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Abstract: Central Anatolia is quiet in terms of seismic activity, and rarely earthquakes up to magnitude 5.6 occur in the
inner part of the Anatolian block or Anatolian platelet. Southeast of Ankara, the capital city of Turkey, two earthquake
sequences with maximum magnitude of 5.6 occurred in 2005 and 2007. We discuss these shallow crustal deformation
in the Anatolian platelet, in the light of seismological data from these earthquakes (M, = 5.6) and their aftershocks.
Following the earthquake of December 20, 2007 near Bala town, Ankara, we installed seven temporary stations in the
first 24 hours to observe the aftershock activity and these operated for more than 2 months. Approximately 920
aftershocks with magnitudes 5.5>M, >0.8 were located precisely. This is the first well-observed earthquake activity in
the Central Anatolian section of the Anatolian platelet. We also re-analyzed the 2005 Bala earthquake sequence. The
distribution of the well-located aftershocks and the focal mechanism solutions of the December 20, 2007 event define
NW-SE-oriented right-lateral strike-slip faulting on a possible weak zone, namely the Afsar fault zone, as a result of the
internal deformation in the Anatolian platelet. Our analyses seem to indicate that the Bala earthquake sequences are
probably related to increasing seismic activity, following devastating 1999 earthquakes in the Marmara region, to the
west.

Key Words: Afsar fault zone, aftershock, Coulomb, Central Anatolia, crustal deformation, earthquake

Bala (Ankara) Depremleri: Anadolu Levhasinin Orta Anadolu

Kesiminde S1g Kabuk Deformasyonuna Katkilar

Ozet: I¢ Anadolu depremsellik agisindan sessizdir ve Anadolu blogu iginde az da olsa 5.6 biiyiikliigiine kadar depremler
meydana gelmektedir. Tiirkiyenin baskenti Ankaranin giineydogusunda 2005 ve 2007 yillarinda maksimum
biiyiikliikleri 5.6 olan iki deprem dizisi meydana gelmistir. Bu ¢aliymada, bu depremler ve art¢1 sarsintilarindan elde
edilen sismolojik veriler 1s1ginda Anadolu levhasinin sig kabuk deformasyonu tartisilmistir. Ankaranin Bala ilgesinde
20 Aralik 2007 tarihinde meydana gelen depremden sonraki ilk 24 saat i¢inde bolgeye yedi gegici deprem istasyonu
kurulmus ve yaklagik 2 ay ¢alistirilmustir. Bityiikliikleri 5.5>M;>0.8 arasinda olan yaklagik 920 ar¢1 sarsintinin hassas
lokasyonu yapilmistir. Bu, Anadolu levhasinin Orta Anadolu boliimiindeki en iyi gozlemlenebilen deprem aktivitesidir.
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Ayrica 2005 Bala depremleri de tekrar analiz edilmistir. Cok iyi konumlandirilmis 20 Aralik 2007 depremi artg1 sarsintt
dagilimi ve fay diizlemi ¢oziimleri, Anadolu levhasinin i¢ deformasyonu nedeniyle olasi bir zayiflik zonunda (Afsar fay
zonu) KB—-GD yonelimli sag-yanal dogrultu atimli faylanmanin meydana geldigini gostermektedir. Yapilan analizlerde,
Bala depremlerinin Marmara Bolgesinde meydana gelen 1999 depremleri sonrasinda daha dogudaki sismik aktivite

artisryla iliskili olabilecegini gostermektedir.

Anahtar Sozciikler: Afsar fay zonu, artgi sarsint;, Coulomb, Orta Anadolu, kabuk deformasyonu, deprem

Introduction

In line with increased funding for earthquake
research in Turkey (Inan et al. 2007), the TUBITAK
Marmara Research Center (MRC) Earth and Marine
Sciences Institute (EMSI) and the General
Directorate of Disasters Affairs (GDDA) Earthquake
Research Department (ERD) initiated, with financial
support from the State Planning Organization
(SPO), a new project to establish the necessary
human and equipment infrastructure for rapid
aftershock studies in Turkey. The aim is to determine
the characteristics and behaviour of destructive
earthquakes (M, > 6.0) by obtaining detailed
aftershock records and GPS measurements. The first
real experiment under the scope of this project was
done following the December 20, 2007 Bala
(Ankara) Earthquake (09:48 UTC, M, = 5.6). One of
the main objectives of this project is immediate
deployment of seismology stations after the
mainshock in order to observe the earliest aftershock
activity. Hence, the first station was deployed 9 hours
after the mainshock. Although the earthquake is
relatively weak (M;= 5.6), the team decided to
monitor aftershock activities for two reasons: firstly
that the earthquake was felt strongly in the Capital
City, Ankara which is about 50 km northwest of the
epicenter; and secondly that the epicentre area is
quite close to the Tuz Golii (Salt Lake) Fault Zone
(TGFZ) which is a major fault zone in the region that
has been inactive for a long time (Figure 1).

In this study, we present detailed aftershock
analyses of the December 20, 2007 Bala earthquake,
and also we re-analyse the moderate size earthquake
(M, = 5.3) that occurred on July 30, 2005 in the same
region and its large aftershocks.

Geological Setting

As shown in Figure 1A, the Anatolian platelet (AP) is
bounded to the north by the giant North Anatolian
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Fault System (NAFS) and on the south-southeast by
the East Anatolian Fault System (EAFS) (Sengor
1979). The NAFS and the EAFS facilitate the tectonic
escape of the Anatolian Block to the west (Sengor &
Yilmaz 1981). The western part of the AP shows a
transition to the Aegean extensional system (AES).
The central area does not host major faults and
seems to achieve its tectonic escape by moving
westward along the NAFS and EAFS without much
internal deformation (Sengér & Yilmaz 1981;
Reilinger et al. 1997; McClusky et al. 2000). The AP
contains palaeotectonic structures such as the Izmir-
Ankara-Erzincan Suture Zone (IAESZ), the Sakarya
Continent (SC) and the Kirsehir Block (KB).
Palaeomagnetic studies show that, while anti-
clockwise rotation (~25° ccw) is observed east of
Kirsehir Block (Figure 1A), neotectonic units in the
western part of the Anatolian platelet show ~18°
clockwise rotation (i.e. Tatar et al. 1996; Platzman et
al. 1998; Giirsoy et al. 1998; Piper et al. 2002).
However, minor internal deformation includes
neotectonic secondary strike-slip faults and
extensional basins (Bozkurt 2001). Kogyigit &
Deveci (2008) and Kogyigit (2009) reported that the
direction of the compression in the region was NW-
SE until late Pliocene, when a neotectonic regime
was initiated controlled by active strike-slip faulting
caused by approximately N-S compression. The
right- and left-lateral faults trend NW-SE and NE-
SW, respectively (Figure 1B). The most important
structure is the Tuz Golii Fault Zone (TGFZ, first
named by Beekman 1966) with a mapped length of
about 200 km (Kogyigit & Beyhan 1988; Cemen et al.
1999). Gortr et al. (1984) point out that the TGFZ
has been active since the Oligocene, and Giirsoy et al.
(1998) mention that the TGFZ is a boundary zone
between blocks with contrasting deformation. Tatar
et al. (1996) reported that Central Anatolia shows
counterclockwise rotation since the late Eocene and
Cemen et al. (1999) interpreted that this rotation was
probably responsible for the Neogene movement
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along the TGFZ and other northwest-trending faults
of the region. One of the main questions is the
mechanism of the TGFZ. Saroglu et al. (1987)
observed that the TGFZ is a reverse fault with right-
lateral strike-slip component. Beekman (1966) and
Kogyigit & Beyhan (1998) reported that the TGFZ is
a right-lateral strike-slip fault zone with a normal slip
component. Dirik and Génciioglu (1996) remarked
that the fault zone consists of parallel to subparallel,
normal and oblique right-lateral strike-slip faults
displaying a step-like half-graben and horst-graben
pattern. On the other hand, Cemen et al. (1999)
mentioned that the fault may have been formed as a
normal fault, suggesting extension or strike-slip
faulting with a normal component of movement
indicating major transtension at the time of its
initiation. However, as all the faults have no
important seismological activity (M>4.0-5.0) at
present, there is no information about their deep
structure in the region. Aydemir (2009) used
national earthquake catalogues and interpreted that
the area to the south-southeast of the TGZF is
completely (seismically) inactive because of the
absence of small earthquakes (M<3.0). This
interpretation may not be valid because the
observation power of the national seismological
networks is insufficient to locate the earthquakes
M<3.0 in Turkey. Moderate size earthquakes
occurring near the TGFZ are thus important as they
might reveal clues about possible future activity.

The Bala earthquakes probably occurred on the
boundary of the two major palaeotectonic structures
(Sakarya Continent and Kirsehir block) and are the
first seismic signature, well recorded in the
instrumental period. There is no reliable historical
earthquake information for this area. The
aftershocks of the July 30, 2005 (M;= 5.3)
earthquake, which was the first moderate size
earthquake in the region, were recorded only by the
national seismic networks. Because of large
hypocentral uncertainties (>5 km) and lack of
surface deformation, researchers presented different
opinions for the mechanism of this seismic activity.
Emre et al. (2005) mentioned that the earthquake
occurred in an area extending NW-SE (~7 km long)
and NE-SW (~25 km long) in a right-lateral
conjugate fault system. They observed that the main
shock occurred on a NE-SW right-lateral strike-slip

fault and the aftershocks also concentrated along a
NE-SW fault. Kalafat et al. (2005) inverted the
waveforms from the national seismograph network
and found a NE-SW right-lateral strike-slip
mechanism (strike 32°, dip 84°, rake 166°, depth 20
km). This solution conflicts with the global moment
tensor solutions (i.e. Harvard-CMT, USGS-MT) of
the 2005 Bala earthquake but agrees with the NE-
SW conjugate faults described by Emre et al. (2005).
However, Kogyigit & Deveci (2008) and Kogyigit
(2009) indicated that the earthquake occurred on a
NE-SW left-lateral strike-slip fault segment north
and northeast of Bala. Detailed analyses of the two
earthquake sequences are discussed in the next
section, in the hope that they will shed light on the
character of the deformation in the region.

Data and Methods

We collected waveforms from the MRC, ERD and
the Kandilli Observatory and Earthquake Research
Institute (KOERI) broad-band seismic networks for
the mainshock. To monitor the aftershocks, seven
off-line stations were installed (Table 1, Figure 2), all
configured for 100 sps continuous data acquisition.
Their locations were chosen according to a good
azimuthal distribution and the site structure
(bedrock or at least well-compacted soil) within a 30
km radius around the main shock area. They started
recording about 12 hours after the main shock and
were removed on 28 February 2008. In the
observation period, more than 11,000 P- and S-
arrivals were handpicked to locate the events.

The hypocentral parameters of the earthquakes
were computed with the Hypocenter location
algorithm described by Lienert & Havskov (1995).
The program tries to minimize the time residuals of
the phases between observed and theoretical arrival
times using a flat-earth layered velocity model.
Therefore, accuracy of velocity structure is one of the
important parts of location calculations. We tested
available models for hypocentral parameters with
minimum errors. Two regional studies give detailed
velocity structure (Table 2). Toksoz et al. (2003)
reported a velocity model for the Central Anatolia
after an experimental explosion for seismological
instrument calibration study near the town of
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Table 1. The locations of seismic stations deployed immediately after the December 20, 2007 Bala mainshock. One Giiralp 3TD
broad-band seismometer is used in Bala town. The other stations have Reftek-130 (R130) recorder with OYO Geospace GS-

11D geophone.
Code Latitude (°N) Longitude (°E) Elevation (m) Town/Village Instrument
BLA 39.5427 33.1230 1312 Bala Giiralp 3TD
DRP 39.3416 32.7423 1120 Durupiar R130, GS-11D
BKS 39.1981 33.2628 973 Biiyiikkisla R130, GS-11D
CEV 39.4518 33.5685 1020 U(;ev R130, GS-11D
SOF 39.2883 33.0964 958 Sofular R130, GS-11D
OGB 39.6850 32.8303 1080 Ogulbey R130, GS-11D
YAR 39.1703 32.9270 1170 Yarash R130, GS-11D

Keskin, ~50 km NE of Bala. The model has a top
layer with V= 5.0 km/s P wave velocity and contains
gradually increasing velocities. The other model
presented by Ergin et al. (2003) after a study in a soda
mine area near the town of Kazan (~90 km N of
Bala). They used the velest algorithm of Kissling et al.
(1994) and described four crustal layers. The top
layer of the model has a slow P-wave velocity,
generally representing the sediments in the area.
There are two other velocity boundaries at 6 and 20
km depth. The model given by Ergin et al. (2003)
provided better time residuals at the stations and
generated lesser uncertainties in the location
parameters. The average seismic velocity of the
uppermost two layers (sediments) in this model
agrees well with 2D seismic prospecting data
(Aydemir & Ates 2006). The shear-wave velocities
(V) are calculated by the ratio V.= V,/1.73. Average
time residuals for aftershocks (RMS) should be less
then 0.3 s in the inversion location.

Calculation of local Richter magnitude (M,) is
one of the important points that must be mentioned
here. Although 4.5 Hz geophones are easy to install
in the rupture zone quickly, they are difficult for
magnitude calculations because of their narrow
frequency response and high damping ratio.
Amplitudes of earthquake waveforms sensed by
geophones decrease rapidly and waveform durations
become extremely short compared to broad-band
seismometer records. So, we did not find any
aftershock coda-duration magnitudes exceeding 3.0.
In order to calculate local magnitudes (M), we
arranged a methodology by using the Seismic
Analysis Code (Goldstein et al. 1998). First, the
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sensor and digitizer responses are separated from the
velocity records. Then, each waveform is convolved
with the Wood-Anderson seismometer response to
generate displacement record. The maximum zero-
to-pick horizontal amplitude was selected and M;
was calculated for each station. The minimum and
maximum extreme values (larger than standard
deviation) were removed and the remaining
magnitudes were averaged for that event. In fact, the
maximum amplitude at a station does not project
real value for M, because the recorded waveforms do
not contain low frequencies (i.e. 1 Hz). Nevertheless,
this is the only way to approximate the magnitudes of
the aftershocks. The magnitudes of the selected large
aftershocks which occurred during the survey were
compared with values in the national networks
(Table 3). Although the coda-duration magnitudes
from geophone records (this study-m,) were too

Table 2. The crustal seismic velocity models for the region.
Models A and B were reported by Toksoz et al. (2003)
and Ergin et al. (2003) respectively. In this study,
model B was accepted. h and V, indicates layer
thickness and P-wave velocity, respectively. The shear-
wave (V) velocities were calculated by V.= V,/ 1.73

ratio.

Model - A Model - B
h (km) v, (km/s) h (km) V, (km/s)
0-5 5.0 0-1 2.5
5-10 5.5 1-6 5.7
10-20 6.1 6-20 6.1
20 - 36 6.4 20-33 6.8
36— 7.8 33 - 8.0
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Table 3. Comparison of the magnitudes reported by different agencies for selected aftershocks. The ERD and KOERI calculate the
magnitudes from national broad-band seismology stations. The values in this study are from the temporary aftershocks
observation stations which were equipped with geophones.

This Study ERD KOERI
Date Time
(dd.mm.yyyy) (hh:mm) m, M, m, M, m, M,
26.12.2007 23:47 3.8 55 5.3 5.5 - 5.5
27.12.2007° 13:47 2.9 5.0 4.9 5.0 - 4.8
27.12.2007° 17:56 33 4.3 4.2 4.3 - 4.0
01.02.2008 09:11 2.5 4.4 - 44 - 4.1

small, as expected, there was no significant
difference between the local magnitudes (M, ). Based
on our approach, the local magnitudes of the
aftershocks were calculated to be between 0.8 and
5.5.

Although we tried to minimize the errors of
location parameters, several factors such as network
geometry, phase reading quality and crustal
structure uncertainties limited our endeavours.
Relative earthquake location methods can improve
absolute hypocentre locations. For this purpose, we
used a double-difference algorithm (hypoDD)
developed by Waldhauser & Ellsworth (2000). The
hypoDD algorithm assumes that the hypocentral
separation between two earthquakes is small
compared to the event-station distance and the scale
length of velocity heterogeneity, so that the ray paths
between the source region and a common station are
similar along almost the entire ray path. If so, the
difference in travel times for two events observed at
one station can be accurately attributed to the spatial
offset between the events (Fréchet 1985; Got et al.
1994; Waldhauser & Ellsworth 2000). By linking
hundreds or thousands of earthquakes together
through a chain of nearby shocks, it is possible to
obtain high-resolution hypocentre locations over
large distances without the use of station corrections.
Two inversion approaches are used in a standard
hypoDD analysis. The singular value decomposition
(SVD) method is very efficient for the well-
conditioned systems which have small earthquake
clusters (~100 events). However, because of the large
size of our data and unknown parameters for the
large cluster (more than 200 events), SVD cannot be
used effectively and the conjugate gradient algorithm
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(LSQR), which solves the damped least-squares
problem, was selected to save computer memory
usage, computation time and efficiency of the
algorithm (see Waldhauser & Ellsworth 2000 for
details). After relocating the hypocentres, horizontal
and vertical error assessment must be done carefully.
Unfortunately SVD gives proper least square errors,
LSQR reports underestimated errors and these errors
must be reviewed by statistical resampling methods
and by relocating small subsets of events using SVD
mode.

We also read P-wave first motion polarities to
tind out focal mechanism solutions of the mainshock
and the large aftershocks (M;>4.0). All available
polarities from national seismic stations and the
aftershock network were read carefully and
ambiguous polarities were never added to the
solutions. The takeoff angles were calculated
according to the same velocity structure used for the
location determination. The possible nodal planes
which agree with the first motion polarities were
searched, running the focmec program (Snoke et al.
1984). No polarity error is allowed in the solutions.
Events with multiple acceptable solutions indicating
different mechanism or with faulting parameters
uncertainties exceeding +20° were not reported in
this study.

Because of the good data set for the 2007 Bala
earthquake and its aftershocks, we tried to apply
Coulomb failure stress change analyses to
understand the stress change in the region caused by
the earthquakes. We followed similar methods to
those described in King et al. (1994) and Stein et al.
(1997) and used the program Coulomb 3.0 (Lin &
Stein 2004; Toda et al. 2005). We assumed an elastic
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half-space with a shear modulus of 3.2x10"
dyne-cm” and Poisson's ratio of 0.25 in calculations.
In this exercise a fault friction of 0.4 was assumed.

Earthquake Sequence

The mainshock of December 20, 2007 was recorded
by the ERD national broad-band seismic network
and the preliminary location was reported as
39.417°N 33.045°E. We collected waveforms from
more than one hundred national stations from the
ERD and KOERI, and re-read the P and S phases to
re-locate the mainshock more precisely. We
calculated the Bala main shock coordinates as
39.431°N 33.088°E with minimum horizontal error
(+2 km). The new location is about 4 km east of the
preliminary reported location. The hypocentre depth
is 4.4+2 km. The main shock was preceded by six
events in the two hours before the main shock (Table
4, Figure 2). Although the magnitudes of the
foreshocks (2.8<m <3.6) are not large enough and
the station distribution is sparse, their locations
agree well with the aftershock distribution described
in the next section. The first event (A) occurred at
the north end of the region and the next four events
(B, C, D and F) were in the south. Only one event (E)
was far from the activity area.

We located 923 aftershocks occurring in 71 days
with the Hypocenter algorithm. The horizontal and
vertical location errors are 1-2 and 1-3 km
respectively and the average station time residuals
(RMS) are 0.15 seconds. The aftershocks occurred in
an approximately 20x5 km narrow band trending
NW-SE. To improve the hypocentre locations with

hypoDD analysis, we preprocess in order to select
data from connected earthquakes to build a network
of links between event pairs. The maximum
hypocentral separation was chosen as 2 km. The
minimum number of phases for an event-pair to be
recorded at a common station is defined as 8, which
is the minimum value to solve unknown parameters
of pairs (6 for space and 2 for time). Several
inversions are executed with different model
parameters to find a stable solution. We could
relocate 706 aftershocks precisely. 217 events were
excluded in inversion. 68 of them are very shallow
events (~1 km) with poor vertical control. The other
149 events have also poor links with neighbouring
events and cannot be used in the iterations. The
relocated events are shown in Figure 3. The
uncertainties of the hypocentre locations after
hypoDD (LSQR) analyses are tested with two
different methods. First we select highly correlated
event-pairs which represent three different parts in
the aftershock area. These sub-clusters are shown in
Figure 3 with the letters N, C and S which refer to the
north, centre and south sub-clusters respectively.
Each selected event-pair has P and S phase data from
at least 5 common stations and has 20 neighbouring
event-pairs to form a good continuous chain. The
number of events in each sub-cluster and their
horizontal and vertical errors are given in Table 5.
SVD analysis of hypoDD shows the maximum
horizontal uncertainty is about 400 m and the
vertical errors are little more than 700 m. Our second
test is based on a statistical approach. We use the
same initial catalogue data and inversion parameters
in the final LSQR solution. We add random numbers

Table 4. The foreshock parameters of the December 20, 2007 Bala Earthquake reported by the ERD.

Event Date Time Latitude Longtitude Depth Magnitude
(dd.mm.yyyy) (hh:mm) (°N) (°E) (km) (my)
Foreshock A 20.12.2007 07:36 39.4698 33.0732 7 3.6
Foreshock B 20.12.2007 07:51 39.3747 33.1142 6 3.2
Foreshock C 20.12.2007 08:12 39.4043 33.1433 7 2.8
Foreshock D 20.12.2007 08:18 39.3763 33.1180 7 3.1
Foreshock E 20.12.2007 08:27 39.4398 32.9462 7 2.8
Foreshock F 20.12.2007 08:57 39.3542 33.1430 6 33
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Table 5. The horizontal (EX},) and vertical (E,) errors of the
highest correlated events before and after SVD
analyses in hypoDD. The earthquakes were selected
from the three sub-clusters of the Bala aftershocks
(Figure 3A). N- North, C- Centre, S- South.

Before hypoDD After hypoDD
(m) (m)
Region Number
of Events E, E, E, E,
N 90 +1500 +2800 < +400 <700
C 130 +1600 +2200 <+£300 <700
S 134 +1500 +2000 <+200 <500

between +1 km to the initial absolute locations in X,
Y and Z directions. This allows us to shift the
hypocentre location in space and re-link events
randomly. After inversion, the location shift of each
event is calculated. The process is repeated several
times and 1000 well-conditioned inversion solutions
are collected. Approximately 175000 samples are
acquired to see the statistical distribution. The
outliers in the data set are removed using the
interquartile range (IQR) method. More than 95% of
the total samples remain after the IQR analysis. The
dataset represents a normal distribution and the 95%
confidence interval (+20) shows location variation
interval according to the different initial models
(Figure 4). This test shows latitudinal, longitudinal
and vertical location changes are not more than +230
m, 260 m and +550 m respectively.

The aftershock zone developed quickly and 45%
of the total 923 recorded events occurred in the first
10 days. Another 45% of them occurred in January
and then the number decreased dramatically in the
last month of the observation. Although the
aftershocks align along a NW-SE narrow zone (i.e.
A-A profile), the events shift eastwards in the
southern (S) segment. Moreover, another small
cluster with a few events occurring on the 54" and
55" days of the sequence was seen in the NE of the
area (near Cigdemli village). The aftershock
temporal behaviour is given in Figure 5, according to
the locations on the A-A’ profile in Figure 3. The
mainshock occurred in the northern part (~6 km) of
the cluster and the first sub-cluster activity occurred
in the SE (~13-16 km) for a few days. After

December 26, further activity began in the central
segment (~8-10 km) and also in the northern part.
However, the large aftershocks occurred close to the
mainshock and north of it (around Afsar village).
These events, especially occurring after January 1,
were not followed by smaller events. However, a few
tremors form small groups in the southern part
(arrows in Figure 5). This can be interpreted as the
asperities on that segment being unable to release its
energy with a single (relatively large) event, and so
generating several micro-earthquakes in a short
time. The spatiotemporal distribution of the Bala
aftershocks indicates that the northern and southern
parts of the deformation area may have different
asperity properties. Although the northern part has
strong asperities which release its energy in
moderate and small events, the southern part
contains several small and weak asperities which
generate micro-earthquakes only.

The depth section of the sequence shows that the
earthquakes occurred between 3 and 9 km deep
(Figures 3 & 6A). No event is deeper than 14 km.
Those events that especially occurred near the
mainshock and north of it align within a very narrow
band. The depth sections of these parts show that
large aftershocks occurred on a vertical plane which
may indicate strike-slip fault segments (Figure 6B,
C). However, there are many more events in central
part and they scatter across a wider area within the
central part (Figure 6D). The southernmost sub-
cluster is elongated in an approximately E-W
direction and events concentrate at 4-6 km depth
(Figure 6F). Deeper aftershocks (8-10 km) were also
observed in this segment.

Fault Mechanisms and Stress Changes

We collected all available digital records from the
national seismograph networks of ERD and KOERI
to read the P-wave first motion polarities of the 2005
and 2007 Bala earthquakes (M;>4.0). The
parameters of the earthquakes are summarized in
Table 6 as location, local Richter magnitude and
faulting parameters. The strike, dip and rake angles
of assumed fault plane and the number of P-wave
first motion polarities are shown in the following
columns. The rupture area is necessary to calculate
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Figure 4. Statistical distribution of event shifts after hypoDD-LSQR inversions with different initial locations. Each
histogram contains about 95% of total samples (~175000). The +2¢ (two times of standard deviation) lines
shows 95% confidence interval.
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Figure 5. Temporal behaviour of the aftershocks in 2007 and 2008. The locations of the events are plotted according to the

A-A profile (NW-SE) in Figure 3. The large aftershocks occurred close to the mainshock and north of it while
the micro-earthquakes form small groups in the southern part. The star is the mainshock (20 December 2007).
The arrows are examples for the small micro-earthquake groups in the southern segment.

the Coulomb failure stress change. Therefore, we
tried to determine the size of the rupture area (LxW)
and average displacement over the fault surface (D,,)
using the generalized assumptions mentioned in
several studies (i.e. Wells & Coppersmith 1994; Mai
& Beroza 2000; Tan & Taymaz 2005, 2006). The fault
plane solutions of 14 events with P-wave first motion
polarities are shown in Figure 7. The focal spheres
are plotted in lower hemisphere projection and
compressional quadrants are shaded. The available
polarities constrain the nodal planes very well and
the uncertainties are less than +5° for most of the
solutions.

The 2005 Bala earthquake has no surface rupture
and has no reliable aftershock record. The only
available data set was from the national

seismological networks in Turkey. The large range of
the location uncertainties of the small events (m,=
3.0-4.0) in the national catalogues (> 5 km) pose
difficulties in interpretation of the aftershock data
for such a small area. So, we tried to relocate the 2005
mainshock and its eight aftershocks to clarify the
deformation in the region (Table 6, Figure 8), based
on the raw waveforms. The waveforms from the two
national networks were collected and the phases
were re-read to discover a better location than that
reported in the catalogues. The phase readings from
the special broadband networks of KOERI in Gélbast
(50 km NW) and Keskin (50 km NE) were also used.
The average location errors of these relocated nine
earthquakes barely exceed +2 km. The mainshock
(#1) and its first large aftershock (#2) occurred in the
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Figure 7. P-wave first motion polarities of the 2005 and 2007 Bala mainshocks and their large (M, > 4.0) aftershocks. The event dates
and origin times are given above the focal spheres (see Table 6). The compressional quadrants are shaded in grey. The black
and white circles refer to up and down P-wave first motion polarities respectively. P and T axes are also represented by the
solid and open diamonds respectively.
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northeastern end of the sequence. The other three
events (#3, #4 and #5) are located between the
mainshock and 2007 activity. If the direction of the
locations is considered, the focal mechanism
solutions indicate NE-SW sinistral strike-slip
faulting in 2005 (Kogyigit 2009). However, there is
no more data to confirm this. The other aftershocks
of August 1, 2005 (#6, #7 and #8) are located in the
same cluster as the 2007 sequence, and might have
occurred on a NW-SE dextral strike-slip fault.

The fault plane solutions of the December 20,
2007 Bala earthquake (#10) and its large aftershocks
align NW-SE and suggest right-lateral strike-slip
faulting. One of the interesting points is that the
latest large aftershocks (#12, #15, #16 and #18) are
located in the northern segment of the cluster.
However, the largest aftershock (#11:26.12.2007,
M, = 5.5) occurred at the junction of the 2005 and
2007 activities. The relatively scattered aftershock
distribution in this area may be caused by these
conjugate earthquake activities, sourced from the
conjugate faulting mentioned by Kogyigit (2009).
Large aftershock activities did not occur south of this
point, except for event #14 which has no reliable
solution. We also found two normal fault
mechanisms with strike-slip component. If right-
lateral motion is considered, the December 27, 2007
(#13, M;= 5.0) and September 11, 2008 (#17, M, =
4.0) events show SW and NE-dipping planes
respectively. The events may be caused by local
extensional forces between strike-slip fault segments.
Unfortunately, there are no sufficiently large events
to allow faulting mechanism in the southernmost
segment to be understood. Therefore, we selected
closer micro-earthquakes to try to find joint fault
plane solutions. The four small groups of events have
similar P-wave polarities and give reliable solutions
(Table 6, Figure 8). While Group A has strike-slip
mechanism, groups B, C and D show normal faulting
which indicates extension in this part of the region.

The length of the TGFZ and its unknown historic
seismic activity raises the question of future
earthquake hazard along the fault, because of the
nearby Bala earthquakes. These earthquakes may be
considered too small to trigger activity on the
neighbouring fault segments. However, King et al.
(1994) pointed out that increases of Coulomb stress

466

of less than 1 bar sometimes appear to be sufficient
to trigger events, depending on the stress level of the
fault segments to be triggered. Thus, we tried to
calculate the static Coulomb stress changes to
understand the relation between the mainshock and
the aftershocks. Because of the uncertainties of the
2005 earthquake sequence mentioned in the
previous sections, we only analyzed the December
20, 2007 earthquake and its large aftershocks. The
stress changes were calculated on specific faults
because there was no reliable information for the
direction and magnitude of the regional stress field.
The average fault plane parameters (strike 130°, dip
80°, rake 180°) from the solutions given in Table 6
was used as the orientation of the specific faults at
the calculation grid points and the locking depth was
chosen as 5 km. The Coulomb stress change of the
December 20, 2007 mainshock is shown in Figure
9A. The four lobes of increased stress rise were
observed at the ends of the ruptured segment. The
distribution of the aftershocks agrees well with this
pattern. Most of them occur on the ruptured
segment because unknown details of the fault
geometry and slip distribution affect stress change in
areas closer to the fault, as mentioned by King et al.
(1994). The southernmost cluster, which shifts to the
east according to the general distribution, occurred
completely in the Coulomb stress rise lobe. The
small cluster observed near Cigdemli village may
also be explained by the stress rise after the
mainshock.

Due to the similar faulting mechanisms and
orientations, the cumulative Coulomb stress change
of the all aftershocks in 2007 and 2008 do not greatly
differ from that of the mainshock (Figure 9B); only
the magnitudes of stress rise/fall change. The rate of
this magnitude change (< 0.01 bar) is dominant in
the NW and the direction of the stress rise lobe in the
SE probably indicates that the Bala earthquakes
cannot lead to stress increase on the Tuz Goli Fault
Zone (TGFZ), because the Bala fault zone is not the
northwestern continuation of the Tuz Golii Fault
Zone.

Discussion

The earthquake area is located near the boundary
between the Kirsehir block and the Sakarya
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Figure 9. The Coulomb stress change analyzes for the Bala earthquakes on specific
faults (strike 130°, dip 80°, rake 180°) at a locking depth of 5 km. (A) The
relationship between the Coulomb stress change of the December 20, 2007
mainshock and its aftershocks (white circles). (B) The cumulative effect of the
all large events (M, > 4.0) in the Bala region in 2007 and 2008. The white lines
are ruptured segments used in the calculations and their lengths are
proportional to L in Table 6. The stress rise and drop areas are in red and blue,
respectively. The contours of stress change values are labelled in bars.
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Continent which palacomagnetic data indicate
rotates anticlockwise. Geological field observations
show that the N-S contractional neotectonic regime
initiated in the Late Pliocene (Kogyigit & Deveci
2008; Kogyigit 2009) causes several conjugate faults
which have surface rupture tens to hundreds of km
long. Following the 1999 Izmit (M, = 7.4) and Diizce
(M, = 7.2) earthquakes, postseismic motions broadly
distributed around coseismic ruptures and increased
the stress transfer to within Anatolia. One of the
attributes of the stress transfer is seen in the GPS
data. Resolvable postseismic changes, by GPS time
series, to the velocity field extend at least as far east
as the location of the continuous GPS station in
Ankara, 200 km SE of the rupture of the devasting
[zmit 1999 earthquakes in the Marmara region of
Turkey. Seven years after the earthquake sequence,
deviations from the interseismic velocity field
decreased to ~3 mm/yr (~15% of pre-earthquake
motion rate) at Ankara (Ergintav et al. 2009).
Another attribute comes from the increasing
seismological activity at the same time. Especially,
NW-SE-trending earthquake activity was observed
between the NAFS and Ankara after the 1999
earthquakes. Figure 10 shows the seismic activity in
the study area before and after the devastating 1999
earthquakes of Izmit (17.08.1999, M= 7.4) and
Diizce (12.11.1999, M= 7.2); the black and yellow
dots depict the earthquakes with M > 3.0 occurring
before and after the 1999 earthquakes, respectively.
The increase in the number of M > 3.0 earthquakes
in the study area following the 1999 earthquake
sequence is interpreted to be the result of stress
transfer to the east with time. The largest event is the
June 6, 2000 Orta-Cankir1 earthquake (M, = 6.0),
which shows N-S-trending left-lateral strike-slip
faulting at shallower depths due to the NW-SE-
directed operation of the principal compressive
stress around the NAFS (Kogyigit et al. 2001), but
becomes N-S normal faulting at greater depths
owing to the variation in fault geometry with depth,
noted by both seismological and InSAR observations
(Taymaz et al. 2007; Cakir & Akoglu 2008). A few
events (M > 4.0) have also occurred in Ankara and
Cankir1 provinces since 2000. These datasets indicate
that the deformation of the Anatolian block in this
area causes moderate size earthquakes in weak
deformation areas such as conjugate fault zones
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(Afsar and Balaban-Kiiredag fault zones in Figure
1B), especially since the stress changes following the
two large earthquakes in 1999.

The location and faulting properties of both the
2005 and 2007 earthquake activities near the town of
Bala (Ankara, Turkey) seem to hold a key in
understanding the regional deformation. Based on
both aftershock distribution pattern and field
geological mapping data, the fault plane of the July
30, 2005 (M, = 5.3) earthquake seems most probably
NE-SW (NE-trending Balaban-Kiiredag left-lateral
strike-slip fault zone). However, with better
seismological data for the December 20, 2007 (M, =
5.6) earthquake we are certain that that earthquake
occurred on a NW-SE fault segment (NW-trending
Afsar Fault Zone). However, the shifting pattern of
aftershocks shows approximately E-W extension in
the southernmost end of the activity due to the N-S
oblique-slip normal faulting component of the major
strike-slip faulting. The fault plane solutions agree
well with the conjugate faulting pattern, including
the NW-trending dextral strike-slip faulting, NE-
trending sinistral strike-slip faulting and N-S-
trending oblique-slip normal faulting. This also fits
well with the strike-slip fault pattern obtained from
geological mapping in and around Bala (Figure 1B).
The cumulative stress change indicates that there is a
risk of the next destructive earthquake occurring in
the north, where most of the large aftershocks also
occurred. In contrast, the stress increase is small on
the Tuz Go6li Fault Zone. Because the national
seismology networks cannot observe the micro-
earthquake activity (M<2.0-2.5) in the region, it is
not possible to confirm whether the TGFZ is
seismically active or an inactive fault.

Conclusions

In this study, the location and faulting properties of
both the 2005 and 2007 earthquake activities near
the town of Bala (Ankara, Turkey) are analyzed in
more detail to understand the deformation in the
region. The analyses show that the 2005 and 2007
Bala earthquakes may result from increasing stress
after the 1999 earthquakes on the NAFS, and mark
the present crustal deformation in the Anatolian
platelet.
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Figure 10. Seismicity in and around the study area before and after the devastating 17 August 1999 (M= 7.4) and 12 November 1999
(M= 7.2) earthquakes (USGS-NEIC, M > 3.0). (A) Seismicity in the region covering the epicentral areas of these big
earthquakes (red stars) and the nearby areas including the study area (Bala). The circles depict the circular distances of 100,
200, 300, 400 km from the deformation zone related to these big earthquakes. (B) Seismicity in the study area, (C) Seismicity
in the southern part of the epicentral areas of the 1999 earthquakes. Black dots are earthquakes before 17 August 1999
earthquake. White dots are earthquakes occurring between 17 August and 12 November 1999 earthquakes. Yellow dots
depict earthquakes occurring after 12 November 1999. The large events (M > 5.0) are shown with red dots. Note the
noticeable increase in yellow dots in the study area; suggesting increase of deformation (e.g., transfer of stress from the west

to the east by years) in the study area.

The fault plane solutions, the aftershock
distributions and the fault pattern show that the
main deformation zones trend in NW-SE and NE-
SW directions, with many different moderate size
fault concentrations causing a series of M; > 5
earthquakes.

Based on the Coulomb models and also the
epicentral distribution of aftershocks, the main stress
increase is northwestwards (towards Ankara; the
capital city of Turkey). So, continuous monitoring of
this area plays an important role in understanding
the behaviour of stress changes in the area.

469



BALA (ANKARA) EARTHQUAKES

Acknowledgement

This project (DEPAR - Urgent Monitoring Studies
After Earthquake) was supported by the State
Panning Organization (DPT) of Turkey and

References

AYDEMIR, A. 2009. Tectonic investigation of Central Anatolia,
Turkey, using geophysical data. Journal of Applied Geophysics
68, 321-334.

AYDEMIR, A. & ATES, A. 2006. Structural interpretation of the
Tuzg6li and Haymana basins, Central Anatolia, Turkey, using
seismic, gravity and aeromagnetic data. Earth Planets Space 58,
951-961.

BEEKMAN, P.H. 1966. Hasan Dagi-Melendiz Dag1 bolgesinde Pliosen
ve Kuvaterner volkanizma faaliyetleri [Pliocene and
Quaternary volcanism in Hasan Dagi-Melendiz Dag1 region].
MTA Bulletin 66, 88-103 [in Turkish with English abstract]

BozKURT, E. 2001. Neotectonics of Turkey - a synthesis. Geodinamica
Acta 14, 3-30.

CAKIR, Z. & AKOGLU, A.M. 2008. Synthetic aperture radar
interferometry observations of the M= 6.0 Orta earthquake of
6 June 2000 (NW Turkey): reactivation of a listric fault.
Geochemistry, Geophysics and Geosystems 9, Q08009,
d0i:10.1029/2008 GC002031.

CEMEN, 1., GONcUOGLU, M.C. & DIRiK, K. 1999. Structural evolution
of the Tuz G6lii basin in Central Anatolia, Turkey. The Journal
of Geology 107, 693-706.

Dirik, K. & GONCUOGLU, M.C. 1996. Neotectonic characteristics of
Central Anatolia. International Geology Reviews 38, 807-817.

EMRE, O., DoGAN, A., OzaLp, S., YILDIRIM, C. & ALBAYRAK, H. 2005.
31 Temmuz 2005 Bala Depreminin Degerlendirilmesi Raporu
[Preliminarily Report of July 31, 2005 Bala Earthquake]. MTA
Report [in Turkish, unpublished].

ERGIN, M., OZALAYBEY, S., AKTAR, M., BiCMEN, F.,, TAPIRDAMAZ, M.C.,
YORUK, A., TARANCIOGLU, A., BELGEN, A., YUCE, H., ERKAN, B.
& YakaN, H. 2003. The Seismicity of Trona Base in Kazan.
TUBITAK MRC Earth and Marine Sciences Institute,
Research Project Report, no. 5037101 [unpublished].

ERGINTAY, S., MCCLUSKY, S., HEARN, E., REILINGER, R., CAKMAK, R.,
HERRING, T., OZENER, H., LENK, O. & TARI, E. 2009. Seven Years
of postseismic deformation following the 1999, M= 7.4, and
M= 7.2, [zmit-Diizce, Turkey earthquake sequence. Journal of
Geophysical Research 114, B07403, doi:10.1029/2008JB006021.

FRECHET, J. 1985. Sismogenése et doublets sismiques. These d’Etat,
Université Scientifique et Médicale de Grenoble.

INAN, S., ERGINTAY, S., SAATCILAR, R., TUZEL, B. & IrAVUL, Y. 2007.
Turkey makes major investment in earthquake research. EOS
88 (34), 333-334.

GOLDSTEIN, P., DODGE, D., FIRPO, M. & RUPPERT, S. 1998. What's new
in SAC2000: enhanced processing and database access. Invited
contribution in Seismological Research Letters 69, 202-205.

470

TUBITAK Marmara Research Center. We thank
Orhan Tatar for his suggestions. The maps and
graphs were drawn using the Generic Mapping Tool
(GMT) (Wessel & Smith 1991).

Gor, J.L., FRECHET, J. & KLEIN, EW. 1994. Deep fault plane geometry
inferred from multiplet relative relocation beneath the south
flank of Kilauea. Journal of Geophysical Research 99, 15375-
15386.

GORUR, N., Okay, EY., SEYMEN, I. & SENGOR, A.M.C. 1984.
Palaeotectonic evolution of the Tuzgélii Basin complex, central
Turkey: sedimentary record of a Neo-Tethyan closure. In:
DixoN, J.E. & ROBERTSON, A.H.E. (eds), The Geological
Evolution of the Eastern Mediterranean. Geological Society of
London, Special Publications 17, 467-482.

GURrsoY, H., Piper, J.D.A., Tarar, O. & Mkesci, L. 1998.
Palaeomagnetic study of the Karaman and Karapinar volcanic
complexes, central Turkey: neotectonic rotation in the south-
central sector of the Anatolian Block. Tectonophysics 299, 191-
211.

KavaraT, D., Kexkovarl, K., Garip, P., BEkLER, E., GUmUs, H.,
KUSMEZER, A., GUNES, Y. & BERBEROGLU, A. 2005. 31 July 2005
Bala-Ankara Earthquake Activity. Preliminary Report, B.U.
Kandilli Observatory & ERI, National Earthquake Monitoring
Centre, Istanbul, Turkey [unpublished].

KING, G.C.P, STEIN, R.S. & LIN, J. 1994. Static stress changes and the
triggering of earthquakes. Bulletin of Seismological Society of
America 84, 935-953.

KISSLING, E., ELLsSWORTH, W.L., EBERHART-PHILLIPS, D. & KRADOLEFER,
U. 1994. Initials reference model in local earthquake
tomography. Journal of Geophysical Research 99 (B10), 19635-
19646.

KogyiGit, A. 2009. Ankaranin depremselligi ve 2005-2007 Afsar
(Bala-Ankara) depremlerinin kaynag: [Seismicity of Ankara
and source of 2005-2007 Afsar (Bala-Ankara) earthquakes].
Harita Dergisi 141, 1-12 [in Turkish with English abstract].

KocyiGiT, A. & BEYHAN, A. 1998. A new intracontinental
transcurrent structure: the Central Anatolian Fault Zone,
Turkey. Tectonophysics 284, 317- 336.

KogYiGiT, A. & DEVEC, $. 2008. Ankara orogenic phase, its age and
transition from thrusting-dominated palaeotectonic period to
the strike-slip neotectonic period, Ankara (Turkey). Turkish
Journal of Earth Sciences 17, 433-459.

KoGyYiGiT, A., ROJAY, B., CiHAN, M. & OzACAR, A. 2001. The June 6,
2000 Orta (Cankuri, Turkey) earthquake: sourced from a new
antithetic sinistral strike-slip structure of the North Anatolian
Fault System, the Dodurga fault zone. Turkish Journal of Earth
Sciences 10, 69-82.

LIENERT, B.R.E. & HAVSKOV, J. 1995. A computer program for locating
earthquakes both locally and globally. Seismological Research
Letters 66, 26-36.



O. TAN ET AL.

LiN, J. & STEIN, R.S. 2004. Stress triggering in thrust and subduction
earthquakes, and stress interaction between the southern San
Andreas and nearby thrust and strike-slip faults. Journal of
Geophysical Research 109, B02303, doi:10.1029/2003]B002607.

Mal, PM. & Beroza, G.C. 2000. Source scaling properties from
finite-fault-rupture models. Bulletin of Seismological Society of
America 90, 604-615.

McCLUSKY, S., BALASSANIAN, S., BARKA, A., DEMIR, C., ERGINTAV, S.,
GEORGIEY, 1., GURKAN, O., HAMBURGER, M., HURST, K., KAHLE,
K., KasTENs, K., KEKELIDZE, G., KING, R., KOTZEV, V., LENK, O.,
MAHMOUD, S., MISHIN, M., NADARIYA, M., OUZOUNIS, A.,
PARADISSIS, D., PETER, Y., PRILEPIN, M., REILINGER, R., SANLL, 1.,
SEEGER, H., TEALEB, A., Toks0z, M.N. & VEIs, G. 2000. Global
Positioning System constrains on plate kinematics and
dynamics in the Eastern Mediterranean and Caucasus. Journal
of Geophysical Research 105 (B3), 5695-5719.

PratzmaN, E.S., TApIRDAMAZ, C. & SANVER, M. 1998. Neogene
anticlockwise rotation of central Anatolia (Turkey):
preliminary palacomagnetic and geochronological results.
Tectonophysics 299, 175-189.

PIPER, ].D.A., GURsOY, H. & TATAR, O. 2002. Palaeomagnetism and
magnetic properties of the Cappadocian ignimbrite
succession, central Turkey and Neogene tectonics of the
Anatolian collage. Journal of Volcanology and Geothermal
Research 117, 237-262.

PipER, J.D.A., TATAR, O., GURSOY, H., Ko¢suLut, F. & MEsci, B.L.
2006. Palaeomagnetic analysis of neotectonic deformation in
the Anatolian accretionary collage, Turkey. In: DiLEK, Y. &
PAVLIDES, S. (eds), Postcollisional Tectonics and Magmatism in
the Mediterranean Region and Asia. Geological Society of
America Special Paper 409, 417-440.

REILINGER, R.E., MCCLUSKY., S., ORAL, M.B., KING, RW. & TOKs0Z,
M.N. 1997. Global Positioning System measurements of
present-day crustal movements in the Arabia-Africa-Eurasia
plate collision zone. Journal of Geophysical Research 102 (B5),
9983-9999.

SAROGLU, E, EMRE, O. & Boray, A. 1987. Active Faults of Turkey and
Their Seismicities. MTA Technical Report no. 8174 [in Turkish,
unpublished].

SAROGLY, F., EMRE, O. & Kuscu, 1. 1992. Active Fault Map of Turkey.
MTA Publication.

SENGOR, A.M.C. 1979. The North Anatolian transform fault: Its age,
offset and tectonic significance. Journal of the Geological
Society, London 136, 269-282.

SENGOR, A.M.C. & YiLMAZ, Y. 1981. Tethyan evolution of Turkey: a
plate tectonic approach. Tectonophysics 75, 181-241.

SNOKE, J.A., MUNSEY, ].W., TEAGUE, A.G. & BOLLINGER, G.A. 1984. A
program for focal mechanism determination by combined use
of polarity and SV/P amplitude ratio data. Earthquake Notes
55, p. 15.

STEIN, R.S., BARKA, A. & DIETERICH, ].H. 1997. Progressive failure on
the North Anatolian fault since 1939 by earthquake stress
triggering. Geophysical Journal International 128, 594-604.

TaN, O. & Taymaz, T. 2005. Arabistan-Avrasya kitasal ¢arpigma
bolgesindeki depremlerin benzerlik iliskileri [Self-similarity of
the earthquakes occurred in the Eurasia-Arabia collision
zone]. ITU Dergisi 4, 105-115 [in Turkish with English
abstract].

TaN, O. & Tavmaz, T. 2006. Active tectonics of the Caucasus:
earthquake source mechanisms and rupture histories obtained
from inversion of teleseismic body waveforms. In: DILEK, Y. &
PAVLIDES, S. (eds), Postcollisional Tectonics and Magmatism in
the Mediterranean Region and Asia. Geological Society of
America Special Paper 409, 531-578.

TATAR, O., PIPER, ].D.A., GURsOY, H. & TEemiz, H. 1996. Regional
significance of neotectonics counterclockwise rotation in
Central Turkey. International Geology Review 38, 692-700.

Taymaz, T., WrigHT, T., YoLsaL, S., Tan, O., FIELDING, E. &
SEYITOGLU, G. 2007. Source characteristics of June 6, 2000
Orta-Cankir1 (Central Turkey) earthquake: a synthesis of
seismological, geological and geodetic (InSAR) observations,
and internal deformation of Anatolian plate. In: TaymAz, T.
Yimaz, Y. & DILEK, Y. (eds) The Geodynamics of the Aegean
and Anatolia. The Geological Society of London, Special
Publications 291, 259-290.

Topa, S., STEIN, R. S., RICHARDS-DINGER, K. & BOzKURT, S. 2005.
Forecasting the evolution of seismicity in southern California:
Animations built on earthquake stress transfer. Journal of
Geophysical Research 110, B05S16, doi:10.1029/2004JB003415.

Toksoz, M.N., KULELI, S., GURBUZ, C., KALAFAT, D., BEKLER, T., ZOR,
E., YILMAZER, M., OGUTCU, Z., ScHuLTZ, C.A. & HARRIS, D.B.
2003. Calibration of regional seismic stations in the Middle
East with shot in Turkey. Abstracts, Nuclear Explosion
Monitoring: Building the Knowledge Base, 25th Seismic
Research Review, September 23-25, 2003, Tucson, Arizona.

WALDHAUSER, F. & ErLswortH, W.L. 2000. A double-difference
earthquake location algorithm: method and application to the
northern Hayward fault, California. Bulletin of Seismological
Society of America 90, 1353-1368.

WELLS, D.L. & COPPERSMITH, K.J. 1994. New empirical relationships
among magnitude, rupture length, rupture width, rupture
area, and surface displacement. Bulletin of Seismological
Society of America 84, 974-1002.

WESSEL, P. & SMITH, W. 1991. Free software helps map and display
data. EOS Transactions AGU 72, 441-461.

471



	Bala (Ankara) Earthquakes: Implications for Shallow Crustal Deformation in Central Anatolian Section of the Anatolian Platelet (Turkey)
	Recommended Citation

	Bala (Ankara) Earthquakes: Implications for Shallow Crustal Deformation in Central Anatolian Section of the Anatolian Platelet (Turkey)
	Authors

	Bala (Ankara) Earthquakes: Implications for Shallow Crustal Deformation in Central Anatolian Section of the Anatolian Platelet (Turkey)

