## [Turkish Journal of Mathematics](https://journals.tubitak.gov.tr/math)

[Volume 43](https://journals.tubitak.gov.tr/math/vol43) [Number 4](https://journals.tubitak.gov.tr/math/vol43/iss4) [Article 8](https://journals.tubitak.gov.tr/math/vol43/iss4/8) Article 8

1-1-2019

# On hypercyclic fully zero-simple semihypergroups

MARIO DE SALVO

DOMENICO FRENI

GIOVANNI LO FARO

Follow this and additional works at: [https://journals.tubitak.gov.tr/math](https://journals.tubitak.gov.tr/math?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol43%2Fiss4%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages) 

**P** Part of the [Mathematics Commons](https://network.bepress.com/hgg/discipline/174?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol43%2Fiss4%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages)

## Recommended Citation

SALVO, MARIO DE; FRENI, DOMENICO; and FARO, GIOVANNI LO (2019) "On hypercyclic fully zero-simple semihypergroups," Turkish Journal of Mathematics: Vol. 43: No. 4, Article 8. [https://doi.org/10.3906/](https://doi.org/10.3906/mat-1904-14) [mat-1904-14](https://doi.org/10.3906/mat-1904-14) 

Available at: [https://journals.tubitak.gov.tr/math/vol43/iss4/8](https://journals.tubitak.gov.tr/math/vol43/iss4/8?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol43%2Fiss4%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact [academic.publications@tubitak.gov.tr](mailto:academic.publications@tubitak.gov.tr).



Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2019) 43: 1905 – 1918 © TÜBİTAK doi:10.3906/mat-1904-14

Research Article

## **On hypercyclic fully zero-simple semihypergroups**

**Mario DE SALVO**<sup>1</sup> **, Domenico FRENI**<sup>2</sup> **, Giovanni LO FARO**<sup>1</sup>*,*<sup>∗</sup>

<sup>1</sup>Department of Mathematics, Computer Sciences, Physics, and Earth Sciences, University of Messina, Messina, Italy <sup>2</sup>Department of Mathematics, Computer Science, and Physics, University of Udine, Udine, Italy



Abstract: Let  $\Im$  be the class of fully zero-simple semihypergroups generated by a hyperproduct. In this paper we study some properties of residual semihypergroup  $(H_+,\star)$  of a semihypergroup  $(H,\circ) \in \mathfrak{I}$ . Moreover, we find sufficient conditions for  $(H, \circ)$  and  $(H_+, \star)$  to be cyclic.

**Key words:** Semihypergroups, simple semihypergroups, fully semihypergroups

#### **1. Introduction**

Algebraic hyperstructures are a suitable generalization of classical algebraic structures. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a set. Many authors have been working on this field and in [\[4](#page-13-0)] numerous applications are presented for algebraic hyperstructures, such as geometry, hypergraphs, binary relations, lattices, fuzzy sets and rough sets, automata, cryptography, codes, median algebras, relation algebras, artificial intelligence, and probabilities. The semihypergroups are the simplest algebraic hyperstructures that possess the properties of closure and associativity. Some scholars have studied different aspects of semihypergroups [[2,](#page-13-1) [5](#page-13-2), [8,](#page-13-3) [9](#page-13-4), [19,](#page-14-0) [20](#page-14-1), [22–](#page-14-2)  $24$ ] and interesting problems arise in the study of their so-called fundamental relations [\[1](#page-13-5), [7,](#page-13-6) [16,](#page-13-7) [21,](#page-14-4) [25\]](#page-14-5), which leads to analyzing the conditions for their transitivity, and minimal cardinality problems. In [\[16](#page-13-7)] the authors found all simple and zero-simple semihypergroups of size 3, such that the fundamental relation *β* is not transitive, apart from isomorphisms. This semihypergroups of size 3 were used in  $[8-12]$  $[8-12]$  to characterize the fully simple semihypergroups and the fully zero-simple semihypergroups having all hyperproducts of size *≤* 2. In particular, in [[11\]](#page-13-9) the authors proved that if  $(H, \circ)$  is a hypercyclic simple semihypergroup, generated by a hyperproduct of elements in  $H$ , then the relation  $\beta$  is transitive. Consequently, we have that in every fully simple semihypergroup the size of every hyperproduct is  $\leq 2$ . This is not true for the fully zero-simple semihypergroups, as many examples show in this paper.

The plan of this paper is as follows: after introducing some basic definitions and notations to be used throughout the paper, in Section 2, we prove that if  $(H, \circ)$  is a hypercyclic fully zero-simple semihypergroup generated by hyperproduct *P* and  $(H_+, \star)$  is the residual semihypergroup of  $(H, \circ)$  then the relation  $\beta_{H_+}$ is transitive. Moreover, if  $(H, \circ)$  is generated by hyperproduct *P* then  $(P \cap P^2) - \{0\} = \emptyset$ . In Section 3, we introduce the definition of rank for a hyperproduct *P* , which is the smallest positive integer *k* such that

<sup>∗</sup>Correspondence: lofaro@unime.it

<sup>2010</sup> *AMS Mathematics Subject Classification:* 20N20, 05A99

 $P \cap P^{k+1} - \{0\} \neq \emptyset$ . By means of this notion, we characterize the subsemihypergroup  $\hat{P}$  generated by a special hyperproduct P, called strong, and in Section 4 we analyze properties of the fully zero-simple semihypergroups generated by a strong hyperproduct. In particular, we prove that if  $(H, \circ)$  is a fully zero-simple semihypergroup generated by a strong hyperproduct *P* of rank a prime number *r* then  $(H, \circ)$  is cyclic. In this case, rank can be seen as a generalization of the concept of period in group theory. It is known that if *G* is a cyclic group of size a prime number *r* then every element different from identity is a generator of *G*. The same property is true for semihypergroups in Theorem [30,](#page-12-0) but the commutative property of cyclic groups does not generally hold; see the example in Remark [31](#page-12-1).

#### **1.1. Basic definitions and results**

Let *H* be a nonempty set and  $P^*(H)$  be the set of all nonempty subsets of *H*. A hyperoperation  $\circ$  on *H* is a map from  $H \times H$  to  $P^*(H)$ . For all  $x, y \in H$ , the subset  $x \circ y$  is called the hyperproduct of *x* and *y*. If *A*, *B* are nonempty subsets of *H* then  $A \circ B = \bigcup_{x \in A, y \in B} x \circ y$ .

A *semihypergroup* is a nonempty set *H* endowed with an associative hyperproduct  $\circ$ ; that is,  $(x \circ y) \circ z =$  $x \circ (y \circ z)$  for all  $x, y, z \in H$ .

A nonempty subset K of a semihypergroup  $(H, \circ)$  is called a subsemihypergroup of  $(H, \circ)$  if it is closed with respect to multiplication; that is,  $x \circ y \subseteq K$  for all  $x, y \in K$ . If  $(H, \circ)$  is a semihypergroup, then the intersection  $\bigcap_{i\in I} S_i$  of a family  $\{S_i\}_{i\in I}$  of subsemihypergroups of  $(H, \circ)$ , if it is nonempty, is again a subsemihypergroup of  $(H, \circ)$ . For every nonempty subset  $A \subseteq H$  there is at least one subsemihypergroup of  $(H, \circ)$  containing *A*, e.g., *H* itself. Hence, the intersection of all subsemihypergroups of  $(H, \circ)$  containing *A* is a subsemihypergroup. We denote it by  $\widehat{A}$ , and we note that it is defined by two properties:

- 1.  $A \subseteq \widehat{A}$ ;
- 2. if *S* is a subsemihypergroup of *H* and  $A \subseteq S$ , then  $\widehat{A} \subseteq S$ .

Furthermore,  $\hat{A}$  is characterized as the algebraic closure of  $A$  under the hyperproduct in  $(H, \circ)$ ; namely, we have  $\hat{A} = \bigcup_{n \geq 1} A^n$ . Moreover, if H is finite, the set  $\left\{ r \in \mathbb{N} - \{0\} \mid \bigcup_{k=1}^r A^k = \bigcup_{k=1}^{r+1} A^k \right\}$  has minimum  $m \leq |H|$  and then it is known that

$$
\widehat{A} = \bigcup_{k=1}^{m} A^k = \bigcup_{k=1}^{m+1} A^k = \dots = \bigcup_{k=1}^{|H|} A^k.
$$
\n(1)

If  $x \in H$ , we suppose  $\circ x^1 = \{x\}$  and  $\circ x^n = \underbrace{x \circ \dots \circ x}_{n \text{ times}}$ for every integer  $n > 1$ . We refer to  $\hat{x} = \bigcup_{n \geq 1} \infty^n$ 

as the *cyclic subsemihypergroup of*  $(H, \circ)$  *generated by the element*  $x$ . It is the smallest subsemihypergroup containing *x*.

If K is a subsemihypergroup of  $(H, \circ)$ , it is said to be *hypercyclic* if there exists a hyperproduct P of elements in *K* such that  $K = \hat{P}$ .

If  $(H, \circ)$  is a semihypergroup, an element  $0 \in H$  such that  $x \circ 0 = \{0\}$  (resp.,  $0 \circ x = \{0\}$ ) for all  $x \in H$ is called a *right zero scalar element* or *right absorbing element* (resp., *left zero scalar element* or *left absorbing* *element*) of (*H, ◦*). If 0 is both a right and left zero scalar element, then 0 is called a *zero scalar element* or *absorbing element*.

A semihypergroup  $(H, \circ)$  is called *simple* if  $H \circ x \circ H = H$ , for all  $x \in H$ .

A semihypergroup  $(H, \circ)$  with an absorbing element 0 is called *zero-simple* if  $H \circ x \circ H = H$ , for all *x ∈ H − {*0*}*.

Given a semihypergroup  $(H, \circ)$ , the relation  $\beta^*$  of *H* is the transitive closure of the relation  $\beta = \bigcup_{n \geq 1} \beta_n$ , where  $\beta_1$  is the diagonal relation in *H* and, for every integer  $n > 1$ ,  $\beta_n$  is defined recursively as follows:

$$
x\beta_n y \Longleftrightarrow \exists (z_1,\ldots,z_n) \in H^n \; : \; \{x,y\} \subseteq z_1 \circ z_2 \circ \ldots \circ z_n.
$$

The relations  $\beta$ ,  $\beta^*$  are called *fundamental relations* on *H* [[25\]](#page-14-5). Their relevance in semihypergroup theory stems from the following facts [\[21](#page-14-4)]: the quotient set  $H/\beta^*$ , equipped with the operation  $\beta^*(x) \otimes \beta^*(y) = \beta^*(z)$ for all  $x, y \in H$  and  $z \in x \circ y$ , is a semigroup. Moreover, the relation  $\beta^*$  is the smallest strongly regular equivalence on *H* such that the quotient  $H/\beta^*$  is a semigroup.

The interested reader can find all relevant definitions, many properties, and applications of fundamental relations, even in more abstract contexts, in [[3,](#page-13-10) [4,](#page-13-0) [6,](#page-13-11) [14,](#page-13-12) [15,](#page-13-13) [17](#page-13-14), [18](#page-14-6), [21](#page-14-4), [25](#page-14-5)].

A semihypergroup (*H, ◦*) is said to be *fully zero-simple* if it fulfills the following conditions:

- 1. All subsemihypergroups of  $(H, \circ)$   $((H, \circ)$  itself included) are zero-simple.
- 2. The relation  $\beta$  in  $(H, \circ)$  and the relation  $\beta_K$  in all subsemihypergroups  $K \subset H$  of size  $\geq 3$  are not transitive.

Since in all semihypergroups of size  $\leq 2$  the relation  $\beta$  is transitive, it follows that every fully zero-simple semihypergroup has size  $\geq 3$ .

We denote by  $\mathfrak{F}_0$  the class of fully zero-simple semihypergroups. We use 0 to denote the zero scalar element of each semihypergroup  $(H, \circ) \in \mathfrak{F}_0$ . Moreover, we use the notation  $H_+$  to indicate the set of nonzero elements in *H*; that is,  $H_{+} = H - \{0\}$ . Finally, for the reader's convenience, we collect in the following lemma some preliminary results from [\[9](#page-13-4)].

**Lemma 1** *Let*  $(H, \circ) \in \mathfrak{F}_0$ *. Then we have:* 

- <span id="page-3-0"></span>*1.*  $H \circ H = H$ ;
- 2. if S is a subsemihypergroup of H such that  $0 \notin S$ , then  $|S| = 1$ , and moreover, if  $|S| \geq 2$  then the zero *element of S is* 0*;*
- *3. there exist*  $x, y \in H_+$  *such that*  $0 \in x \circ y$ ;
- 4. *for every sequence*  $z_1, \ldots, z_n$  *of elements in*  $H_+$  *we have*  $\prod_{i=1}^n z_i \neq \{0\}$ *;*
- *5. the set*  $H_+$  *equipped with hyperproduct*  $a * b = (a \circ b) \cap H_+$ *, for all*  $a, b \in H_+$ *, is a semihypergroup.*

<span id="page-3-1"></span>By points 2 and 4 of Lemma [1](#page-3-0) we deduce the following result:

**Corollary 2** *Let S be a subsemihypergroup of*  $H \in \mathfrak{F}_0$ *. Then we have:* 

- *1. if*  $0 \notin S$  *then there exists*  $a \in H_+$  *such that*  $S = \{a\}$  *and*  $a \circ a = \{a\}$ *;*
- 2. if  $|S| = 2$  then there exists  $a \in H_+$  such that  $S = \{a, 0\}$  and  $\{a\} \subseteq a \circ a \subseteq \{0, a\}.$

From point 5 of Lemma [1,](#page-3-0) we know that the set of nonzero element  $H_+$  of a fully 0-simple semihypergroup (*H*,  $\circ$ ) is a simple semihypergroup equipped with hyperoperation  $a \star b = (a \circ b) \cap H_+$ , for all  $a, b \in H_+$ . This semihypergroup is called a *residual semihypergroup* of (*H, ◦*).

The following results were proved in [\[13](#page-13-15)]:

<span id="page-4-1"></span>**Theorem 3** Let  $(H, \circ) \in \mathfrak{F}_0$ . For all  $x \in H$ , we have  $(x, 0) \in \beta$ . Moreover,  $H/\beta^*$  is trivial.

<span id="page-4-0"></span>**Lemma 4** *Let*  $A, B$  *be two nonempty subsets of*  $(H, \circ) \in \mathfrak{F}_0$  *different from the singleton*  $\{0\}$ *. We have:* 

- $1. (A \{0\}) \star (B \{0\}) = A \circ B \{0\}.$
- *2. If*  $(A, \circ)$  *is a subsemihypergroup of*  $(H, \circ)$  *then*  $(A \{0\}, \star)$  *is a subsemihypergroup of*  $(H_+, \star)$ *.*
- 3. If  $0 \in A$  and  $(A \{0\}, \star)$  is a subsemily pergroup of  $(H_+, \star)$  then  $(A, \circ)$  is a subsemily pergroup of  $(H, \circ)$ .
- 4. If  $A_+ = A \{0\}$  and  $(\widehat{A}, \circ), (\widehat{A}_+, \star)$  are the subsemihypergroups of  $(H, \circ)$  and  $(H_+, \star)$  generated from A *and*  $A_+$  *respectively, then*  $\widehat{A}_+ = \widehat{A} - \{0\}$ *.*

<span id="page-4-2"></span>**Proposition 5** Let  $(H_+, \star)$  be the residual semihypergroup of  $(H, \circ) \in \mathfrak{F}_0$  and  $[0,0]_H = \{(a,b) \in H \times H \mid a =$ 0 *or*  $b = 0$ }. Then we have  $\beta_{H_+} = \beta - [0, 0]_H$ .

#### **2. Hypercyclic semihypergroup in**  $\mathfrak{F}_0$

In [\[11](#page-13-9)] the authors introduced the definition of hypercyclic semihypergroups and studied a class of semihypergroups  $(H, \circ)$  such that for all hyperproducts P of elements in H the subsemihypergroup  $\hat{P}$  is hypercyclic. In this section we study some properties of the hypercyclic semihypergroups in  $\mathfrak{F}_0$ . For the reader's convenience we denote by  $\mathfrak{I}_0$  the subclass of hypercyclic semihypergroups in  $\mathfrak{F}_0$ .

<span id="page-4-3"></span>**Proposition 6** *If*  $(H, \circ) \in \mathfrak{I}_0$  *is generated by hyperproduct P*, then  $(H_+, \star)$  *is hypercyclic generated by*  $P_+ = P - \{0\}$  *and*  $\beta_{H_+}$  *is transitive.* 

**Proof** If  $(H, \circ) \in \mathfrak{F}_0$  is generated from the set *P*, then  $H = \hat{P}$  and, for Lemma [4,](#page-4-0) the residual semihypergroup  $(H_+, \star)$  is generated from  $P_+ = P - \{0\}$ . Therefore,  $(H_+, \star)$  is a simple hypercyclic semihypergroup. By Theorem 3.1 in [\[11](#page-13-9)], the relation  $\beta_{H_+}$  is transitive.  $\Box$ 

**Corollary 7** If  $(H, \circ) \in \mathfrak{I}_0$  and a, b, c are three elements in H such that  $(a, b) \in \beta$ ,  $(b, c) \in \beta$ , and  $(a, c) \notin \beta$ , *then*  $b = 0$ *.* 

<span id="page-4-4"></span>**Proof** By Theorem [3,](#page-4-1) we have that  $a \neq 0$  and  $c \neq 0$ ; otherwise,  $(a, c) \in \beta$ . If, for absurdity,  $b \neq 0$ , then  $a, b, c \in H_+$  and, for Proposition [5](#page-4-2),  $(a, b) \in \beta_{H_+}$  and  $(b, c) \in \beta_{H_+}$ . Now, for Proposition [6](#page-4-3), we obtain that  $(a, c) \in \beta_{H_+}$ , which is impossible because  $\beta_{H_+} \subseteq \beta$  and  $(a, c) \notin \beta$ . Therefore,  $b = 0$ . **Theorem 8** *If*  $(H, \circ) \in \mathfrak{I}_0$  *then*  $\left| H_+ / \beta^*_{H_+} \right|$  *<sup>≥</sup>* <sup>2</sup>*.*

**Proof** For absurdity, let  $|H_+/\beta^*_{H_+}| = 1$ . If  $a, b \in H$ , we can distinguish two cases: 1)  $a = 0$  or  $b = 0$ ; 2)  $a \neq 0$  and  $b \neq 0$ . In the first case, by Theorem [3](#page-4-1), we have that  $(a, b) \in \beta$ . In the second case, for the hypothesis  $|H_{+}/\beta_{H_{+}}^{*}| = 1$  and Proposition [6,](#page-4-3) we obtain that  $(a,b) \in \beta_{H_{+}} \subseteq \beta$ . Thus, we have that  $(a,b) \in \beta$ , for all  $a, b \in H$ . Therefore, we conclude that  $\beta$  is transitive, which is an absurdity.  $\Box$ 

By Corollary [2](#page-3-1), if  $(H, \circ) \in \mathfrak{F}_0$  and  $K \subset H$  is a subsemihypergroup of size  $|K| < 3$ , then there exists an element  $c \in K$  such that  $c \in cc$ . Now we will prove that if  $|K| \geq 3$  and K is hypercyclic generated by hyperproduct *P* then  $(P \cap P^2) - \{0\} = \emptyset$ . We give the following result:

<span id="page-5-0"></span>**Lemma 9** *Let*  $(H, \circ) \in \mathfrak{F}_0$ . If *P* is a hyperproduct of elements in *H* such that  $(P \cap P^2) - \{0\} \neq \emptyset$ , then  $(P^k \cap P^{k+1}) - \{0\} \neq \emptyset$  *for every integer*  $k \geq 1$ *.* 

**Proof** By hypothesis the thesis is true for  $k = 1$ . Therefore, we suppose it is true for  $k \ge 1$  and let  $a \in (P^k \cap P^{k+1}) - \{0\} \neq \emptyset$ . Obviously we have  $aP \subseteq P^k P = P^{k+1}$  and  $aP \subseteq P^{k+1}P = P^{k+2}$ ; hence,  $aP \subseteq P^{k+1} \cap P^{k+2}$  $aP \subseteq P^{k+1} \cap P^{k+2}$  $aP \subseteq P^{k+1} \cap P^{k+2}$ . From Lemma 1(4), we obtain that  $aP \neq \{0\}$  since  $a \neq 0$  and  $P \neq \{0\}$ . Thus, we have  $\Box$   $(P^{k+1} \cap P^{k+2}) - \{0\} \neq \emptyset.$ 

**Proposition 10** *If*  $(H, \circ) \in \mathfrak{I}_0$  *is generated by hyperproduct P then we have*  $(P \cap P^2) - \{0\} = \emptyset$ *.* 

**Proof** For absurdity we suppose that  $(P \cap P^2) - \{0\} \neq \emptyset$ . By Lemma [9](#page-5-0) we have  $(P^k \cap P^{k+1}) - \{0\} \neq \emptyset$  for every integer  $k \geq 1$ . From Lemma [4](#page-4-0) (1), if  $P_+ = P - \{0\}$  then we obtain

$$
\star P_+^k \cap \star P_+^{k+1} = (P^k - \{0\}) \cap (P^{k+1} - \{0\}) = (P^k \cap P^{k+1}) - \{0\} \neq \emptyset.
$$

Moreover, by Proposition [6,](#page-4-3) the semihypergroup  $(H_+, \star)$  is hypercyclic generated from  $P_+$  and  $\beta_{H_+}$  is transitive. Now, if  $x, y \in H_+$ , then there exist two integers  $m, n \ge 1$  such that  $x \in \star P_+^m$  and  $y \in \star P_+^n$ . If  $m = n$ then  $(x,y) \in \beta_{H_+}$ . If  $m \neq n$  we can suppose that  $m < n$  and  $(\star P_+^{m+k} \cap \star P_-^{m+k+1}) - \{0\} \neq \emptyset$ , for every  $k \in \{0, 1, \ldots, n-m-1\}$ . Therefore, there exist  $n-m$  elements  $z_0, z_1, \ldots, z_{n-m-1} \in H_+$  such that

$$
\{x, z_0\} \subseteq \star P_+^m, \{z_0, z_1\} \subseteq \star P_+^{m+1}, \ \ldots \ , \{z_{n-m-1}, y\} \subseteq \star P_+^n.
$$

In consequence,  $x\beta_{H_+}z_0\beta_{H_+}z_1\beta_{H_+} \dots \beta_{H_+}z_{n-m-1}\beta_{H_+}y$  and  $(x,y)\in \beta_{H_+}$  since  $\beta_{H_+}$  is transitive. Thus, for every  $x, y \in H_+$  we have  $(x, y) \in \beta_{H_+}$  and  $|H_+/\beta^*_{H_+}| = 1$ . This fact is impossible by Theorem [8.](#page-4-4)

As an immediate consequence of the preceding proposition, we can state the following result:

<span id="page-5-1"></span>**Corollary 11** Let  $(H, \circ) \in \mathfrak{F}_0$  and let  $K \subseteq H$  be a hypercyclic subsemihypergroup of size  $|K| \geq 3$ . If P is a *hyperproduct of elements in*  $K - \{0\}$  *such that*  $K = \widehat{P}$  *then*  $(P \cap P^2) - \{0\} = \emptyset$ *.* 

#### **3. Strong hyperproduct**

Let  $(H, \circ) \in \mathfrak{F}_0$  and let  $K \subseteq H$  be a subsemihypergroup generated by *P* with  $|K| \geq 3$ . Since  $(K, \circ) \in \mathfrak{F}_0$ , by Lemma [1,](#page-3-0) we have  $K = K \circ K = \bigcup_{n \geq 2} P^n$ , and hence there exists an integer  $s \geq 2$  such that  $(P \cap P^s) - \{0\} \neq \emptyset$ . This fact suggests the following definition:

**Definition 12** Let  $(H, \circ)$  be a semihypergroup and let P be a hyperproduct of elements in H. The smallest positive integer *k* such that  $P \cap P^{k+1} - \{0\} \neq \emptyset$  is called the *rank* of P. If no such *k* exists, then we say *P* has rank 0.

Clearly, by Corollary [11,](#page-5-1) if *K* is a hypercyclic subsemihypergroup of  $(H, \circ) \in \mathfrak{F}_0$ , with size  $|K| \geq 3$ , and *P* is a hyperproduct of elements in *K* such that  $K = \hat{P}$ , then the rank of *P* is  $\geq 2$ .

In this section we will use the notion of rank to determine a sufficient condition for a hypercyclic semihypergroup  $(H, \circ) \in \mathfrak{I}_0$  to be cyclic.

<span id="page-6-1"></span>**Definition 13** Let  $(H, \circ) \in \mathfrak{F}_0$ . An element  $c \in H$  is called *quasi-idempotent* if  $c \neq 0$  and  $\{c\} \subseteq c \circ c \subseteq \{0, c\}$ .

<span id="page-6-0"></span>**Definition 14** Let  $(H, \circ) \in \mathfrak{F}_0$ . A hyperproduct P of elements in H is called *strong* if it fulfills the following conditions:

- 1. *P* does not contain any quasi-idempotent element of *H* .
- 2. The subsemihypergroup  $\hat{P}$  possesses a quasi-idempotent element.
- 3. If  $c \in \widehat{P}$  is a quasi-idempotent element then  $P^s \{0\} = \{c\}$ , for all integers *s* such that  $c \in P^s$ .

An immediate consequence of the previous definition and point 2, point 4, of Lemma [1](#page-3-0) is the following result:

<span id="page-6-2"></span>**Proposition 15** *Let*  $(H, \circ) \in \mathfrak{F}_0$ *. If P is a strong hyperproduct then*  $0 \in \hat{P}$  *and*  $|\hat{P}| > 3$ *.* 

**Proposition 16** *Let*  $(H, \circ) \in \mathfrak{F}_0$  *and let P be a strong hyperproduct. The semihypergroup*  $\hat{P}$  *has one and only one quasi-idempotent element.*

**Proof** Since P is a strong hyperproduct,  $\hat{P}$  has a quasi-idempotent element  $c_1$ . If there exists another quasiidempotent element  $c_2 \in \hat{P}$ , then there exist two positive integers  $s_1$  and  $s_2$  such that  $P^{s_1} - \{0\} = \{c_1\}$  and  $P^{s_2} - \{0\} = \{c_2\}$ . Obviously we have

$$
\{c_1\} = c_1^{s_2} - \{0\} = (P^{s_1})^{s_2} - \{0\} = (P^{s_2})^{s_1} - \{0\} = c_2^{s_1} - \{0\} = \{c_2\}
$$
  
and so  $c_1 = c_2$ .

**Corollary 17** Let  $(H, \circ) \in \mathfrak{F}_0$  and let P be a strong hyperproduct of elements in H. If c is the quasi-idempotent *element* in  $\widehat{P}$  and  $s \in \mathbb{N} - \{0\}$  then  $P^s$  is a strong hyperproduct if and only if  $c \notin P^s$ .

The next table shows a fully zero-simple semihypergroup with two quasi-idempotent elements  $c_1, c_2$  and two strong hyperproducts *P* and *Q* such that  $c_1 \in \hat{P}$  and  $c_2 \in \hat{Q}$ .

#### DE SALVO et al./Turk J Math

| $\circ$        | $\Omega$ |            |            | 3          |            | 5          |            |
|----------------|----------|------------|------------|------------|------------|------------|------------|
| $\overline{0}$ | 0        |            |            |            |            |            |            |
|                |          | 0.3        | 0.3        | 0, 1, 2    | 5,6        | 0, 4, 6    | 0, 4, 5, 6 |
| $\overline{2}$ | $\theta$ | 0,3        | 0,3        | 0, 1, 2    | 0, 4, 6    | 5.6        | 0, 4, 5, 6 |
| 3              | $\Omega$ | 0, 1, 2    | 0, 1, 2    |            | 0, 4, 5, 6 | 0, 4, 5, 6 | 0, 4, 5, 6 |
| 4              | $\Omega$ | 2,3        | 0, 1, 3    | 0, 1, 2, 3 | 0,6        | 0,6        | 0, 4, 5    |
| 5              | $\theta$ | 0, 1, 3    | 2,3        | 0, 1, 2, 3 | 0,6        | 0,6        | 0, 4, 5    |
| 6              |          | 0, 1, 2, 3 | 0, 1, 2, 3 | 0, 1, 2, 3 | 0, 4, 5    | 0, 4, 5    | 0,6        |

**Example 18** Let  $H = \{0, 1, 2, 3, 4, 5, 6\}$  and let  $\circ$  be the hyperproduct defined in the following table:

We have  $(H, \circ) \in \mathfrak{F}_0$ . The elements 3 and 6 are quasi-idempotent; the hyperproducts  $P = 1 \circ 3$ ,  $Q = 4 \circ 6$  are strong of rank two; and we have  $3 \in \hat{P}$ ,  $6 \in \hat{Q}$ . Moreover, we note that  $(H_+, \star)$  is not a commutative simple semihypergroup and  $H_+/\beta^*_{H_+}$  is isomorphic to the following semigroup:

**Proposition 19** *Let*  $(H, \circ) \in \mathfrak{F}_0$  *and let P be a strong hyperproduct of rank r*. Then we have  $r \geq 2$ .

**Proof** Let *c* be the quasi-idempotent element in  $\hat{P}$  and  $s \geq 2$  the minimum integer such that  $P^s - \{0\} = \{c\}$ . If for absurdity we suppose  $P \cap P^2 \neq \emptyset$  then  $P^{s-1} \cap P^s - \{0\} \neq \emptyset$  and so  $c \in P^{s-1}$ . By definition of a strong hyperproduct, we have  $P^{s-1} - \{0\} = \{c\}$ . That is a contradiction for the minimality of *s*.

We are ready to prove the following result:

<span id="page-7-0"></span>**Proposition 20** *Let*  $(H, \circ) \in \mathfrak{F}_0$  *and let P be a strong hyperproduct of rank r*. Then *r is the minimum positive integer such that*  $P^r - \{0\} = \{c\}$ , where *c is the quasi-idempotent element in*  $\hat{P}$ *.* 

**Proof** Since  $c \in \hat{P}$  there exists a minimum positive integer *s* such that  $P^s - \{0\} = \{c\}$ . Hence,  $\{c\}$  $(P^s)^r - \{0\} = (P^r)^s - \{0\}$  and  $c \in \widehat{P^r}$ . Clearly, there exists a minimum positive integer *t* such that  $P^{rt} - \{0\} = \{c\}$ . Suppose, for absurdity, that  $t \geq 2$ . By point 4 of Lemma [1,](#page-3-0) we have  $P^{(t-1)r-1} \neq \{0\}$ . Moreover, since  $(P \cap P^{r+1}) - \{0\} \neq \emptyset$ , we obtain

$$
\emptyset \neq ((P \cap P^{r+1}) - \{0\}) \circ P^{(t-1)r-1} - \{0\} \subseteq (P^{(t-1)r} \cap P^{tr}) - \{0\} \subseteq P^{(t-1)r} \cap \{c\}.
$$

By Definition [14](#page-6-0), it follows that  $P^{(t-1)r} - \{0\} = \{c\}$ , which is a contradiction for the minimality of *t*. Therefore,  $t = 1$  and  $P^r - \{0\} = \{c\}$ . Now, let *s* be a positive integer such that  $P^s - \{0\} = \{c\}$ , and then  $\emptyset \neq P \cap P^{r+1} - \{0\} = P \cap cP - \{0\} = P \cap P^{s+1} - \{0\}$  and so  $s \geq r$ . Therefore, r is the minimum positive integer such that  $P^r - \{0\} = \{c\}$ .

<span id="page-7-1"></span>**Proposition 21** *Let*  $(H, \circ) \in \mathfrak{F}_0$ . If *P is a strong hyperproduct of elements in H of rank r then there exists a* positive integer  $t \leq 2r$  *such that*  $0 \in P^t$ .

**Proof** Let *c* be the quasi-idempotent element in  $\hat{P}$ . From Definition [13](#page-6-1) and Proposition [20](#page-7-0), we have  $c \in c \circ c \subseteq \{0, c\}$  and  $c \in P^r \subseteq \{0, c\}$ . Moreover, by Proposition [15](#page-6-2), we know that  $0 \in \hat{P}$ ; hence, we can distinguish two cases:  $0 \in P^{2r}$  or  $0 \notin P^{2r}$ . In the first case we have the thesis. In the second case, we obtain  $c \circ c = \{c\} = P^r$ . Now there exists an integer  $m \ge 1$  such that  $0 \in P^m$ . If  $m > 2r$ , by Euclidean division, there exist two nonnegative integers  $q, n$  such that  $m = qr + n$  with  $q \neq 0$  and  $0 \leq n \leq r$ . We have  $n \neq 0$ ; otherwise,  $0 \in P^m = P^{qr} = (P^r)^q = c^q = \{c\}$ . Hence, we deduce  $0 \in P^m = P^{qr+n} = (P^r)^q \circ P^n = c^q \circ P^n = c \circ P^n = P^r \circ P^n = P^{n+r}$  and so  $0 \in P^{n+r}$  with  $n + r < 2r$ .

<span id="page-8-0"></span>**Corollary 22** Let  $(H, \circ) \in \mathfrak{F}_0$ . If P is a strong hyperproduct of elements in H of rank r then  $\widehat{P} = \bigcup_{k=1}^{2r} P^k$ .

**Proof** Let *c* be the quasi-idempotent element in  $\hat{P}$ . For all  $m > 2r$  there exist  $q, n \in \mathbb{N}$  such that  $m = qr + n$ ,  $q \geq 2$ , and  $0 \leq n < r$ . By Proposition [20,](#page-7-0) if  $n = 0$  then  $P^m = (P^r)^q \subseteq \{0, c\}^q \subseteq \{0, c\} \subseteq \{0\} \cup P^r$ . Otherwise, if  $n \neq 0$ , then  $P^m = (P^r)^q \circ P^n \subseteq \{0, c\}^q \circ P^n \subseteq (\{0\} \cup c^q) \circ P^n = \{0\} \cup (c^q \circ P^n) = \{0\} \cup (\{0, c\} \circ P^n) =$  $\{0\} \cup c \circ P^n = \{0\} \cup P^r \circ P^n = \{0\} \cup P^{n+r}$ . Hence, for Proposition [21](#page-7-1), we obtain  $P^m \subseteq \bigcup_{k=1}^{2r} P^k$  and  $\widehat{P} = \bigcup_{k=1}^{2r} P^k$ . *✷*

<span id="page-8-1"></span>**Lemma 23** Let  $(H, \circ) \in \mathfrak{F}_0$  and let P be a strong hyperproduct of elements in H of rank r. If c is the *quasi-idempotent element of*  $\widehat{P}$  *then we have:* 

- *1.*  $\hat{P} = (\{c\} \cup c \circ P \cup c \circ P^2 \cup ... \cup c \circ P^{r-1});$ *2.*  $c \circ P^i - \{0\} = P^i \circ c - \{0\}$ , for every  $i \in \{1, 2, ..., r\}$ ; *3.*  $(c \circ P)^i - \{0\} = c \circ P^i - \{0\}$ , for every  $i \in \{1, 2, ..., r\}$ ; 4.  $(c \circ P^i) \circ (c \circ P^j) - \{0\} = c \circ P^{i+j} - \{0\}$ , for every  $i, j \in \{1, 2, ..., r\}$ ; *5.*  $(P^i \cap P^j) - \{0\} = \emptyset$ , for every  $i, j \in \{1, 2, ..., r\}$  and  $i \neq j$ ; *6.*  $c \notin c \circ P^i - \{0\}$ , for every  $i \in \{1, 2, ..., r - 1\}$ ; 7.  $(c \circ P^i \cap c \circ P^j) - \{0\} = \emptyset$ , for all  $i, j \in \{1, 2, ..., r - 1\}$  and  $i \neq j$ ;
- *8.*  $P^i \subseteq c \circ P^i$ , for every  $i \in \{1, 2, ..., r 1\}$ .

**Proof** For Corollary [22](#page-8-0), we can put  $\widehat{P} = P \cup P^2 \cup ... \cup P^{2r}$ .

1. Since  $\hat{P} = (\hat{P})^r = P^r \cup P^{r+1} \cup ... \cup P^{2r^2}$ , by Proposition [20,](#page-7-0) it results that:

$$
Pr - \{0\} = \{c\}
$$
  
\n
$$
Pr+1 - \{0\} = c \circ P - \{0\}
$$
  
\n
$$
P2r-1 - \{0\} = c \circ Pr-1 - \{0\}
$$
  
\n
$$
P2r - \{0\} = c \circ Pr - \{0\} = \{c\} = Pr - \{0\}.
$$

At this point, taking into account Proposition [21,](#page-7-1) the assertion follows immediately.

2. Since  ${c}$  =  $P^r - {0}$ , we have

$$
c \circ P^{i} - \{0\} = P^{r} \circ P^{i} - \{0\} = P^{i} \circ P^{r} - \{0\} = P^{i} \circ c - \{0\}.
$$

3. By item 2, we have  $(c \circ P)^i - \{0\} = (c \circ P) \circ (c \circ P) \circ \ldots \circ (c \circ P)$  $\overbrace{\text{ }i \text{ times}}$ *−{*0*}* = *c ◦ c ◦ . . . ◦ c* **<u>∘** *c* ∘ . . . ∘ *c*</u> ∘ *P* ∘ *P* ∘ . . . ∘ *P*<br>**i** times **i** times *−{*0*}* =

 $c \circ P^i - \{0\}.$ 

- 4. By item 2.,  $(c \circ P^i) \circ (c \circ P^j) \{0\} = c \circ c \circ P^i \circ P^j \{0\} = (c \circ P^{i+j}) \{0\}.$
- 5. For absurdity, let  $(P^i \cap P^j) \{0\} \neq \emptyset$  for some  $i, j \in \{1, 2, ..., r\}$  with  $i \neq j$ . Supposing  $i < j$ , we obtain  $(P^{r-j+i} \cap P^{r-j+j}) - \{0\} \neq \emptyset$ , and hence  $(P^{r-j+i} \cap P^r) - \{0\} \neq \emptyset$ . Since  $P^r - \{0\} = \{c\}$  we have  $c \in P^{r-j+i} - \{0\}$ , which is a contradiction because *r* is the minimum integer such that  $\{c\} \in P^r - \{0\}$ .
- 6. Let  $i \in \{1, 2, ..., r-1\}$ . Since  $c \circ P \{0\} = P^{r+1} \{0\}$ , we have

$$
(P \cap P^{r+1}) - \{0\} \neq \emptyset \Rightarrow (P \cap c \circ P) - \{0\} \neq \emptyset \Rightarrow (P^i \cap (c \circ P)^i) - \{0\} \neq \emptyset.
$$

Moreover, by item 3, we obtain  $P^i \cap c \circ P^i - \{0\} \neq \emptyset$ . Now, if  $c \in (c \circ P)^i - \{0\}$ , then  $c \circ P^i - \{0\} =$  $P^r \circ P^i - \{0\} = P^{r+i} - \{0\}$ , and hence  $c \circ P^i - \{0\} = P^{r+i} - \{0\} = \{c\}$ . Consequently, we have  $c \in P^i - \{0\}$ , which is impossible because  $i < r$ . Thus,  $c \notin c \circ P^i - \{0\}$ .

- 7. For absurdity, we suppose that there exists  $i, j \in \{1, 2, ..., r-1\}$ , with  $i \neq j$ , such that  $(c \circ P^i \cap c \circ P^j) \{0\} \neq$  $\emptyset$ . Letting  $i < j$ , by item 3, we obtain  $(c \circ P^{r-j+i} \cap c \circ P^{r-j+j}) - \{0\} \neq \emptyset$ . Having  $c \circ P^r - \{0\} = \{c\},$ it follows that  $c \in c \circ P^{r-j+i} - \{0\}$ . Since  $r - j + i < r$ , by item 6, we have a contradiction.
- 8. Let  $i \in \{1, 2, \ldots, r 1\}$  and  $a \in P^i$ . From item 1, there exists an integer *s*, with  $1 \leq s \leq r 1$ , such that  $a \in c \circ P^s$ . Clearly, it results that  $c \circ a \subseteq c \circ P^i$  and  $c \circ a \subseteq c \circ P^s$ . Therefore, by point 4 of Lemma [1,](#page-3-0) we have  $\emptyset \neq c \circ a \subseteq (c \circ P^i \cap c \circ P^s)$ . Moreover, for item 7,  $i = s$  and  $a \in c \circ P^i$ . *✷*

**Remark 24** From Lemma [23,](#page-8-1) if *P* is a strong hyperproduct of rank *r* , of elements in a fully zero-simple semihypergroup, then  $\widehat{P}$  is partitioned by the family of subsets  $\{\{c\}, c \circ P, c \circ P^2, ..., c \circ P^{r-1}\}$ , where c is the quasi-idempotent element of  $\widehat{P}$ .

<span id="page-9-0"></span>**Lemma 25** Let  $(H, \circ) \in \mathfrak{F}_0$  and let P be a strong hyperproduct of rank r, with c a quasi-idempotent element *in*  $\widehat{P}$ *. If*  $Q$  *is a hyperproduct such that*  $\emptyset \neq Q - \{0\} \subseteq P$ *, then:* 

- *1. Q is a strong hyperproduct with*  $c \in \hat{Q}$ *, having the same rank r of P*;
- *2.*  $c \circ Q^i \{0\} = c \circ P^i \{0\}$ , for all  $i \in \{1, 2, \ldots, r 1\}$ ;
- $3. \hat{Q} = \hat{P}$ .

**Proof**

- 1. From Proposition [20](#page-7-0), we have  $Q^r \{0\} \subseteq P^r \{0\} = \{c\}$  and so  $Q^r \{0\} = \{c\}$  and  $c \in \hat{Q}$ . Clearly  $c \notin Q$  because  $Q \subseteq P$  and  $c \notin P$ . Moreover, by point 3 of Definition [14,](#page-6-0) if  $c \in Q^s - \{0\}$  then  $c \in P^s - \{0\}$ and  $Q^s - \{0\} = P^s - \{0\} = \{c\}$ . Hence, *Q* is a strong hyperproduct of  $(H, \circ)$  and *c* is a quasi-idempotent element in  $\hat{Q}$ . From Proposition [20](#page-7-0), if *t* is the rank of *Q* then  $t \leq r$  because  $Q^r - \{0\} = \{c\}$ . Moreover, since  $\{c\} = Q^t - \{0\} \subseteq P^t - \{0\}$ , by point 3 of Definition [14](#page-6-0) and Proposition [20](#page-7-0), we have  $P^t - \{0\} = \{c\}$ and  $r \leq t$ ; therefore,  $r = t$ .
- 2. Let b be an element in  $P \{0\}$ . We have  $b \circ Q^{r-1} \{0\} \subseteq b \circ P^{r-1} \{0\} \subseteq P^r \{0\} = \{c\}$ and so  $b \circ Q^{r-1} - \{0\} = \{c\}$ . Moreover, by item 1, we have  $b \circ c - \{0\} = b \circ (Q^r - \{0\}) - \{0\} =$  $b\circ (Q^{r-1}-\{0\})\circ (Q-\{0\})-\{0\}=c\circ (Q-\{0\})-\{0\}=c\circ Q-\{0\}$  and so  $b\circ c-\{0\}=c\circ Q-\{0\}$ , for all  $b \in P - \{0\}$ . Thus, by point 2 of Lemma [23,](#page-8-1) we deduce that  $c \circ P - \{0\} = Poq - \{0\} = (P - \{0\}) \circ c - \{0\} =$  $\bigcup_{b\in P-\{0\}} (b\circ c) - \{0\} = \bigcup_{b\in P-\{0\}} (b\circ c - \{0\}) = c\circ Q - \{0\}.$  Hence,  $c\circ P - \{0\} = c\circ Q - \{0\}.$  The proof of the item follows from point 4 of Lemma [23](#page-8-1).
- 3. The result follows from previous item 2 and point 1 of Lemma [23](#page-8-1). □

#### **4. Semihypergroups in**  $\mathfrak{F}_0$  generated by a strong hyperproduct

In this section we consider hypercyclic fully simple semihypergroups generated by a strong hyperproduct. For the reader's convenience we give the following:

**Definition 26** A semihypergroup  $(H, \circ) \in \mathfrak{I}_0$  is called *S -hypercyclic* if there exists a strong hyperproduct *P* such that  $H = \hat{P}$ .

<span id="page-10-0"></span>**Example 27** The next table shows an *S*-hypercyclic semihypergroup  $(H, \circ) \in \mathfrak{I}_0$ . For notational and descriptive simplicity, we denote  $A = \{0, 1\}$ ,  $B = \{0, 2, 3, 4\}$ ,  $C = \{0, 5, 6\}$ , and  $D = \{0, 7, 8\}$ .



The element 1 is quasi-idempotent and, for example,  $P = 6 \circ 7$  is a strong hyperproduct of rank four. Also, elements 2, 3, 4, 7, 8 can be regarded as strong hyperproducts of rank four and  $H = \hat{P} = \hat{a}$ , for all  $a \in \{2, 3, 4, 7, 8\}$ . In this case  $H_+/\beta^*_{H_+}$  is isomorphic to group  $\mathbb{Z}_4$ .

**Proposition 28** *Let*  $(H, \circ) \in \mathfrak{I}_0$  *be an S*-*hypercyclic semihypergroup generated by the strong hyperproduct P of rank r and let c be the quasi-idempotent element of H . We have:*

*1. If*  $a \in P - \{0\}$  *then*  $a$  *is a strong hyperproduct of rank*  $r$  *and*  $H = \hat{a}$ *.* 

- 2. If Q is a hyperproduct of elements in  $H_+$  then  $c \in \widehat{Q}$ . Moreover, if  $c \in Q$  then  $Q \{0\} = \{c\}$ . Otherwise, *if*  $c \notin Q$  *then*  $Q$  *is strong and has rank*  $\leq r$ *.*
- 3. If Q and T are strong hyperproducts of elements in  $H_+$  then we have  $c \circ Q^i \cap c \circ T^i \{0\} = \emptyset$  or  $c \circ Q^i - \{0\} = c \circ T^i - \{0\}$ , for all  $i \in \{1, 2, ..., r - 1\}$ .
- *4. The element c is the only identity of*  $(H, \circ)$ *.*
- *5. The residual semihypergroup*  $(H_+, \star)$  *of*  $(H, \circ)$  *is a cyclic semihypergroup with identity.*

#### **Proof**

- 1. Immediate consequence of Lemma [25](#page-9-0).
- 2. Let  $a \in P \{0\}$  and let  $Q = \prod_{i=1}^{n} \alpha_i$  be a hyperproduct of elements in  $H_+$ . From point 1,  $H = \hat{a}$ , and for every element  $\alpha_i$  there exists an integer  $q_i$  such that  $\alpha_i \in a^{q_i}$ . Clearly, we have  $Q = \prod_{i=1}^n \alpha_i \subseteq$  $\prod_{i=1}^{n} a^{q_i} = a^u$ , where  $u = \sum_{i=1}^{n} q_i$ . Hence,  $Q^r - \{0\} \subseteq (a^u)^r - \{0\} = (a^r)^u - \{0\} = \{c\}$  and so  $c \in \widehat{Q}$ . Now, if  $c \in Q$ , then  $c \in Q \subseteq a^u$  and we have  $a^u - \{0\} = \{c\} = Q - \{0\}$ . Moreover, if  $c \notin Q$  and  $c \in Q^s - \{0\}$  then  $c \in Q^s - \{0\} \subseteq (a^u)^s - \{0\} = a^{us} - \{0\}$  and so  $\{c\} = a^{us} - \{0\} = Q^s - \{0\}$ . Hence, *Q* is a strong hyperproduct and the rank of  $Q$  is  $\leq r$ .
- 3. If  $coQ^i \cap coT^i \{0\} = \emptyset$  the thesis follows. Otherwise, if  $coQ^i \cap coT^i \{0\} \neq \emptyset$  then there exists  $a \in H_+ \{c\}$ such that  $a \in c \circ Q^i$  and  $a \in c \circ T^i$  and so, by point 2 of Lemma [25](#page-9-0),  $c \circ Q^i - \{0\} = c \circ a - \{0\} = c \circ T^i - \{0\}$ .
- 4. By item 2, the element *b* is a strong hyperproduct for every  $b \in H_{+} \{c\}$ . From Lemma [23](#page-8-1) (1), we have  $\hat{b} = \{c\} \cup c \circ b \cup ... \cup c \circ b^{s-1}$ , where s is the rank of b. Hence, there exists  $i \in \{1, 2, ..., s-1\}$  such that  $b \in c \circ b^i$ . Clearly,  $c \circ b - \{0\} \subseteq c \circ b^i - \{0\}$  and, by item 7 of Lemma [23,](#page-8-1) we have  $i = 1$  and  $b \in c \circ b$ . In the same way, by item 2 of Lemma [23](#page-8-1), we obtain  $b \in b \circ c$ . Hence,  $b \in c \circ b \cap b \circ c$  for all  $b \in H_+$ . Obviously, we also have  $c \circ 0 = 0 \circ c = \{0\}$ , and hence *c* is an identity of  $(H, \circ)$ . If  $c' \in H - \{0, c\}$  is another identity and  $Q = c \circ c'$ , for item 2, we have  $\{c, c'\} \subseteq Q - \{0\} = \{c\}$  and  $c = c'$ . Hence, element *c* is the only identity of  $(H, \circ)$ .
- 5. By point 1 and Lemma [4](#page-4-0) (1), the semihypergroup  $(H_+, \star)$  is cyclic. Moreover, from previous point 4, the element *c* is an identity of  $(H_+, \star)$ .

<span id="page-11-0"></span>**Proposition 29** Let  $(H, \circ) \in \mathfrak{I}_0$  an *S*-hypercyclic semihypergroup generated by the strong hyperproduct P of *rank r and suppose r is a prime number. Then*  $\widehat{c} \circ \widehat{P^h} = H$  *for all*  $h \in \{1, 2, ..., r - 1\}$ .

**Proof** By item 6 of Lemma [23](#page-8-1) and the preceding proposition,  $c \circ P^i$  is a strong hyperproduct for all  $i \in \{1, 2, ..., r-1\}$ . Now let  $h \in \{1, 2, ..., r-1\}$ . By item 1. of Lemma [23](#page-8-1), we need to prove that  $c \circ P^j \subseteq c \circ P^{\overline{h}}$ , for every  $j \in \{1, 2, ..., r-1\}$ . Since r is a prime number, the congruence  $hx = j \pmod{r}$  has exactly one solution,  $s \neq 0 \pmod{r}$ . Thus,  $hs = j + kr$  and so

$$
c \circ P^{j+kr} - \{0\} = c \circ P^{hs} - \{0\}.
$$

By points 2, 3, and 4 of Lemma [23,](#page-8-1) we have  $c \circ P^{hs} - \{0\} = c^s \circ P^{hs} - \{0\} = (c \circ P^h)^s - \{0\}$ . Hence,  $c \circ P^{j+kr} - \{0\} = (c \circ P^h)^s - \{0\}.$  Clearly, if  $k = 0$  we have  $c \circ P^j \subseteq \widehat{c \circ P^h}$ ; otherwise, if  $k \neq 0$  then  $c \circ P^j - \{0\} \subseteq c \circ P^j \circ c - \{0\} = c \circ P^j \circ (P^r)^k - \{0\} = c \circ P^{hs} - \{0\} = (c \circ P^h)^s - \{0\}$  and also in this case  $c \circ P^j$  ⊆  $c \circ P^h$ . *✷*

<span id="page-12-0"></span>**Theorem 30** *Let*  $(H, \circ) \in \mathfrak{I}_0$  *an*  $S - hypercyclic$  *semihypergroup generated by a strong hyperproduct*  $P$  *of rank a prime number r and having c as quasi-idempotent element. Then:*

- *1. Every element*  $a \in H_+ \{c\}$  *is a strong hyperproduct of rank r and*  $H = \hat{a}$ *.*
- 2. For every strong hyperproduct  $Q$  of  $H$ ,  $\hat{Q} = H$  and  $Q$  has rank  $r$ .
- *3.*  $(H_+, \star)$  *is a cyclic semihypergroup generated by every*  $a \in H_+ \{c\}$ *.*
- 4.  $H_+/\beta^*_{H_+}$  *is a cyclic semigroup.*

#### **Proof**

- 1. Let  $a \in H_+ \{c\}$ . Then by item 1 of Lemma [23](#page-8-1), there exists  $h \in \{1, 2, ..., r-1\}$ , such that  $a \in c \circ P^h$ . By Proposition [29](#page-11-0), we have  $\widehat{c} \circ \widehat{P}^h = H$ . Moreover,  $c \notin c \circ P^h$  and so, from Lemma [25](#page-9-0),  $H = \widehat{a}$ .
- 2. Consequence of item 1.
- 3. Consequence of Lemma [4](#page-4-0) (4) and item 1*.*
- 4. Immediate since  $(H_+, \star)$  is a cyclic semihypergroup.

 $\Box$ 

<span id="page-12-1"></span>**Remark 31** In Example [27,](#page-10-0) the *S* -hypercyclic semihypergroup (*H, ◦*) is generated by a strong hyperproduct *P* of rank four, while elements 5 and 6 are strong hyperproducts of rank two and do not generate  $(H, ∘)$ . This fact shows that the hypothesis "rank of *P* is a prime number" in Theorem [30](#page-12-0) cannot be deleted. The following product table shows an *S*-hypercyclic semihypergroup  $(H, \circ)$  generated by a strong hyperproduct *P* of rank three.

| $\circ$        | $\Omega$ |            | 2          | 3          | 4          | 5          | 6          |
|----------------|----------|------------|------------|------------|------------|------------|------------|
| $\theta$       | 0        | 0          |            |            |            |            |            |
| 1              | $\Omega$ |            | 0, 2, 3, 4 | 0, 2, 3, 4 | 0, 2, 3, 4 | 0, 5, 6    | 0, 5, 6    |
| $\overline{2}$ | 0        | 0, 2, 3, 4 | 0, 5, 6    | 5,6        | 0, 5, 6    | 0, 1       | 0, 1       |
| 3              | $\theta$ | 0, 2, 3, 4 | 0, 5, 6    | 0, 5, 6    | 5,6        | 0,1        | 0, 1       |
| 4              | 0        | 0, 2, 3, 4 | 5, 6       | 0, 5, 6    | 0, 5, 6    | 0, 1       | 0, 1       |
| 5              | $\theta$ | 0, 5, 6    | 0, 1       | 0, 1       | 0, 1       | 0, 2, 3    | 0,4        |
| 6              | $\theta$ | 0, 5, 6    | 0,1        | 0, 1       | 0, 1       | 0, 2, 3, 4 | 0, 2, 3, 4 |

By the previous theorem, we have  $H = \hat{a}$ , for every  $a \in H_{+} - \{1\}$ , where 1 is the quasi-idempotent element of *H* . We note that if *G* is a group then every element *a* is a strong product and if *a* is a torsion element its rank is the period of the element *a*. Therefore, the rank can be seen as a generalization of the concept of period. Moreover, it is known that if *G* is a cyclic group of size a prime number *r* then every element different

#### DE SALVO et al./Turk J Math

from identity is a generator of *G*. The same property is true for semihypergroups in Theorem [30](#page-12-0), but the commutative property of cyclic groups does not generally hold. The hyperoperation in the previous example is not commutative.

#### **Acknowledgments**

The work of M. De Salvo, D. Freni, and G. Lo Faro was partially supported by INDAM (GNSAGA). D. Freni was supported by PRID 2017 funding (DMIF, University of Udine).

#### **References**

- <span id="page-13-5"></span>[1] Antampoufis N, Spartalis S, Vougiouklis T. Fundamental relations in special extensions. In: Proceedings of the International Congress on Algebraic Hyperstructures and Applications (Alexandroupoli-Orestiada, 2002); Xanthi, Greece; 2003. pp. 81-89.
- <span id="page-13-1"></span>[2] Changphas T, Davvaz B. Bi-hyperideals and Quasi-hyperideals in ordered semihypergroups. Italian Journal of Pure and Applied Mathematics 2015; 35: 493-508.
- <span id="page-13-10"></span>[3] Corsini P. Prolegomena of Hypergroup Theory. Udine, Italy: Aviani Editore, 1993.
- <span id="page-13-0"></span>[4] Corsini P, Leoreanu-Fotea V. Applications of Hyperstructures Theory, Advanced in Mathematics. New York, NY, USA: Kluwer Academic Publisher, 2003.
- <span id="page-13-2"></span>[5] Davvaz B. Semihypergroup Theory. New York, NY, USA: Academic Press, 2016.
- <span id="page-13-11"></span>[6] Davvaz B, Leoreanu-Fotea V. Hyperring Theory and Applications. New York, NY, USA: International Academic Press, 2007.
- <span id="page-13-6"></span>[7] Davvaz B, Salasi A. A realization of hyperrings. Communications in Algebra 2006; 34 (12): 4389-4400. doi: 10.1080/00927870600938316
- <span id="page-13-3"></span>[8] De Salvo M, Fasino D, Freni D, Lo Faro G. Fully simple semihypergroups, transitive digraphs, and Sequence A000712. Journal of Algebra 2014; 415: 65-87. doi: 10.1016/j.jalgebra.2013.09.046
- <span id="page-13-4"></span>[9] De Salvo M, Fasino D, Freni D, Lo Faro G. A family of 0-simple semihypergroups related to sequence A00070. Journal of Multiple Valued Logic and Soft Computing 2016; 27: 553-572.
- [10] De Salvo M, Fasino D, Freni D, Lo Faro G. Semihypergroups obtained by merging of 0-semigroups with groups. Filomat 2018; 32 (12): 4177-4194. doi: 10.2298/FIL1812177S
- <span id="page-13-9"></span>[11] De Salvo M, Freni D, Lo Faro G. Fully simple semihypergroups 2014. Journal of Algebra 2014; 399: 358-377. doi: 10.1016/j.jalgebra.2013.09.046
- <span id="page-13-8"></span>[12] De Salvo M, Freni D, Lo Faro G. Hypercyclic subhypergroups of finite fully simple semihypergroups. Journal of Multiple Valued Logic and Soft Computing 2017; 29: 595-617.
- <span id="page-13-15"></span>[13] De Salvo M, Freni D, Lo Faro G. On further properties of fully zero-simple semihypergroups. Mediterranean Journal of Mathematics 2019; 48 (16). doi: 10.1007/s00009-019-1324-z
- <span id="page-13-12"></span>[14] De Salvo G, Lo Faro G. On the n\*-complete hypergroups. Discrete Mathematics 1999; 209: 177-188.
- <span id="page-13-13"></span>[15] De Salvo M, Lo Faro G. A new class of hypergroupoids associated to binary relations. Journal of Multiple-Valued Logic and Soft Computing 2003; 9: 361-375.
- <span id="page-13-7"></span>[16] Fasino D, Freni D. Fundamental relations in simple and 0-simple semi-hypergroups of small size. Arabian Journal of Mathematics 2012; 1: 175-190. doi: 10.1007/s40065-012-0025-2
- <span id="page-13-14"></span>[17] Freni D. Strongly transitive geometric spaces: applications to hypergroups and semigroups theory. Communications in Algebra 2004; 32 (3): 969-988. doi: 10.1081/AGB-120027961
- <span id="page-14-6"></span>[18] Freni D. Minimal order semi-hypergroups of type *U* on the right. II. Journal of Algebra 2011; 340: 77-89. doi: 10.1016/j.jalgebra.2011.05.015
- <span id="page-14-0"></span>[19] Gutan M. Boolean matrices and semihypergroups. Rendiconti del Circolo Matematico di Palermo 2015; 64 (2): 157-165. doi: 10.1007/s12215-015-0188-8
- <span id="page-14-1"></span>[20] Hila K, Davvaz B, Naka K. On quasi-hyperideals in semihypergroups. Communications in Algebra 2011; 39: 4183- 4194. doi: 10.1080/00927872.2010.521932
- <span id="page-14-4"></span>[21] Koskas H. Groupoïdes, demi-hypergroupes et hypergroupes. Jornale de Mathématiques Pures et Appliquées 1970; 49: 155-192 (in French).
- <span id="page-14-2"></span>[22] Krasner M. A class of hyperrings and hyperfields. International Journal of Mathematics and Mathematical Sciences 1983; 6 (2): 307-311. doi: 10.1155/S0161171283000265
- [23] Naz S, Shabir M. On soft semihypergroups. Journal of Intelligent & Fuzzy System 2014; 26 (5): 2203-2213. doi:10.3233/IFS-130894
- <span id="page-14-3"></span>[24] Procesi-Ciampi R, Rota R. The hyperring spectrum. Rivista di Matematica Pura e Applicata 1987; 1: 71-80.
- <span id="page-14-5"></span>[25] Vougiouklis T. Fundamental relations in hyperstructures. Bulletin of the Greek Mathematical Society 1999; 42: 113-118.