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Abstract: Let S∗(qc) denote the class of functions f analytic in the open unit disc ∆ , normalized by the condition
f(0) = 0 = f ′(0)− 1 and satisfying the following inequality∣∣∣∣∣

(
zf ′(z)

f(z)

)2

− 1

∣∣∣∣∣ < c (z ∈ ∆, 0 < c ≤ 1).

By use of the subordination principle for the univalent functions we have

f ∈ S∗(qc) ⇔
zf ′(z)

f(z)
≺

√
1 + cz (z ∈ ∆, 0 < c ≤ 1).

In the present paper, for an analytic function p in ∆ with p(0) = 1 we give some conditions which imply p(z) ≺
√
1 + cz .

These conditions are then used to obtain some corollaries for certain subclasses of analytic functions.

Key words: Analytic, univalent, subordination, Janowski starlike functions, Bernoulli lemniscate

1. Introduction
Let ∆ be the open unit disc in the complex plane C , i.e. ∆ = {z ∈ C : |z| < 1} and H(∆) be the class
of functions that are analytic in ∆ . Also, let A ⊂ H(∆) be the class of functions that have the following
Taylor–Maclaurin series expansion

f(z) = z +

∞∑
n=2

anz
n (z ∈ ∆).

Thus, if f ∈ A , then it satisfies the following normalization condition

f(0) = 0 = f ′(0)− 1.

The set of all univalent (one–to–one) functions f in ∆ is denoted by U . Let f and g belong to class H(∆) .
Then we say that a function f is subordinate to g , written by

f(z) ≺ g(z) or f ≺ g,
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if there exists a Schwarz function w with the following properties

w(0) = 0 and |w(z)| < 1 (z ∈ ∆),

such that f(z) = g(w(z)) for all z ∈ ∆ . In particular, if g ∈ U , then we have

f(z) ≺ g(z) ⇔ (f(0) = g(0) and f(∆) ⊂ g(∆)).

Furthermore, we say that the function f ∈ U is starlike if and only if

Re
{
zf ′(z)

f(z)

}
> 0 (z ∈ ∆).

The familiar class of starlike functions in ∆ is denoted by S∗ . Also the function f ∈ U is called convex if and
only if

Re
{
1 +

zf ′′(z)

f ′(z)

}
> 0 (z ∈ ∆).

We denote by K the class of convex functions in ∆ . A function f ∈ A is said to be close-to-convex, if there
exists a function g ∈ K such that

Re
{
f ′(z)

g′(z)

}
> 0 (z ∈ ∆).

The class of close-to-convex functions is denoted by C . Note that C ⊂ U .
Let c ∈ (0, 1] . We say that the function f ∈ A belongs to the class S∗(qc) , if it satisfies the following

condition ∣∣∣∣∣
(
zf ′(z)

f(z)

)2

− 1

∣∣∣∣∣ < c (z ∈ ∆).

The class S∗(qc) was introduced by Sokół, see [19]. Also, the class S∗(q1) ≡ SL∗ was considered in [20]. In
Geometric Function Theory there are many interesting subclasses of starlike functions which have been defined
by subordination, see for example [3–8, 14, 16–18]. In the sequel we give a necessary and sufficient condition
for the class S∗(qc) by using the subordination.

Define
qc(z) :=

√
1 + cz (z ∈ ∆, c ∈ (0, 1]) (1.1)

and Ωc by
Ωc := {ζ ∈ C : Re{ζ} > 0, |ζ2 − 1| < c}.

Then we have qc(∆) = Ωc , see [19]. Indeed, the function qc(z) maps ∆ onto a set bounded by Bernoulli
lemniscate. It is easy to see that f ∈ S∗(qc) if and only if it satisfies the following differential subordination

zf ′(z)

f(z)
≺ qc(z) (z ∈ ∆, c ∈ (0, 1]),

where qc is defined by (1.1) and the branch of the square root is chosen to be qc(0) = 1 . Noting to the above we
have S∗(qc) ⊂ S∗ . Another class that we are interested to study is the class U(c) which is defined as follows:

U(c) :=

{
f ∈ A :

∣∣∣∣∣
(

z

f(z)

)2

f ′(z)− 1

∣∣∣∣∣ ≤ c, 0 < c ≤ 1, z ∈ ∆

}
.
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For each c ∈ (0, 1] we have U(c) ⊂ U , see [12]. Let A and B be two fixed constants such that −1 ≤ B < A ≤ 1 .
We denote by S∗[A,B] the class of Janowski starlike functions f ∈ A and satisfying the condition

zf ′(z)

f(z)
≺ 1 +Az

1 +Bz
(z ∈ ∆).

This class was introduced by Janowski [2]. We remark that S∗[1,−1] becomes the class of starlike functions.
Next, we recall a lemma, called Jack’s lemma.

Lemma 1.1 (see [1], see also [15, Lemma 1.3, p. 28]) Let w be a nonconstant function meromorphic in ∆

with w(0) = 0 . If
|w(z0)| = max{|w(z)| : |z| ≤ |z0|} (z ∈ ∆),

then there exists a real number k (k ≥ 1) such that z0w′(z0) = kw(z0) .

In this paper, for an analytic function p(z) in the unit disk ∆ we find some conditions that imply p(z) ≺
√
1 + cz . Also, some interesting corollaries are obtained.

2. Main Results
We start with the following.

Theorem 2.1 Let p be an analytic function in ∆ with p(0) = 1 , |A| ≤ 1, |B| < 1, 0 < c ≤ 1 . Also let γ
satisfy the following inequality

γ ≥ 2(|A|+ |B|)
c(1− |B|)

(1 + c). (2.1)

Then the following subordination

1 + γ
zp′(z)

p(z)
≺ 1 +Az

1 +Bz
(z ∈ ∆) (2.2)

implies that
p(z) ≺

√
1 + cz (z ∈ ∆).

Proof Let γ satisfy the condition (2.1) and consider

F (z) := 1 + γ
zp′(z)

p(z)
(2.3)

for all z ∈ ∆ . Define the function w by the relation

p(z) =
√
1 + cw(z) = 1 + p1z + p2z

2 + · · · , (2.4)

or w(z) = (p2(z)−1)/c = w1z+· · · . By the hypothesis, since p is analytic and p(0) = 1 , thus w is meromorphic
in ∆ and w(0) = 0 . We shall show that |w(z)| < 1 in ∆ . With a simple calculation (2.4) gives

γ
zp′(z)

p(z)
=

cγzw′(z)

2(1 + cw(z))
.
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Using the last equality in (2.3) we get

F (z) = 1 +
cγzw′(z)

2(1 + cw(z))

and thus by computation we obtain

F (z)− 1

A−BF (z)
=

cγzw′(z)

2A(1 + cw(z))−B[2(1 + cw(z)) + cγzw′(z)]
.

Now assume that there exists a point z0 ∈ ∆ such that

max
|z|≤|z0|

|w(z)| = |w(z0)| = 1.

Therefore, by Lemma 1.1, there exists a number k ≥ 1 such that z0w′(z0) = kw(z0) . Without loss of generality
we may assume that w(z0) = eiδ where δ ∈ [−π, π] . For this z0 , we have∣∣∣∣ F (z0)− 1

A−BF (z0)

∣∣∣∣ = ∣∣∣∣ ckγeiδ

2A(1 + ceiδ)−B[2(1 + ceiδ) + cγkeiδ]

∣∣∣∣
≥ ckγ

2|A||1 + ceiδ|+ |B||2 + (2c+ cγk)eiδ|

=
ckγ

2|A|p1(δ) + |B|p2(δ)

=: H(cos δ)

where the expressions p1(δ) and p2(δ) have a form

p1(δ) =
√

1 + 2c cos δ + c2,

p2(δ) =
√
4 + c(2 + γk)[4 cos δ + c(2 + γk)]

and

H(t) =
ckγ

2|A|
√
1 + 2ct+ c2 + |B|

√
4 + 4(2c+ cγk)t+ (2c+ cγk)2

.

By a simple computation it can be easily seen that H ′(t) < 0 . Thus, H is a decreasing function when
−1 ≤ t = cos δ ≤ 1 and consequently

H(t) ≥ H(1) =
ckγ

2|A|(1 + c) + |B|(2 + 2c+ cγk)
. (2.5)

Now consider the function

L(k) =
ckγ

2|A|(1 + c) + |B|(2 + 2c+ cγk)
(k ≥ 1). (2.6)

It is easy to see that L′(k) > 0 . In conclusion,

L(k) ≥ L(1) =
cγ

2|A|(1 + c) + |B|(2 + 2c+ cγ)
. (2.7)

1982



KARGAR and TROJNAR-SPELINA/Turk J Math

Finally from the definition of H and from (2.5)–(2.7), it follows that∣∣∣∣ F (z0)− 1

A−BF (z0)

∣∣∣∣ ≥ cγ

2|A|(1 + c) + |B|(2(1 + c) + cγ)
=: T (A,B, c, γ).

The inequality (2.1) implies that T (A,B, c, γ) > 1 . However, this is a contradiction with the assumption (2.2).
This is the end of the proof. 2

If we put p(z) = zf ′(z)/f(z) in Theorem 2.1, then we obtain the following result:

Corollary 2.1 Let |A| ≤ 1, |B| < 1, 0 < c ≤ 1 and let

γ ≥ 2(|A|+ |B|)
c(1− |B|)

(1 + c).

If f satisfies the subordination

1 + γ

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
≺ 1 +Az

1 +Bz
(z ∈ ∆),

then f ∈ S∗(qc) .

If we let c = 1 in Corollary 2.1, then we have:

Corollary 2.2 Let |A| ≤ 1, B| < 1 and let

γ ≥ 4(|A|+ |B|)
1− |B|

.

If f satisfies the following subordination

1 + γ

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
≺ 1 +Az

1 +Bz
(z ∈ ∆),

then f ∈ SL∗ .

Taking A = 1 and B = 0 in Corollary 2.2, we obtain:

Corollary 2.3 Let γ ≥ 4 . If f satisfies the following inequality

Re
{
1 + γ

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)}
> 0

for all z ∈ ∆ , then f ∈ SL∗ .

If we put p(z) = z
√
f ′(z)/f(z) in Theorem 2.1, then we have:

Corollary 2.4 Let |A| ≤ 1, |B| < 1, 0 < c ≤ 1 and let

γ ≥ 2(|A|+ |B|)
c(1− |B|)

(1 + c).
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If the function f satisfies the following condition

1 + γ

(
1 +

1

2

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
≺ 1 +Az

1 +Bz
(z ∈ ∆),

then ∣∣∣∣∣
(

z

f(z)

)2

f ′(z)− 1

∣∣∣∣∣ ≤ c (z ∈ ∆).

This means that f ∈ U(c) , hence it is univalent in ∆ .

If we put p(z) =
√
f ′(z) and c = 1 in Theorem 2.1, then we have the following result:

Corollary 2.5 Assume that |A| ≤ 1, |B| < 1 and that

γ ≥ 4(|A|+ |B|)
1− |B|

.

If

1 + γ

(
1

2

zf ′′(z)

f ′(z)

)
≺ 1 +Az

1 +Bz
(z ∈ ∆),

then f is univalent in ∆ by [13].

If we put p(z) = f(z)/z in Theorem 2.1, then we obtain the following result.

Corollary 2.6 Let |A| ≤ 1, |B| < 1, 0 < c ≤ 1 and let

γ ≥ 2(|A|+ |B|)
c(1− |B|)

(1 + c).

If the function f satisfies the following condition

1 + γ

(
zf ′(z)

f(z)
− 1

)
≺ 1 +Az

1 +Bz
(z ∈ ∆),

then ∣∣∣∣∣
(
f(z)

z

)2

− 1

∣∣∣∣∣ < c

for all z ∈ ∆.

Taking A = 1 and B = 0 in Corollary 2.6, we obtain:

Corollary 2.7 Let γ ≥ 2(1 + 1/c) with c ∈ (0, 1] . If the following inequality holds

Re
{
1 + γ

(
zf ′(z)

f(z)
− 1

)}
> 0 (z ∈ ∆),

then ∣∣∣∣∣
(
f(z)

z

)2

− 1

∣∣∣∣∣ < c (z ∈ ∆).
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For the proofs of next theorems we need a couple of lemmas.

Lemma 2.1 ([11]) Let q be univalent in the unit disk ∆ and θ and ϕ be analytic in a domain U containing
q(∆) with ϕ(w) ̸= 0 when w ∈ q(∆) . Set Q(z) = zq′(z)ϕ(q(z)) , h(z) = θ(q(z)) + Q(z) . Suppose that Q is
starlike (univalent) in ∆ , and

Re
{
zh′(z)

Q(z)

}
= Re

{
θ′(q(z))

ϕ(q(z))
+
zQ′(z)

Q(z)

}
> 0 (z ∈ ∆).

If p is analytic in ∆ , with p(0) = q(0) , p(∆) ⊂ U and

θ(p(z)) + zp′(z)ϕ(p(z)) ≺ θ(q(z)) + zq′(z)ϕ(q(z)), (2.8)

then p(z) ≺ q(z) , and q is the best dominant of (2.8).

Lemma 2.2 (see [9], see also [10, p. 24]) Assume that Q is the set of analytic functions that are injective on
∆\E(f) , where E(f) : {ω : ω ∈ ∂∆ and limz→ω f(z) = ∞} , and are such that f ′(ω) ̸= 0 for (ω ∈ ∂∆\E(f) .
Let ψ ∈ Q with ψ(0) = a and let φ(z) = a + amz

m + · · · be analytic in ∆ with φ(z) ̸≡ a and m ∈ N . If
φ ̸≺ ψ in ∆ , then there exist points z0 = r0e

iθ ∈ ∆ and ω0 ∈ ∂∆\E(ψ) , for which φ(|z| < r0) ⊂ ψ(∆) ,
φ(z0) = ψ(ω0) and z0φ

′(z0) = kω0ψ
′(ω0) , for some k ≥ m .

Next we prove the following.

Theorem 2.2 Let p ∈ H(∆) with p(0) = 1 and c ∈ (0, 1] . If the function p satisfies the subordination

1

3
p3(z) + zp′(z) ≺ 1

3

(√
1 + cz

)3
+

cz

2
√
1 + cz

(z ∈ ∆), (2.9)

then
p(z) ≺

√
1 + cz (z ∈ ∆),

and the function
√
1 + cz is the best dominant of (2.9).

Proof Consider

qc(z) =
√
1 + cz, θ(ω) =

1

3
ω3, ϕ(ω) = 1.

We know that qc is analytic and univalent in ∆ . Also qc(0) = p(0) = 1 . Moreover, both functions θ(ω) and
ϕ(ω) are analytic in the ω–plane with ϕ(ω) ̸= 0 . The function

Q(z) = zq′c(z)ϕ(q(z)) =
cz

2
√
1 + cz

= zq′c(z),

is a starlike function, because qc is convex. If we put

h(z) = θ(qc(z)) +Q(z) =
1

3
q3c (z) + zq′c(z), (2.10)
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then we have

Re
{
zh′(z)

Q(z)

}
= Re

{
1 + cz +

(
1 +

zq′′c (z)

q′c(z)

)}
> 1− c ≥ 0

for all z ∈ ∆. Therefore, the function h given by (2.10) is close-to-convex and univalent in ∆ . Thus, by the
Lemma 2.1 and (2.9), we find that p(z) ≺ qc(z) and qc(z) is the best dominant of (2.9) so the desired conclusion
follows. 2

If we put p(z) = zf ′(z)/f(z) , then we have the following result:

Corollary 2.8 Let c ∈ (0, 1] . If a function f satisfies the subordination

1

3

(
zf ′(z)

f(z)

)3

+

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)(
zf ′(z)

f(z)

)
≺ 1

3

(√
1 + cz

)3
+

cz

2
√
1 + cz

,

then f ∈ S∗(qc) where z ∈ ∆ .

Finally we prove the following:

Theorem 2.3 Let k ≥ 1 and 0 < c ≤ 1. If p ∈ H(∆) with p(0) = 1 and it satisfies the condition

Re {p(z)(p(z) + zp′(z))} > 1 + c(1 + k/2) (z ∈ ∆), (2.11)

then
p(z) ≺

√
1 + cz (z ∈ ∆).

Proof Suppose that p(z) ̸≺ qc(z) =
√
1 + cz . Then there exist points z0 , |z0| < 1 and ω0 , |ω0| = 1 , ω0 ̸= 1

satisfying the following conditions

p(z0) = qc(ω0), p(|z| < |z0|) ⊂ qc(∆) and |ω0| = 1.

From Lemma 2.2, we find that there exists a number k ≥ 1 such that

{p(z0)(p(z0) + zp′(z0))} = {qc(ω0)(qc(ω0) + kω0q
′
c(ω0))} = 1 + c(1 + k/2)ω0. (2.12)

By setting ω0 = eiδ , δ ∈ [−π, π] in (2.12), it can be easily seen that

Re{1 + c(1 + k/2)ω0} = 1 + c(1 + k/2) cos δ ≤ 1 + c(1 + k/2).

However, it contradicts our assumption (2.11) and consequently p(z) ≺ qc(z) in ∆ . 2

If we let p(z) = zf ′(z)/f(z) , then we have the following result:

Corollary 2.9 Let 0 < c ≤ 1 and let k ≥ 1. If f satisfies the following inequality

Re
{(

zf ′(z)

f(z)

)2 (
2 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)}
> 1 + c(1 + k/2) (z ∈ ∆)

then f ∈ S∗(qc) .
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