≥ 2, (23)

∞∑
n=2

βnxn − δ ≤ 0, (24)

xn

(
2
xn − an
n+ 1

+ µβn

)
= 0, n ≥ 2, (25)

µ

( ∞∑
n=2

βnxn − δ

)
= 0, (26)

xn ≥ 0, (n ≥ 2) µ ≥ 0. (27)

First of all, by using Eq. (26), we see that either µ = 0 or
∑∞
n=2 βnxn = δ . Assuming µ = 0 , from Eq.

(25), we have xn = 0 or xn = an , and since from Eq. (23) we obtain xn ≥ an , this implies that xn = an for
all n ≥ 2 . Now we have

∑∞
n=2 βnxn =

∑∞
n=2 βnan > δ , which contradicts (24). Thus, we must have µ ̸= 0 .

The Karush–Kuhn–Tucker conditions become in this case

2
xn − an
n+ 1

+ µβn ≥ 0, n ≥ 2, (28)

∞∑
n=2

βnxn = δ, (29)

xn

(
2
xn − an
n+ 1

+ µβn

)
= 0, n ≥ 2, (30)

xn ≥ 0(n ≥ 2) µ > 0. (31)

The Eq. (30) shows that either xn = 0 or xn = an − 1
2µ(n+ 1)βn . Let us introduce the set of indices I such

as xn = an − 1
2µ(n+ 1)βn for n ∈ I , so xn = 0 for n ∈ Ic . Hence, by the Eq. (29), we see that

δ =

∞∑
n=2

βnxn =
∑
n∈I

βn

(
an − 1

2
µ(n+ 1)βn

)
=
∑
n∈I

anβn − µ

2

∑
n∈I

(n+ 1)β2
n,

which yields

µ = 2

∑
n∈I anβn − δ∑
n∈I(n+ 1)β2

n

> 0. (32)
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Eq. (32) shows that |I| must be finite by the assumption
∑∞
n=2 nβ

2
n = +∞ . Moreover, by using Eqs. (28) and

(31), we have

µ ≥ 2an
(n+ 1)βn

:= αn, n ∈ Ic (33)

and

µ ≤ 2an
(n+ 1)βn

:= αn, n ∈ I. (34)

Next, we have to construct the set of indices I that satisfies Eqs. (33) and (34). By assumption lim
n→∞

αn ,

there exists a permutation (in)
∞
n=2 of {2, 3, . . . } such that (αin)

∞
n=2 is a nonincreasing sequence. We observe

that
∞∑
n=2

βinain =

∞∑
n=2

βnan.

Then there exists the smallest integer n0 ≥ 2 such that

n0∑
n=2

βinain > δ.

Using this fact, we now construct the method to find the indices set I . Since βn > 0 for n ≥ 2 and∑n0−1
n=2 (βnan) < δ , we obtain

µn0
= 2

∑n0

n=2 (βinain)− δ∑n0

n=2 β
2
in
(in + 1)

= 2
βin0

ain0
+
(∑n0−1

n=2 (βinain)− δ
)

β2
in0

(in0 + 1) +
∑n0−1
n=2 β2

in
(in + 1)

≤ 2
βin0

ain0

β2
in0

(in0
+ 1) +

∑n0−1
n=2 β2

in
(in + 1)

≤ 2
βin0

ain0

β2
in0

(in0 + 1)
:= αin0

.

In the case of n0 = 2 , it is easy to check that µ2 = 2
βi2

ai2−1

β2
i2

(i2+1)
≤ 2

βi2
ai2

β2
i2

(i2+1)
:= αi2 , so we conclude that

µn0
≤ αin0

. Using the nonincreasing property of (αin)
∞
n=2 , we have µn0

≤ αin0
≤ αin0−1

≤ · · · ≤ αi2 . We need
to find the smallest integer N satisfying such a property, i.e.

αiN+1
≤ µN ≤ αiN ≤ αiN−1

≤ · · · ≤ αi2 . (35)

If αin0+1 ≤ µn0 , then we can choose N = n0 and I = {i2, i3, . . . , in0} .
If αin0+1 > µn0 , then we have

µn0
= 2

∑n0

n=2 (βinain)− 1∑n0

n=2 β
2
in
(in + 1)

≤
2 (
∑n0

n=2 (βinain)− 1) + (βin0+1
ain0+1

)∑n0

n=2(β
2
in
(in + 1)) + β2

in0+1
(in0+1 + 1)

:= µn0+1,
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where we used the fact that if a
b ≤ c

d (b, d > 0) then a
b ≤ a+c

b+d . By the above observation, we also have
µn0

≤ µn0+1 ≤ αin0+1
. In this case, we distinguish the comparison between αin0+2

and µin0+1
as in the

following cases.
If αin0+2

≤ µn0+1 , then we can choose N = n0 + 1 and I = {i2, i3, . . . , in0+1} .

If αin0+2 > µn0+1 , by using the same argument, we then have

µn0
≤ µn0+1 ≤ µn0+2 ≤ αin0+2

.

Proceeding inductively, we obtain that either there exists an integer N = n0 + k at some step for which the
relation (35) holds, or

0 < µn0
≤ µn0+1 ≤ · · · ≤ µn0+k ≤ αin0+k

, (36)

for all k ≥ 0 . However, inequality (36) cannot be true for all k ≥ 0 due to lim
n→∞

αin = 0 , i.e. 0 < µn0
≤

lim
n→∞

αin = 0 . Hence, at some step, we can find k ≥ 0 such that

αin0+k+1
≤ µn0+k ≤ αin0+k

≤ · · · ≤ αi2 .

That is, I = {i2, i3, . . . , in0+k} satisfying Eqs. (33) and (34). Then we have

inf
∞∑
n=2

(xn − an)
2

n+ 1
=
∑
n∈Ic

(xn − an)
2

n+ 1
+
∑
n∈I

(xn − an)
2

n+ 1

=
∑
n∈Ic

a2n
n+ 1

+
µ2

4

∑
n∈I

(n+ 1)β2
n

=
∑
n∈Ic

a2n
n+ 1

+

(∑
n∈I (βnan)− δ

)2∑
n∈I β

2
n(n+ 1)

.

Next, we show that the Karush–Kuhn–Tucker conditions can be applied in this infinite-dimensional
setting. We first observe that, for any fixed integer m ≥ 2 ,

inf
∞∑
n=2

(xn − an)
2

n+ 1
≥ inf

m∑
n=2

(xn − an)
2

n+ 1
, (37)

where both infimums are taken over all nonnegative sequences (xn)
∞
n=2 satisfying

∑∞
n=2 βnxn ≤ δ . Using the

same argument, we can solve the Karush–Kuhn–Tucker conditions for finite-dimensional problem. Then, for
m ≥ max{i2, i3, . . . , iN} , we obtain that the second infimum is attained for the sequence (xn)

m
n=2 given by

xn =

{
an − 1

2µ(n+ 1)βn for n ∈ I,
0 for n ∈ Ic ∩ {2, 3, . . . ,m}. (38)

We see that this argument can be applied for any arbitrary m ≥ max{i2, i3, . . . , iN} , so passing m → ∞ , we
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obtain that

inf
∞∑
n=2

(xn − an)
2

n+ 1
≥ lim
m→∞

inf
m∑
n=2

(xn − an)
2

n+ 1

= lim
m→∞

∑
n∈Ic∩{2,...,m}

a2n
n+ 1

+

(∑
n∈I βnan − δ

)2∑
n∈I β

2
n(n+ 1)

=
∑
n∈Ic

a2n
n+ 1

+

(∑
n∈I βnan − δ

)2∑
n∈I β

2
n(n+ 1)

.

This inequality guarantees that the Karush–Kuhn–Tucker conditions can be applied to the quadratic problem
(21)–(22) in the case of an infinite-dimensional setting. In addition, we note that the infimum in Eq. (20) is
attained for the sequence (bn)n≥2 given by

bn =

{ (
|an| − (n+ 1)βn

∑
m∈I (βm|am|)−δ∑
m∈I β

2
m(m+1)

)
ei arg an for n ∈ I,

0 for n ∈ Ic,

where we use the fact that Eq. (20) holds in the triangle inequality if arg an = arg bn and apply this to Eq.
(38). To complete this proof, we note that

∞∑
n=2

βn|bn| =
∑
n∈I

[
βn

(
|an| − (n+ 1)βn

∑
m∈I (βm|am|)− δ∑
m∈I β

2
m(m+ 1)

)]

=
∑
n∈I

(βn|an|)−

(∑
n∈I

(βn|an|)− δ

)
= δ.

That is, g(z) = z +
∑∞
n=2 bnz

n ∈ A(βn, δ) and

dist(f,A(βn, δ)) =

(
π inf

∞∑
n=2

(|an| − |bn|)2

n+ 1

)1/2

=

(
π
∑
n∈Ic

|an|2

n+ 1
+ π

(∑
n∈I(βn|an|)− δ

)2∑
n∈I(β

2
n|an|)

)1/2

.

The proof is complete. 2

4. Applications on starlike and convex functions of order α

In this section, we provide some applications of our results to the classes of starlike and convex functions of
order α . Here, we recall some sufficient coefficient inequality conditions for functions to be starlike and convex
of order α . The following results are required.

Theorem 8 [27] Let f(z) = z +
∑∞
n=2 anz

n ∈ A .
1. If f satisfies the inequality

∞∑
n=2

(n− α)|an| ≤ 1− α, (39)

then f ∈ S∗(α) . The converse is also true when f ∈ T .
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2. If f satisfies the inequality
∞∑
n=2

n(n− α)|an| ≤ 1− α, (40)

then f ∈ K(α) . The converse is also true when f ∈ T .

We denote by S∗
α and Kα the subclass of S defined by Eqs. (39) and (40), respectively. We note that

S∗
α ⊂ S∗(α) ⊂ S∗ and Kα ⊂ K(α) ⊂ K.

By applying Corollary 2, we obtain the fact that all functions in S∗
α (and also Kα ) are univalent; that

is, S∗
α ⊂ S and Kα ⊂ S . Theorem 3 also gives us the extension distortion inequalities for the functions in S∗

α

and Kα , which implies Theorem 4 and Theorem 6 in [27]. In addition, the invariant properties of classes S∗
α

and Kα under some known operators can be easily derived by using Theorem 6.

Theorem 9 The classes S∗
α and Kα are invariant under the Bernardi–Libera integral operator defined in Eq.

(10). That is,
Lγ [S∗

α] ⊂ S∗
α, and Lγ [Kα] ⊂ Kα.

Next, we apply Theorem 7 to solve the best approximation problem in the class S∗
α and Kα . The

following theorem can be derived by using the same techniques of Theorem 3 in [22] and the characterization of

S∗(α) and K(α) , i.e. f ∈ S∗
α ⊂ S∗(α) ⇐⇒ Re

{
zf ′(z)
f(z)

}
> α and f ∈ Kα ⊂ K(α) ⇐⇒ Re

{
1 + zf ′′(z)

f ′(z)

}
> α .

Theorem 10 For f ∈ A , then:
1. dist(f,S∗

α) = 0 if and only if f ∈ S∗
α .

2 . dist(f,Kα) = 0 if and only if f ∈ Kα .

4.1. Starlike functions of order α

By Eq. (39), we have βn = n−α
1−α . Applying Theorem 7, we obtain the best starlike order α approximation

theorem.

Theorem 11 Suppose that f ∈ A and limn→∞
|an|
n2 = 0 .

If
∑∞
n=2(n − α)|an| ≤ 1 − α , then dist(f,S∗

α) = 0 , where the infimum value of dist(f,S∗
α) is attained

for g = f ∈ S∗
α .

If
∑∞
n=2(n− α)|an| > 1− α , then

dist(f,S∗
α) =

(
π
∑
n∈Ic

|an|2

n+ 1
+ π

(∑
n∈I((n− α)|an|)− (1− α)

)2∑
n∈I((n− α)2(n+ 1))

)1/2

,

where the infimum is attained for the function g(z) = z +
∑∞
n=2 bnz

n ,

bn =

{ (
|an| − (n− α)(n+ 1)

∑
m∈I ((m−α)|am|)−(1−α)∑

m∈I(m−α)2(m+1)

)
ei arg am , for n ∈ I,

0, for n ∈ Ic.
(41)
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Remark 12 By setting α = 0 in Theorem 11, we obtain Theorem 5 in [21].

Next, we provide an example to demonstrate our theoretical results.

Example 2 Let 0 ≤ α < 1 . Consider the function fa,b : D → C defined by fa,b(z) = z + azn + bzm , where
2 ≤ n < m and a, b ∈ C are fixed constants.

From Theorem 8 and Theorem 11, we obtain the following.
If (n− α)|a|+ (m− α)|b| ≤ 1− α , then fa,b ∈ S∗

α and dist(fa,b,S∗
α) = 0.

If (n − α)|a| + (m − α)|b| > 1− α , then we distinguish following cases. If |a| ≥ (n−α)(n+1)
(m−α)(m+1) |b| +

1−α
n−α

we have N = 2 and I = {i2} = {n} , and if |b| ≥ (m−α)(m+1)
(n−α)(n+1) |a| +

1−α
m−α we have N = 2 and I = i2 = m .

Otherwise, we have N = 3 and I = {i2, i3} = {n,m} . We then obtain

dist(fa,b,S∗
α) =



(1−α)
√
π

(n−α)
√
n+1

(
(n+1)(n−α)2
(m+1)(1−α)2 |b|

2 +
(
n−α
1−α |a| − 1

)2)1/2

if |a| ≥ (n−α)(n+1)
(m−α)(m+1) |b|+

1−α
n−α ,

(1−α)
√
π

(m−α)
√
m+1

(
(m+1)(m−α)2
(n+1)(1−α)2 |a|2 +

(
m−α
1−α |b| − 1

)2)1/2

if |b| > (m−α)(m+1)
(n−α)(n+1) |a|+

1−α
m−α ,

√
π|(n−α)|a|+(m−α)|b|−1|√

(n+1)(n−α)2+(m+1)(m−α)2
if otherwise,

where the infimum is attained for the function ga,b : D → C , defined by

ga,b(z) =


z + 1−α

(n−α)|a|az
n if |a| ≥ (n−α)(n+1)

(m−α)(m+1) |b|+
1−α
n−α ,

z + 1−α
(m−α)|b|bz

m if |b| > (m−α)(m+1)
(n−α)(n+1) |a|+

1−α
m−α ,

z + cne
i arg azn + cme

i arg bzm if otherwise,

where

cn =
(m− α)2(m+ 1)|a| − (m− α)(n− α)(n+ 1)|b|+ (1− α)(n− α)(n+ 1)

(n− α)2(n+ 1) + (m− α)2(m+ 1)
,

and

cm =
−(m− α)(m+ 1)(n− α)|a|+ (n− α)2(n+ 1)|b|+ (1− α)(m− α)(m+ 1)

(n− α)2(n+ 1) + (m− α)2(m+ 1)
.

Let n = 3 and m = 5 . For a = −0.1 , it is easy to check that if b = −0.05 then fa,b ∈ S∗
0.5 ⊂ S∗ , if

b = −0.1 then fa,b ∈ S∗ but f /∈ S∗
0.5 , and fa,b /∈ S∗ for b = −0.5 . Figure 1 shows the starlikeness of fa,b

when b = −0.05,−0.1 and non-starlikeness when b = −0.5 . Figure 2 shows the values of dist(fa,b,S∗
α) , when

|a| = 0.1 , 0 ≤ |b| ≤ 1 with α = 0, 0.25, 0.50, 0.75 .

4.2. Convex functions of order α

By Eq. (40), we have βn = n(n−α)
1−α . Applying Theorem 7, we obtain the best convex order α approximation

theorem.

Theorem 13 Suppose that f ∈ A and limn→∞
|an|
n3 = 0 .
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Figure 1. The image of the unit disk on the polynomial fa,b defined in Example 2, for a = −0.1 with b = −0.05 (left),
b = −0.1 (center), b = −0.5 (right).
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Figure 2. The value of dist(fa,b,S∗
α) when |a| = 0.1 with α = 0, 0.25, 0.50, 0.75 .

If
∑∞
n=2 n(n− α)|an| ≤ 1− α then dist(f,Kα) = 0 , where the infimum value of dist(f,Kα) is attained

for g = f ∈ Kα .
If
∑∞
n=2 n(n− α)|an| > 1− α then

dist(f,S∗
α) =

(
π
∑
n∈Ic

|an|2

n+ 1
+ π

(∑
n∈I(n(n− α)|an|)− (1− α)

)2∑
n∈I((n(n− α))2(n+ 1)

)1/2

,

where the infimum is attained for the function g(z) = z +
∑∞
n=2 bnz

n ,

bn =

{ (
|an| − (n− α)n(n+ 1)

∑
m∈I (m(m−α)|am|)−(1−α)∑

m∈I(m(m−α))2(m+1)

)
ei arg an , for n ∈ I,

0, for n ∈ Ic.
(42)
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Remark 14 By setting α = 0 in Theorem 13, we obtain Theorem 5 in [22].

Example 3 Let 0 ≤ α < 1 . Consider the function fa,b : D → C defined by fa,b(z) = z + azn + bzm , where
2 ≤ n < m and a, b ∈ C are fixed constants.

From Theorem 8 and Theorem 11, we obtain the following:
If n(n− α)|a|+m(m− α)|b| ≤ 1− α , then fa,b ∈ S∗

α and dist(fa,b,S∗
α) = 0.

If n(n−α)|a|+m(m−α)|b| > 1− α , then we distinguish the following cases. If |a| ≥ n(n−α)(n+1)
m(m−α)(m+1)|b| +

1−α
n(n−α) we have N = 2 and I = {i2} = {n} , and if |b| ≥ m(m−α)(m+1)

n(n−α)(n+1) |a| + 1−α
m(m−α) we have N = 2 and

I = {i2} = {m} . Otherwise, we have N = 3 and I = {i2, i3} = {n,m} . We then obtain

dist(fa,b,Kα) =



(1−α)
√
π

n(n−α)
√
n+1

(
(n+1)(n(n−α))2
(m+1)(1−α)2 |b|2 +

(
n(n−α)
1−α |a| − 1

)2)1/2

for |a| ≥ (n−α)n(n+1)
(m−α)m(m+1) |b|+

1−α
n(n−α) ,

(1−α)
√
π

m(m−α)
√
m+1

(
(m+1)(m(m−α))2

(n+1)(1−α)2 |a|2 +
(
m(m−α)

1−α |b| − 1
)2)1/2

for |b| > (m−α)m(m+1)
(n−α)n(n+1) |a|+ 1−α

m(m−α) ,
√
π|n(n−α)|a|+m(m−α)|b|−1|√

(n+1)(n(n−α))2+(m+1)(m(m−α))2
for otherwise,

where the infimum is attained for the function ga,b : D → C , defined by

ga,b(z) =


z + 1−α

n(n−α)|a|az
n for |a| ≥ n(n−α)(n+1)

m(m−α)(m+1) |b|+
1−α

n(n−α) ,

z + 1−α
m(m−α)|b|bz

m for |b| > m(m−α)(m+1)
n(n−α)(n+1) |a|+ 1−α

m(m−α) ,

z + cne
i arg azn + cme

i arg bzm for otherwise,

where

cn =
(m(m− α))2(m+ 1)|a| −m(m− α)n(n− α)(n+ 1)|b|+ (1− α)n(n− α)(n+ 1)

(n(n− α))2(n+ 1) + (m(m− α))2(m+ 1)
,

and

cm =
−m(m− α)(m+ 1)n(n− α)|a|+ (n(n− α))2(n+ 1)|b|+ (1− α)m(m− α)(m+ 1)

(n(n− α))2(n+ 1) + (m(m− α))2(m+ 1)
.

Let n = 3 and m = 5. For a = −0.05 , it is easy to check that if b = −0.005 then fa,b ∈ K0.5 ⊂ K ,
if b = −0.01 then fa,b ∈ K but f /∈ K0.5 , and fa,b /∈ K∗ for b = −0.1 . Figure 3 shows the convexity of fa,b
when b = −0.005,−0.01 and nonconvexity when b = −0.1 . Figure 4 shows the values of dist(fa,b,Kα) when
|a| = 0.05 , 0 ≤ |b| ≤ 1 with α = 0, 0.25, 0.50, 0.75 .

5. Observation and concluding remarks
A general form of subclasses of analytic functions is introduced so that it can be used to study the properties
of the class that contains nonunivalent functions. The new subclass of analytic functions is proposed conse-
quently by imposing certain coefficient constraints with a nonnegative sequence of real numbers. By assigning
appropriate values to the sequence (βn)n≥2 and δ , we can derive the corresponding results for several simpler
subclasses of the class A(βn, δ) from each of our results. In Section 1, we discussed the radii of univalence
and gave some sufficient conditions for the univalent property of the class A(βn, δ) . By using the coefficient
inequality, we obtained the distortion and invariant properties for the class A(βn, δ) . In Section 3, the problem
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Figure 3. The image of the unit disk on the polynomial fa,b defined in Example 3, for a = −0.05 with b = −0.005
(left), b = −0.01 (center), b = −0.1 (right).
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Figure 4. The value of dist(fa,b,Kα) when |a| = 0.05 with α = 0, 0.25, 0.50, 0.75 .

of finding the best approximation in such a class was solved by using a semiquadratic programming technique.
In Section 4, we applied our obtained results to the subclass of starlike and convex functions of order α . Some
basic properties and the best approximation problems have been pointed out. By using the presented results, we
can obtain the best approximation in other known classes, which gives generalized results and results obtained
in [17, 21, 22]. In Section 4, we discussed that the results in [22] and [21] can be obtained by setting α = 0 in
Theorem 11 and Theorem 13, respectively. In addition, by taking βn = n

α [2(n− 1)−α] , we immediately obtain
Theorem 2 in [17]. We complete this paper by remarking that the presented results can be used to investigate
some properties of subclasses of analytic functions satisfying certain coefficient inequality.
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