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Abstract: In this paper, we prove reverse inequalities for the so-called Berezin number of some operators. Also, by using
the classical Jensen and Young inequalities, we obtain upper bounds for Berezin number of AαXBα and AαXB1−α for
the case when 0 ≤ α ≤ 1 .
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1. Introduction
Denote by F (Ω) the set of all complex valued functions on some set Ω . A reproducing kernel Hilbert space
(RKHS for short) on the set Ω is a Hilbert space H ⊂ F (Ω) with a function kλ : Ω×Ω → H , which is called
the reproducing kernel enjoying the reproducing property kλ := k (., λ) ∈ H for all λ ∈ Ω , and

f(λ) = ⟨f, kλ⟩H

holds for all λ ∈ Ω and all f ∈ H (see [2, 28]).

Let k̂λ = kλ

∥kλ∥ be the normalized reproducing kernel of the space H . For any bounded linear operator

A on H , the Berezin symbol of A is the function Ã defined by (see [5])

Ã(λ) :=
⟨
Ak̂λ, k̂λ

⟩
H

(λ ∈ Ω).

The Berezin symbol is a very useful tool in studying operators on the RKHS, including Hardy, Bergman,
and Fock spaces. For example, boundedness, invertibility, compactness, and positivity of some operators are
characterized or related to their Berezin symbols (see [8, 10, 22, 26, 31]).

Following Coburn [9], note that since the Berezin map A
B→ Ã is linear and in most familar RKHSs

it is one-to-one, it “encodes” operator-theoretic information into function theory in a striking but somewhat
impenetrable way. In fact, since k̂λ → 0 weakly as λ → ∂Ω (of course, if the space H(Ω) is standard in the
sense of Nordgren and Rosenthal [27]), it is clear that B maps compact operators on these spaces into functions
that vanish at the boundary ∂Ω . Because of these properties, the mapping B has found useful applications in
dealing with operators “of function-theoretic significance” such as Toeplitz and Hankel operators on the Hardy,
∗Correspondence: ulasyamanci@sdu.edu.tr
2010 AMS Mathematics Subject Classification: 47B35, 47A12
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Bergman, and Fock spaces (for more information, see, for instance, Coburn [9], Berger and Coburn [6], and
Engliš [15, 16]).

Recall that the Berezin set and the Berezin number for an operator A ∈ B(H(Ω)) were introduced by
the second author in [22, 23] as follows:

Ber(A) := Range(Ã) =
{
Ã(λ) : λ ∈ Ω

}
(Berezin set),

ber(A) := sup
{∣∣∣Ã(λ)∣∣∣ : λ ∈ Ω

}
(Berezin number).

Clearly, Ber(A) ⊂W (A) := {⟨Ax, x⟩ : ∥x∥H = 1} (numerical range) and ber(A) ≤ w(A) := sup {|⟨Ax, x⟩| : ∥x∥H = 1}
(numerical radius). More information about numerical range and numerical radius can be found in [1, 4, 14,
19, 21, 24, 25]. Recently, some results about the Berezin number were obtained in [3, 18, 20, 29, 30].

In the present paper, by using some ideas from [12, 13], we will prove reverse inequalities for the so-called
Berezin number of some operators acting in the reproducing kernel Hilbert space. Also, we obtain upper bounds
for the Berezin number of AαXBα and AαXB1−α for the case when 0 ≤ α ≤ 1 .

2. Relations between numerical radius and Berezin number
Let H = H(Ω) be a RKHS of complex-valued functions on a set Ω . A subset M (Ω) in H (Ω) is called the
multiplier for the space M (Ω) if M (Ω)H (Ω) ⊂ H (Ω) , i.e. fg ∈ H (Ω) for any f ∈ M (Ω) and g ∈ H (Ω) .

The following two lemmas are well known (and very easy to verify).

Lemma 1 If f is a multiplier of H (Ω) , then M̃f (λ) = f (λ) for all λ ∈ Ω .

Proof Indeed, if f is a multiplier, then we have

M̃f (λ) =
⟨
Mf k̂λ, k̂λ

⟩
=
⟨
fk̂λ, k̂λ

⟩
=

1

∥kλ∥2H
f (λ) kλ (λ) = f (λ)

for all λ ∈ Ω , as desired. 2

Lemma 2 If f is a multiplier of H (Ω) , then f is bounded.

Proof In fact, since f ∈ H (Ω) and fg ∈ H (Ω) for all g ∈ H (Ω) , by using Lemma 1, we have:

|f (λ)| =
∣∣∣M̃f (λ)

∣∣∣ = ∣∣∣⟨Mf k̂λ, k̂λ

⟩∣∣∣ ≤ ∥Mf∥ .

Since Mf is a closed operator defined in hull space H (Ω) , by the closed graph theorem Mf is bounded (see,
for instance, Aronzajn [2]). The last inequality shows that f is bounded. 2

We set by H1 the unit sphere of H , H1 = {f ∈ H : ∥f∥H = 1} , and also we set J := {V ∈ B (H) : V is isometry} ,
where B (H) is the Banach algebra of all bounded linear operators on H .

In this short section, we prove the relations between the numerical radius and Berezin number of
reproducing kernel Hilbert space operators, which improves some results in [17, 23].
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Theorem 1 Let H = H(Ω) be a RKHS of complex-valued functions on Ω with reproducing kernel kλ such
that it has a dense multiplier M (Ω) and k0 = 1.
Let A : H → H be a bounded linear operator (i.e. A ∈ B (H)). Then

sup
V ∈J

ber (V ∗AV ) ≤ w (A) ≤ ∥1∥2H sup
f∈M(Ω)∩H1

ber
(
M∗

fAMf

)
.

Proof By assumption M (Ω) is dense in H . Then it is standard to show that

sup {|⟨Af, f⟩| : f ∈ H1} = sup {|⟨Af, f⟩| : f ∈ M (Ω) ∩H1} .

According to Lemma 2, M (Ω) consists of bounded functions of the space H(Ω) . Then we have:

w (A) = sup {|⟨Af, f⟩| : f ∈ M (Ω) ∩H1}

= sup {|⟨AMf1,Mf1⟩| : f ∈ M (Ω) ∩H1}

= sup
{∣∣⟨M∗

fAMf1,1
⟩∣∣ : f ∈ M (Ω) ∩H1

}
= ∥k0∥2H sup

{∣∣∣∣⟨M∗
fAMf

k0
∥k0∥

,
k0

∥k0∥

⟩∣∣∣∣ : f ∈ M (Ω) ∩H1

}
= ∥1∥2H sup

{∣∣∣⟨M∗
fAMf k̂0, k̂0

⟩∣∣∣ : f ∈ M (Ω) ∩H1

}
= ∥1∥2H sup

{∣∣∣M̃∗
fAMf (0)

∣∣∣ : f ∈ M (Ω) ∩H1

}
≤ ∥1∥2H sup

f∈M(Ω)∩H1

sup
{∣∣∣M̃∗

fAMf (λ)
∣∣∣ : λ ∈ Ω

}
= ∥1∥2H sup

f∈M(Ω)∩H1

ber
(
M∗

fAMf

)
,

and hence
w (A) ≤ ∥1∥2H sup

f∈M(Ω)∩H1

ber
(
M∗

fAMf

)
. (2.1)

On the other hand, for any V ∈ J and g ∈ H , we have:

ber (V ∗AV ) = sup
λ∈Ω

∣∣∣Ṽ ∗AV (λ)
∣∣∣ = sup

λ∈Ω

∣∣∣⟨V ∗AV k̂λ, k̂λ

⟩∣∣∣
= sup

λ∈Ω

∣∣∣⟨AV k̂λ, V k̂λ⟩∣∣∣ .
Since V is isometry, V k̂λ ∈ H1 for all λ ∈ Ω . Then

ber (V ∗AV ) ≤ sup
h∈H1

|⟨Ah, h⟩| = w (A) .

Thus,
sup
V ∈J

ber (V ∗AV ) ≤ w (A) . (2.2)

It remains only to combine inequalities (2.1) and (2.2) to get the required result. The theorem is proven. 2
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3. Reverse inequalities for the Berezin numbers of operators

Our next results in this section are mainly motivated with Dragomir’s survey paper [13], where he proved
relations only between the norm and numerical radius of operators. Here we investigate similar questions also

for Berezin numbers of operators A and |A|2 := A∗A ; here, |A| := (A∗A)
1/2 is a so-called module of operator

A.

Theorem 2 Let H = H(Ω) be a RKHS on Ω and A ∈ B (H) be an operator. If µ ∈ C\ {0} and r > 0 are
such that √

ber
(
|A− µ|2

)
≤ r, (3.1)

then

(0 ≤)

√
ber
(
|A|2

)
− ber (A) ≤ 1

2

r

|µ|
. (3.2)

Proof For any λ ∈ Ω , we have from (3.1) that

∥∥∥Ak̂λ − µk̂λ

∥∥∥ =
∥∥∥(A− µ) k̂λ

∥∥∥ =
⟨
(A− µ) k̂λ, (A− µ) k̂λ

⟩1/2
=
⟨
(A− µ)

∗
(A− µ) k̂λ, k̂λ

⟩1/2
≤ ber

(
(A− µ)

∗
(A− µ)

)1/2
= ber

(
|A− µ|2

)1/2
≤ r,

and hence ∥∥∥Ak̂λ − µk̂λ

∥∥∥2 ≤ r2,

or equivalently, ∥∥∥Ak̂λ∥∥∥2 + |µ|2 − 2Re
[
µ
⟨
Ak̂λ, k̂λ

⟩]
≤ r2.

Hence, ∥∥∥Ak̂λ∥∥∥2 + |µ|2 ≤ 2 |µ|
⟨
Ak̂λ, k̂λ

⟩
+ r2. (3.3)

Taking the supremum over λ ∈ Ω in (3.3), we have the following inequality:

ber
(
|A|2

)
+ |µ|2 ≤ 2 |µ| ber (A) + r2. (3.4)

By arithmetic-geometric mean inequality,

ber
(
|A|2

)
+ |µ|2 ≥ 2 |µ|

√
ber
(
|A|2

)
, (3.5)

and hence by (3.4) and (3.5) we deduce the desired inequality (3.2), because it is elementary to see that actually
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√
ber
(
|A|2

)
− ber (A) ≥ 0 . Indeed,

|A (λ)| ≤
∥∥∥Ak̂λ∥∥∥ =

⟨
A∗Ak̂λ, k̂λ

⟩1/2
=

(
|̃A|2 (λ)

) 1
2

≤ ber
(
|A|2

)1/2
for all λ ∈ Ω , and hence ber (A) ≤

√
ber
(
|A|2

)
. The theorem is proved. 2

Corollary 1 Let A ∈ B (H) be an operator and φ,ψ ∈ C with ψ ̸= −φ, φ. If

Re
(
(A− φ)

∗
(ψ −A)

)
≥ 0, (3.6)

then √
ber
(
|A|2

)
− ber (A) ≤ 1

4

|ψ − φ|
|ψ + φ|

. (3.7)

Proof Utilizing the fact that in any Hilbert space the following two statements are equivalent,
(i) Re ⟨y − x, x− z⟩ ≥ 0 , x, z, y ∈ H;

(ii)

∥∥∥∥x− z + y

2

∥∥∥∥ ≤ 1

2
∥y − z∥ ,

we conclude that (3.6) is equivalent to ∥∥∥∥Ak̂λ − ψ + φ

2
k̂λ

∥∥∥∥ ≤ 1

2
∥ψ − φ∥

for any λ ∈ Ω , which in its turn is equivalent with the following inequality:

ber

(∣∣∣∣A− ψ + φ

2

∣∣∣∣2
) 1

2

≤ 1

2
|ψ − φ| .

Now, applying Theorem 2 for µ =
ψ + φ

2
and r =

1

2
|ψ − φ| , we deduce the desired result (3.7). 2

Corollary 2 Assume that A,µ, r are as in Theorem 2 . If, in addition, there exists ρ ≥ 0 such that

||µ| − ber (A)| ≥ ρ, (3.8)

then
ber
(
|A|2

)
− ber (A)

2 ≤ r2 − ρ2. (3.9)

Proof From (3.4) of Theorem 2 , we have

ber
(
|A|2

)
− ber (A)

2 ≤ r2 − ber (A)
2
+ 2ber (A) |µ| − |µ|2

= r2 − (|µ| − ber (A))
2
.

On utilizing (3.4) and (3.8), we deduce inequality (3.9), as desired. 2
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Remark 1 In particular, if
√
ber
(
|A− µ|2

)
≤ r and |µ| = ber (A) , µ ∈ C , then ber

(
|A|2

)
− ber (A)

2 ≤ r2.

Theorem 3 Let A ∈ B (H) be a nonzero operator and µ ∈ C\ {0} , r > 0 with |µ| > r . If
√
ber
(
|A− µ|2

)
≤ r ,

then √
1− r2

|µ|2
≤ ber (A)√

ber
(
|A|2

) . (3.10)

Proof From (3.4), we have

ber
(
|A|2

)
+ |µ|2 − r2 ≤ 2 |µ| ber (A) ,

which implies, on dividing with
√

|µ|2 − r2 > 0 , that

ber
(
|A|2

)
√

|µ|2 − r2
+

√
|µ|2 − r2 ≤ 2 |µ| ber (A)√

|µ|2 − r2
. (3.11)

By the arithmetic-geometric mean inequality,

2

√
ber
(
|A|2

)
≤

ber
(
|A|2

)
√

|µ|2 − r2
+

√
|µ|2 − r2,

and by (3.11) we get √
ber
(
|A|2

)
≤ ber (A) |µ|√

|µ|2 − r2
.

This is equivalent to (3.10), which proves the theorem. 2

Corollary 3 Let φ,ψ ∈ C with Re (ψφ) > 0 . If A ∈ B (H) is an operator such that either (3.6) or

(A∗ − φ) (ψ −A) ≥ 0 (3.12)

holds true, then

2
√

Re (ψφ)
|ψ + φ|

≤ ber (A)√
ber
(
|A|2

)
and

ber
(
|A|2

)
− ber (A)

2 ≤
∣∣∣∣ψ − φ

ψ + φ

∣∣∣∣ ber (|A|2) .
1945
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Proof If we put µ =
ψ + φ

2
and r =

1

2
|ψ − φ| , then |µ|2 − r2 =

∣∣∣∣ψ + φ

2

∣∣∣∣2 − ∣∣∣∣ψ − φ

2

∣∣∣∣2 = Re (ψφ) > 0 . It is

easy by applying Theorem 2 to see that under condition (3.12) we have

√
ber
(
|A|2

)
− ber (A) ≤ 1

4

|ψ − φ|
|ψ + φ|

.

By considering all these and applying Theorem 3 , we obtain the desired results. 2

The next result maybe of interest as well.

Theorem 4 Let A : H (Ω) → H (Ω) be a nonzero bounded linear operator and µ ∈ C\ {0} , r > 0 with |µ| > r .
If

√
ber
(
|A− µ|2

)
≤ r,

then

ber
(
|A|2

)
− ber (A)

2 ≤ 2r2

|µ|+
√
|µ|2 − r2

ber (A) . (3.13)

Proof From the proof of Theorem 2 , we have

∥∥∥Ak̂λ∥∥∥2 + |µ|2 ≤ 2Re
[
µ
⟨
Ak̂λ, k̂λ

⟩]
+ r2 (3.14)

for all λ ∈ Ω.

Now, after dividing (3.14) by |µ|
∣∣∣⟨Ak̂λ, k̂λ⟩∣∣∣ (which, by (3.14), is positive), we obtain

∥∥∥Ak̂λ∥∥∥2
|µ|
∣∣∣⟨Ak̂λ, k̂λ⟩∣∣∣ ≤

2Re
[
µ
⟨
Ak̂λ, k̂λ

⟩]
|µ|
∣∣∣⟨Ak̂λ, k̂λ⟩∣∣∣ +

r2

|µ|
∣∣∣⟨Ak̂λ, k̂λ⟩∣∣∣ −

|µ|∣∣∣⟨Ak̂λ, k̂λ⟩∣∣∣ (3.15)

for all λ ∈ Ω. Hence,

|̃A|2 (λ)

|µ|
∣∣∣Ã (λ)

∣∣∣ ≤
2Re

[
µÃ (λ)

]
|µ|
∣∣∣Ã (λ)

∣∣∣ +
r2

|µ|
∣∣∣Ã (λ)

∣∣∣ − |µ|∣∣∣Ã (λ)
∣∣∣ (3.16)

1946



YAMANCI and GARAYEV/Turk J Math

for all λ ∈ Ω. If we subtract in (3.16) the same quantity

∣∣∣Ã (λ)
∣∣∣

|µ|
from both sides, then we have

|̃A|2 (λ)

|µ|
∣∣∣Ã (λ)

∣∣∣ −
∣∣∣Ã (λ)

∣∣∣
|µ|

≤
2Re

[
µÃ (λ)

]
|µ|
∣∣∣Ã (λ)

∣∣∣ +
r2

|µ|
∣∣∣Ã (λ)

∣∣∣ −
∣∣∣Ã (λ)

∣∣∣
|µ|

− |µ|∣∣∣Ã (λ)
∣∣∣ (3.17)

=
2Re

[
µÃ (λ)

]
|µ|
∣∣∣Ã (λ)

∣∣∣ − |µ|2 − r2

|µ|
∣∣∣Ã (λ)

∣∣∣ −
∣∣∣Ã (λ)

∣∣∣
|µ|

=
2Re

[
µÃ (λ)

]
|µ|
∣∣∣Ã (λ)

∣∣∣ −


√
|µ|2 − r2√
|µ|
∣∣∣Ã (λ)

∣∣∣ −
√∣∣∣Ã (λ)

∣∣∣√
|µ|


2 ∣∣∣Ã (λ)

∣∣∣
|µ|

− 2

√
|µ|2 − r2

|µ|
.

Since Re
[
µÃ (λ)

]
≤ |µ|

∣∣∣Ã (λ)
∣∣∣ and


√
|µ|2 − r2√
|µ|
∣∣∣Ã (λ)

∣∣∣ −
√∣∣∣Ã (λ)

∣∣∣√
|µ|


2

≥ 0,

by (3.17) we obtain

|̃A|2 (λ)

|µ|
∣∣∣Ã (λ)

∣∣∣ −
∣∣∣Ã (λ)

∣∣∣
|µ|

≤
2

(
|µ| −

√
|µ|2 − r2

)
|µ|

,

which implies the inequality

|̃A|2 (λ) ≤
∣∣∣Ã (λ)

∣∣∣2 + 2
∣∣∣Ã (λ)

∣∣∣ (|µ| −√|µ|2 − r2
)

≤ ber (A)
2
+ 2ber (A)

(
|µ| −

√
|µ|2 − r2

)

for all λ ∈ Ω , which implies that

ber
(
|A|2

)
− ber (A)

2 ≤ 2ber (A)

(
|µ| −

√
|µ|2 − r2

)(
|µ|+

√
|µ|2 − r2

)
|µ|+

√
|µ|2 − r2

=
2r2ber (A)

|µ|+
√
|µ|2 − r2

,

as desired. The proof is complete. 2
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Corollary 4 Let φ,ψ ∈ C with Re (ψφ) > 0 . If A ∈ B (H) is an operator such that either (3.6) or (3.12)
holds true, then

ber
(
|A|2

)
− ber (A)

2 ≤
[
|ψ + φ| − 2

√
Re (ψφ)

]
ber (A) .

Remark 2 If M ≥ m > 0 are such that either Re ((A∗ −m) (M −A))̃ (λ) ≥ 0 for all λ ∈ Ω , or simply
(A∗ −m) (M −A) is self-adjoint and (A∗ −m) (M −A) ≥ 0 , then it follows from the first claim of Corollary
3 that √

ber
(
|A|2

)
ber (A)

≤ M +m

2
√
mM

,

which is equivalent to √
ber
(
|A|2

)
− ber (A) ≤

(√
M −

√
m
)2

2
√
mM

ber (A) ,

while we have from (3.13) that

ber
(
|A|2

)
− ber (A)

2 ≤
(√

M −
√
m
)2
ber (A) .

Also, (3.7) becomes √
ber
(
|A|2

)
− ber (A) ≤ 1

4

(M −m)
2

M +m
.

Our next result is based on the following refinement of Schwartz’s inequality obtained by Dragomir [11,

Theorem 2] :

∥a∥ ∥b∥ ≥ |⟨a, b⟩ − ⟨a, e⟩ ⟨e, b⟩|+ |⟨a, e⟩ ⟨e, b⟩| ≥ |⟨a, b⟩| , (3.18)

provided a, b, e ∈ H and ∥e∥ = 1. Since

|⟨a, b⟩ − ⟨a, e⟩ ⟨e, b⟩| ≥ |⟨a, e⟩ ⟨e, b⟩| − |⟨a, b⟩| ,

by the first inequality in (3.18) we deduce that

1

2
(∥a∥ ∥b∥+ |⟨a, b⟩|) ≥ |⟨a, e⟩ ⟨e, b⟩| . (3.19)

Inequality (3.19) was proved by a different method earlier by Buzano [7]. Now we are ready to state our result.

Theorem 5 Let A ∈ B (H (Ω)) . Then

ber (A)
2 ≤ 1

2

[
ber
(
A2
)
+

√
ber
(
|A|2

)
ber
(
|A∗|2

)]
.
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Proof Let us choose in (3.19) e = k̂λ, a = Ak̂λ , and b = A∗k̂λ to get

1

2

(∥∥∥Ak̂λ∥∥∥∥∥∥A∗k̂λ

∥∥∥+ ∣∣∣⟨A2k̂λ, k̂λ

⟩∣∣∣) ≥
∣∣∣⟨Ak̂λ, k̂λ⟩∣∣∣2

for all λ ∈ Ω. From this we have

1

2

[√
ber
(
|A|2

)√
ber
(
|A∗|2

)
+ ber

(
A2
)]

≥
∣∣∣Ã (λ)

∣∣∣2
or all λ ∈ Ω , which obviously implies the desired result. 2

4. Other Berezin number inequalities for product of operators

The main goal of this section is to find upper bounds for the Berezin number of AαXBα and AαXB1−α for
the case when 0 ≤ α ≤ 1.

The following lemma is a consequence of the classical Jensen and Young inequalities [11]. By using this
lemma, we prove the next results.

Lemma 3 For a, b ≥ 0 , 0 ≤ α ≤ 1 , and p, q > 1 with 1

p
+

1

q
= 1 , we have:

(a) aαb1−α ≤ αa+ (1− α) b ≤ [αar + (1− α) br]

1

r for r ≥ 1;

(b) ab ≤ ap

p
+
bq

q
≤
(
apr

p
+
bqr

q

)1

r for r ≥ 1.

Theorem 6 Let p, q > 1 with 1

p
+

1

q
= 1 and pr, qr ≥ 2 . Let A,B ∈ B (H (Ω)) be positive operators. Then

berr (AαXBα) ≤ ∥X∥r
(
1

p
ber (Apr) +

1

q
ber (Bqr)

)α

for all 0 ≤ α ≤ 1 .

Proof By using the Cauchy–Schwarz inequality, we have∣∣∣⟨AαXBαk̂λ, k̂λ

⟩∣∣∣r =
∣∣∣⟨XBαk̂λ, A

αk̂λ

⟩∣∣∣r
≤
∥∥∥XBαk̂λ

∥∥∥r ∥∥∥Aαk̂λ

∥∥∥r
≤ ∥X∥r

⟨
A2αk̂λ, k̂λ

⟩r/2 ⟨
B2αk̂λ, k̂λ

⟩r/2
,

and so ∣∣∣ÃαXBα(λ)
∣∣∣r ≤ ∥X∥r

[
Ã2α (λ)

]r/2 [
B̃2α (λ)

]r/2
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for all λ ∈ Ω. From the McCarthy inequality and Lemma 3, we obtain

∥X∥r
[
Ã2α (λ)

]r/2 [
B̃2α (λ)

]r/2
(4.1)

≤ ∥X∥r
(
1

p

(
Ã2α (λ)

)pr/2
+

1

q

[
B̃2α (λ)

]qr/2)
≤ ∥X∥r

(
1

p

(
Ãpr (λ)

)α
+

1

q

(
B̃qr (λ)

)α)
for all λ ∈ Ω. From the concavity of tα, we have

∥X∥r
(
1

p

(
Ãpr(λ)

)α
+

1

q

(
B̃qr(λ)

)α)
≤ ∥X∥r

(
1

p
Ãpr(λ) +

1

q
B̃qr(λ)

)α

(4.2)

for all λ ∈ Ω.

Combining (4.1) and (4.2), we get∣∣∣ÃαXBα(λ)
∣∣∣r ≤ ∥X∥r

(
1

p
Ãpr(λ) +

1

q
B̃qr(λ)

)α

for all λ ∈ Ω. Taking the supremum in the last inequality, we get

berr (AαXBα) ≤ ∥X∥r
(
1

p
ber (Apr) +

1

q
ber (Bqr)

)α

for all positive operators A,B ∈ B (H (Ω)) . This proves the theorem. 2

Theorem 7 Let A,B ∈ B (H (Ω)) be positive operators. Then

berr
(
AαXB1−α

)
≤ ∥X∥r ber (αAr + (1− α)Br)

for all r ≥ 2 and 0 ≤ α ≤ 1 .

Proof By using the Cauchy–Schwarz inequality, as in the proof of Theorem 8 , we have∣∣∣⟨AαXB1−αk̂λ, k̂λ

⟩∣∣∣r =
∣∣∣⟨XB1−αk̂λ, A

αk̂λ

⟩∣∣∣r
≤ ∥X∥r

∥∥∥B1−αk̂λ

∥∥∥r ∥∥∥Aαk̂λ

∥∥∥r
= ∥X∥r

⟨
B2(1−α)k̂λ, k̂λ

⟩r/2 ⟨
A2αk̂λ, k̂λ

⟩r/2
and therefore ∣∣∣ ˜AαXB1−α(λ)

∣∣∣r ≤ ∥X∥r
(
B̃2(1−α)(λ)

)r/2 (
Ã2α(λ)

)r/2
for all λ ∈ Ω. Then we get from the McCarthy inequality and Lemma 3 that∣∣∣ ˜AαXB1−α(λ)

∣∣∣r ≤ ∥X∥r
(
Ãr(λ)

)α (
B̃r(λ)

)1−α

≤ ∥X∥r
(

˜αAr + (1− α)Br(λ)
)
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for all λ ∈ Ω. Taking the supremum in the last inequality, we obtain

berr
(
AαXB1−α

)
≤ ∥X∥r ber (αAr + (1− α)Br)

for all positive operators A,B ∈ B (H (Ω)) . This proves the theorem. 2
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