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Abstract: We define a new type of semisymmetric nonmetric connection on a Riemannian manifold and establish
its existence. It is proved that such connection on a Riemannian manifold is projectively invariant under certain
conditions. We also find many basic results of the Riemannian manifolds and study the properties of group manifolds
and submanifolds of the Riemannian manifolds with respect to the semisymmetric nonmetric connection. To validate
our findings, we construct a nontrivial example of a 3 -dimensional Riemannian manifold equipped with a semisymmetric
nonmetric connection.
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1. Introduction
Let Mn be an n -dimensional Riemannian manifold and let ∇ denote the Levi-Civita connection corresponding
to the Riemannian metric g on Mn . A linear connection ∇̃ defined on Mn is said to be symmetric if the
torsion tensor T̃ of ∇̃ defined by

T̃ (X,Y ) = ∇̃XY − ∇̃Y X − [X,Y ]

is zero for all X and Y on Mn ; otherwise, it is nonsymmetric. In 1924 , Friedmann and Schouten [6] considered
a differentiable manifold and introduced the idea of a semisymmetric linear connection on it. A linear connection
∇̃ on Mn is said to be semisymmetric if

T̃ (X,Y ) = π(Y )X − π(X)Y (1.1)

holds for all vector fields X,Y on Mn , where π is a 1 -form associated with the vector field P and satisfies

π(X) = g(X,P ). (1.2)

In 1932 , Hayden gave the idea of a metric connection ∇̃ on a Riemannian manifold and later named such
connection a Hayden connection. After a long gap, Pak [10] considered the Hayden connection ∇̃ equipped
with the torsion tensor T̃ defined as (1.1) and proved that it is a semisymmetric metric connection. A linear
connection ∇̃ is said to be metric on Mn if ∇̃g = 0 ; otherwise, it is nonmetric. A systematic study of the
∗Correspondence: a.yildiz@inonu.edu.tr
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semisymmetric metric connection ∇̃ on a Riemannian manifold was initiated by Yano [14] in 1970 . Smaranda [2]
studied the properties of semisymmetric recurrent metric connections and proved many interesting geometrical
results. In 1992 , Agashe and Chafle [1] introduced a new class of the semisymmetric connection, called the
semisymmetric nonmetric connection, on a Riemannian manifold and studied some of its geometric properties.
Sengupta et al. [11] defined a new type of semisymmetric nonmetric connection on a Riemannian manifold in
2000 . In this connection, Chaubey et al. in [3] and [4] defined the nonsymmetric nonmetric connection on almost
contact metric manifolds. Motivated by the above studies, we define and study a new type of semisymmetric
nonmetric connection on a Riemannian manifold.

We organize our present work as follows: after an introduction in Section 1 , we define a new class of
semisymmetric nonmetric connection on a Riemannian manifold and prove its existence in Section 2 . We also
present some basic results that will help in further study. In Section 3 , we establish the relation between
curvature tensors of the Levi-Civita and semisymmetric nonmetric connections and prove some basic properties
of the curvature tensor of ∇̃ . The necessary and sufficient conditions for projectively invariant curvature tensors
are proved and we also bridge the gaps between the curvature, conformal curvature, concircular curvature,
and conharmonic curvature tensors. Section 4 deals with the study of a group manifold with respect to a
semisymmetric nonmetric connection. The properties of submanifolds of a Riemannian manifold with respect to
the semisymmetric nonmetric connection are studied in Section 5 . In the last section, we construct a nontrivial
example of a 3 -dimensional Riemannian manifold endowed with a semisymmetric nonmetric connection and
prove some results.

2. Semisymmetric nonmetric connection

Let (Mn, g) be a Riemannian manifold of dimension n endowed with a Levi-Civita connection ∇ corresponding
to the Riemannian metric g . A linear connection ∇̃ on (Mn, g) defined by

∇̃XY = ∇XY +
1

2
{π(Y )X − π(X)Y } (2.1)

for arbitrary vector fields X and Y on Mn is said to be a semisymmetric nonmetric connection if the torsion
tensor T̃ of Mn with respect to ∇̃ satisfies equations (1.1) and (1.2), and the metric g holds the relation

(∇̃Xg)(Y, Z) =
1

2
{2π(X)g(Y, Z)− π(Y )g(X,Z)− π(Z)g(X,Y )} (2.2)

for all vector fields X, Y, Z on Mn . Now we prove the existence of such a connection on an n -dimensional
Riemannian manifold in the following theorem.

Theorem 2.1 Let (Mn, g) be an n-dimensional Riemannian manifold endowed with the Levi-Civita connection
∇ . Then there exists a unique linear connection ∇̃ on Mn , called a semisymmetric nonmetric connection,
given by (2.1), and it satisfies equations (1.1) and (2.2).

Proof We suppose that (Mn, g) is a Riemannian manifold of dimension n equipped with a linear connection
∇̃ . Then ∇̃ and the Levi-Civita connection ∇ are connected by the relation

∇̃XY = ∇XY + U(X,Y ) (2.3)
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for arbitrary vector fields X and Y on Mn , where U is a tensor field of type (1, 2) . By definition of the torsion
tensor T̃ of ∇̃ and equation (2.3), we can conclude that

T̃ (X,Y ) = U(X,Y )− U(Y,X), (2.4)

which gives
g(T̃ (X,Y ), Z) = g(U(X,Y ), Z)− g(U(Y,X), Z). (2.5)

From (1.1) and (2.5), we have

g(U(X,Y ), Z)− g(U(Y,X), Z) = π(Y )g(X,Z)− π(X)g(Y, Z). (2.6)

In view of equation (2.1), we conclude that

(∇̃Xg)(Y, Z) = −g(∇̃XY −∇XY, Z)− g(Y, ∇̃XZ −∇XZ)

= −U ′(X,Y, Z), (2.7)

where U ′(X,Y, Z) = g(U(X,Y ), Z) + g(U(X,Z), Y ) . We have

g(T̃ (X,Y ), Z) + g(T̃ (Z,X), Y ) + g(T̃ (Z, Y ), X)

= 2g(U(X,Y ), Z)− U ′(X,Y, Z) + U ′(Z,X, Y )− U ′(Y,X,Z),

where equations (2.4), (2.5), and (2.7) are used. In consequence of equations (2.2) and (2.7), the above equation
assumes the form

2g(U(X,Y ), Z) = g(T̃ (X,Y ), Z) + g(T̃ ′(X,Y ), Z) + g(T̃ ′(Y,X), Z)

−π(X)g(Y, Z)− π(Y )g(X,Z) + 2π(Z)g(X,Y ), (2.8)

where
g(T̃ ′(X,Y ), Z) = g(T̃ (Z,X), Y ) = π(X)g(Z, Y )− π(Z)g(X,Y ) (2.9)

for all vector fields X, Y , and Z on Mn . By using equation (2.9), equation (2.8) takes the form

2U(X,Y ) = π(Y )X − π(X)Y (2.10)

and thus equations (2.3) and (2.10) give (2.1). Conversely, we can easily show that if the affine connection ∇̃
satisfies (2.1) then it will also satisfy equations (1.1) and (2.2). Hence, the statement of Theorem 2.1 is proved.

2

The covariant derivative of equation (1.2) with respect to the semisymmetric nonmetric connection ∇̃
gives

(∇̃Xπ)(Y ) = (∇Xπ)(Y ) + π(P )g(X,Y )− π(Y )π(X) (2.11)

for arbitrary vector fields X and Y on Mn . From equation (2.11), we get

(∇̃Xπ)(Y )− (∇̃Y π)(X) = (∇Xη)(Y )− (∇Xη)(Y ). (2.12)

Thus, we are in position to state the following proposition:
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Proposition 2.2 Let (Mn, g) be a Riemannian manifold of dimension n endowed with a semisymmetric
nonmetric connection ∇̃ , and then the necessary and sufficient condition for the 1-form π to be closed with
respect to ∇̃ is that it is also closed corresponding to the Levi-Civita connection ∇ .

Theorem 2.3 On an n-dimensional Riemannian manifold (Mn, g) endowed with a semisymmetric nonmetric
connection ∇̃ , we have

′T̃ (X,Y, Z) +′ T̃ (Y,X,Z) = 0,

′T̃ (X,Y, Z) +′ T̃ (Y, Z,X) +′ T̃ (Z,X, Y ) = 0.

Proof We define ′T̃ (X,Y, Z) = g(T̃ (X,Y ), Z) on (Mn, g) . Therefore, equation (1.1) gives

′T̃ (X,Y, Z) = π(Y )g(X,Z)− π(X)g(Y, Z). (2.13)

With the help of equation (2.13), we can easily prove the statement of Theorem 2.3. 2

Theorem 2.4 If (Mn, g) is an n-dimensional Riemannian manifold equipped with a semisymmetric nonmetric
connection ∇̃ , then T̃ is cyclic parallel if and only if the 1-form π is closed.

Proof Taking the covariant derivative of (1.1) with respect to the semisymmetric nonmetric connection ∇̃ ,
we find that

(∇̃X T̃ )(Y, Z) = (∇̃Xπ)(Z)Y − (∇̃Xπ)(Y )Z. (2.14)

The cyclic sum of (2.14) for vector fields X, Y , and Z gives

(∇̃X T̃ )(Y, Z) + (∇̃Y T̃ )(Z,X) + (∇̃Z T̃ )(X,Y ) = {(∇̃Xπ)(Z)− (∇̃Zπ)(X)}Y

+{(∇̃Zπ)(Y )− (∇̃Y π)(Z)}X + {(∇̃Y π)(X)− (∇̃Xπ)(Y )}Z. (2.15)

From equation (2.15) and Proposition 2.2, we can easily show that (∇̃X T̃ )(Y, Z)+(∇̃Y T̃ )(Z,X)+(∇̃Z T̃ )(X,Y ) =

0 if and only if the 1 -form π is closed. Hence, Theorem 2.4 is proved. 2

Proposition 2.5 If an n-dimensional Riemannian manifold (Mn, g) admits a semisymmetric nonmetric
connection ∇̃ , then for any arbitrary vector fields X and Y , and the vector field P defined as (1.2), the
following relation holds:

(L̃P g)(X,Y ) = (LP g)(X,Y ) + 2{π(P )g(X,Y )− π(X)π(Y )}, (2.16)

where L̃P and LP denote the Lie derivatives along the vector field P corresponding to ∇̃ and ∇ , respectively.

Proof It is well known that
(LP g)(X,Y ) = g(∇XP, Y ) + g(X,∇Y P ) (2.17)

holds for arbitrary vector fields X and Y on Mn . By using equations (2.1) and (2.17) and the definition of
the Lie derivative, we find

(L̃P g)(X,Y ) = Pg(X,Y )− g(∇̃PX − ∇̃XP, Y )− g(X, ∇̃PY − ∇̃Y P )

= (LP g)(X,Y ) + 2{π(P )g(X,Y )− π(X)π(Y )}.

Hence, the statement of Proposition 2.5 is proved. 2
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If the vector field P is Killing on (Mn, g) , then LP g = 0 and therefore in view of Proposition 2.5 we
state:

Corollary 2.6 If the vector field P defined as in (1.2) is Killing on an n-dimensional Riemannian manifold
(Mn, g) equipped with a semisymmetric nonmetric connection ∇̃ , then

(L̃P g)(X,Y ) = 2{π(P )g(X,Y )− π(X)π(Y )}. (2.18)

3. Curvature tensor with respect to the semisymmetric nonmetric connection

Let (Mn, g) be an n -dimensional Riemannian manifold admitting a semisymmetric nonmetric connection ∇̃ .
If the curvature tensor R̃ corresponding to ∇̃ is defined by

R̃(X,Y )Z = ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z

for arbitrary vector fields X , Y , and Z on (Mn, g) , then the Riemannian curvature tensor R of the Levi-Civita
connection ∇ is defined by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

for all vector fields X , Y , and Z on (Mn, g) and connected by the relation

R̃(X,Y )Z = ∇̃X{∇Y Z +
1

2
(π(Z)Y − π(Y )Z)} − ∇̃Y {∇XZ

+
1

2
(π(Z)X − π(X)Z)} − {∇[X,Y ]Z +

1

2
(π(Z)[X,Y ]− π([X,Y ])Z)}

= ∇X{∇Y Z +
1

2
(π(Z)Y − π(Y )Z)} − ∇Y {∇XZ +

1

2
(π(Z)X

− π(X)Z)} − ∇[X,Y ]Z +
1

2
[π(∇Y Z)X − π(X)∇Y Z − π(∇XZ)Y

+ π(Y )∇XZ]− 1

4
[π(X)π(Z)Y − π(Y )π(Z)X − π(Z)[X,Y ] + π([X,Y ])Z]

= R(X,Y )Z +
1

2
{θ(X,Z)Y − θ(Y, Z)X − (θ(X,Y )− θ(Y,X))Z} (3.1)

for arbitrary vector fields X , Y , and Z on Mn , where θ is a tensor field of type (0, 2) and is defined by

θ(X,Y ) = g(AX,Y ) = (∇Xπ)(Y )− 1

2
π(X)π(Y ) (3.2)

and

AX = ∇XP − 1

2
π(X)P (3.3)

for arbitrary vector fields X and Y on Mn . From equation (3.2), it is obvious that the tensor field θ is
symmetric if and only if the 1 -form π is closed. Taking the inner product of (3.1) with W and then setting
X = W = ei , 1 ≤ i ≤ n , where {ei, i = 1, 2, 3, ... n} is an orthonormal basis of the tangent space at each point
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of the Riemannian manifold Mn , we have

S̃(Y, Z) = S(Y, Z) +
1

2

n∑
i=1

{g(Aei, Z)g(Y, ei)− θ(Y, Z)g(ei, ei)

−g(Aei, Y )g(Z, ei) + g(AY, ei)g(Z, ei)}

= S(Y, Z)− n− 1

2
θ(Y, Z) +

1

2

n∑
i=1

{g(Aei, ei)g(Z, ei)g(Y, ei)

−g(Aei, ei)g(Z, ei)g(Y, ei)},

which is equivalent to

S̃(Y, Z) = S(Y, Z)− n− 1

2
θ(Y, Z) ⇐⇒ Q̃Y = QY − n− 1

2
AY (3.4)

for all vector fields Y and Z on Mn . Here Q̃ and Q are the Ricci operators corresponding to the Ricci tensors
S̃ and S of the connections ∇̃ and ∇ , respectively; that is, S̃(Y, Z) = g(Q̃Y, Z) and S(Y, Z) = g(QY,Z) .
Again contracting (3.4) along the vector field Y , we get

r̃ = r − (n− 1)a, (3.5)

where r̃ and r denote the scalar curvatures corresponding to the semisymmetric nonmetric connection ∇̃ and
the Levi-Civita connection ∇ , respectively, and

a
def
=

1

2
trA.

Here trA represents the trace of A . From equation (3.5), we can observe the following proposition:

Proposition 3.1 Let (Mn, g) denote an n-dimensional Riemannian manifold endowed with a semisymmetric
nonmetric connection ∇̃ . Then the necessary and sufficient condition for the scalar curvatures r̃ and r to
coincide is that a be zero; that is, trA = 0 .

Interchanging Y and Z in (3.4), we have

S̃(Z, Y ) = S(Z, Y )− n− 1

2
θ(Z, Y ). (3.6)

Subtracting (3.6) from (3.4) and then using equation (3.2) and the symmetric property of the Ricci tensor in
it, we conclude that

S̃(Y, Z)− S̃(Z, Y ) =
n− 1

2
{θ(Z, Y )− θ(Y, Z)} = −n− 1

2
dπ(Y, Z), (3.7)

where d denotes the exterior derivative. In view of (3.7) and Proposition 2.2, we are in a position to state the
following proposition:
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Proposition 3.2 If an n(> 1)-dimensional Riemannian manifold (Mn, g) admits a semisymmetric nonmetric
connection ∇̃ , then the Ricci tensor S̃ corresponding to the connection ∇̃ is symmetric if and only if the 1-form
π is closed.

Theorem 3.3 Let (Mn, g) be an n-dimensional Riemannian manifold equipped with a semisymmetric non-
metric connection ∇̃ , then the following relations hold for all vector fields X , Y , Z , and U on Mn :

(i) R̃(X,Y )Z + R̃(Y,X)Z = 0,

(ii) R̃(X,Y )Z + R̃(Y, Z)X + R̃(Z,X)Y = 0 ⇐⇒ 1 − formπ is closed,

(iii) (∇̃XR̃)(Y, Z)U + (∇̃Y R̃)(Z,X)U + (∇̃ZR̃)(X,Y )U

= 2{π(X)R̃(Y, Z)U + π(Y )R̃(Z,X)U + π(Z)R̃(X,Y )U},

(iv) ′R̃(X,Y, Z, U) +′ R̃(X,Y, U, Z) =
1

2
{θ(X,Z)g(Y, U)− θ(Y, U)g(X,Z)

+θ(X,U)g(Y, Z)− θ(Y, Z)g(X,U)} − dπ(X,Y )g(U,Z),

(v) ′R̃(X,Y, Z, U)−′ R̃(Z,U,X, Y ) =
1

2
{dπ(X,Z)g(Y, U)− dπ(X,Y )g(Z,U)

−dπ(U,Z)g(X,Y ) + θ(U,X)g(Y, Z)− θ(Y, Z)g(X,U)}.

Proof Interchanging X and Y in (3.1) and then adding with (3.1), we obtain (i). Again from (3.1), we find

R̃(X,Y )Z + R̃(Y, Z)X + R̃(Z,X)Y = {θ(Z, Y )− θ(Y, Z)}X

+{θ(X,Z)− θ(Z,X)}Y + {θ(Y,X)− θ(X,Y )}Z.

This expression shows that the Riemannian manifold (Mn, g) equipped with a semisymmetric nonmetric
connection ∇̃ satisfies Bianchi’s first identity if and only if the 1 -form π is closed. Thus, result (ii). Bianchi’s
second identity for a semisymmetric nonmetric connection ∇̃ is given by the expression

(∇̃XR̃)(Y, Z)U + (∇̃Y R̃)(Z,X)U + (∇̃ZR̃)(X,Y )U

= −R̃(T̃ (X,Y ), Z)U − R̃(T̃ (Y, Z), X)U − R̃(T̃ (Z,X), Y )U

for arbitrary vector fields X , Y , Z , and U on Mn . With the help of equation (1.1), (i) , and the last expression,
we can easily find (iii) . If we define ′R̃(X,Y, Z, U) = g(R̃(X,Y )Z,U) and ′R(X,Y, Z, U) = g(R(X,Y )Z,U) ,
then equation (3.1) becomes

′R̃(X,Y, Z, U) = ′R(X,Y, Z, U) +
1

2
{θ(X,Z)g(Y, U)

−θ(Y, Z)g(X,U)− (θ(X,Y )− θ(Y,X)) g(Z,U)} (3.8)

for all vector fields X , Y , Z , and U on Mn . Expressions (iv) and (v) are obvious from equations (3.2) and
(3.8) and the symmetric properties of the curvature tensor. Hence, the proof is completed. 2

Theorem 3.4 Let (Mn, g) be a Riemannian manifold of dimension n (> 1) equipped with a semisymmetric
nonmetric connection ∇̃ defined as in (2.1). Then the connection ∇̃ is projectively invariant; that is, the
projective curvature tensors with respect to ∇̃ and ∇ coincide if and only if the 1-form π is closed.
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Proof We suppose that the 1 -form π is closed and therefore equation (3.2) shows that θ is symmetric. This
fact together with equation (3.1) gives

R̃(X,Y )Z = R(X,Y )Z +
1

2
{θ(X,Z)Y − θ(Y, Z)X}. (3.9)

Contracting (3.9) along the vector field X , we have

S̃(Y, Z) = S(Y, Z)− (n− 1)

2
θ(Y, Z), (3.10)

which gives

Q̃Y = QY − (n− 1)

2
AY (3.11)

and
r̃ = r − (n− 1)a. (3.12)

The projective curvature P̃ [5] with respect to the semisymmetric nonmetric connection ∇̃ is defined as

P̃(X,Y )Z = R̃(X,Y )Z − 1

n− 1
{S̃(Y, Z)X − S̃(X,Z)Y } (3.13)

for all vector fields X , Y , and Z on Mn . In view of equations (3.9) and (3.10), equation (3.13) assumes the
form

P̃(X,Y )Z = P(X,Y )Z, (3.14)

where P denotes the projective curvature tensor [5] with respect to ∇ and is defined by

P(X,Y )Z = R(X,Y )Z − 1

n− 1
{S(Y, Z)X − S(X,Z)Y } (3.15)

for arbitrary vector fields X, Y , and Z on Mn . Conversely, we suppose that (Mn, g) equipped with ∇̃ satisfies
(3.14). Thus, use of (3.1), (3.4), (3.11), (3.13), and (3.15) in (3.14) gives

{θ(X,Y )− θ(Y,X)}Z = 0.

Contracting the last equation along the vector field X , we find

θ(Y, Z)− θ(Z, Y ) = 0,

which shows that θ(Y, Z) = θ(Z, Y ) . Hence, the proof is completed. 2

Theorem 3.5 If (Mn, g) , n > 2 , is an n-dimensional Riemannian manifold endowed with a semisymmetric
nonmetric connection ∇̃ whose curvature tensor R̃ vanishes identically, then (Mn, g) is projectively flat if and
only if θ is a symmetric tensor.
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Proof We consider that the curvature tensor with respect to the semisymmetric nonmetric connection ∇̃
vanishes on (Mn, g) ; that is, R̃ = 0 , and the tensor field θ is symmetric. Then equation (3.9) becomes

R(X,Y )Z =
1

2
{θ(Y, Z)X − θ(X,Z)Y }, (3.16)

which implies that

S(Y, Z) =
n− 1

2
θ(Y, Z), r = (n− 1)a. (3.17)

In consequence of (3.15), (3.16), and (3.17), we find that P = 0 . Conversely, if the projective curvature tensor
of ∇ is zero and the curvature tensor R̃ is also zero, then equations (3.1) and (3.15) become

R(X,Y )Z =
1

n− 1
{S(Y, Z)X − S(X,Z)Y } (3.18)

and

R(X,Y )Z =
1

2
{θ(Y, Z)X − θ(X,Z)Y − (θ(Y,X)− θ(X,Y ))Z}. (3.19)

Equating equations (3.18) and (3.19) and then using (3.4), we obtain

{θ(X,Y )− θ(Y,X)}Z = 0.

Contracting the above equation along the vector field Z , we have

θ(X,Y ) = θ(Y,X).

Thus, the statement of Theorem 3.5 is proved. 2

Theorem 3.6 Let (Mn, g) , n > 2 , be an n-dimensional Riemannian manifold endowed with a semisymmetric
nonmetric connection ∇̃ . If the curvature tensor with respect to ∇̃ vanishes, then the tensor field θ is symmetric
if and only if

(n− 2){′C(X,Y, Z, U) +′ C̆(X,Y, Z, U)} = −2′R(X,Y, Z, U).

Proof Let the curvature tensor R̃ with respect to the semisymmetric nonmetric connection ∇̃ vanish on Mn .
To prove the necessary part, we consider that the tensor field θ is symmetric; that is, θ(X,Y ) = θ(Y,X) . The
conformal curvature tensor C [12] with respect to ∇ is defined by

C(X,Y )Z = R(X,Y )Z − 1

n− 2
[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX

−g(X,Z)QY ] +
r

(n− 1)(n− 2)
{g(Y, Z)X − g(X,Z)Y } (3.20)

for arbitrary vector fields X,Y, Z on Mn . The inner product of (3.20) with U gives

′C(X,Y, Z, U) = ′R(X,Y, Z, U)− 1

n− 2
[S(Y, Z)g(X,U)− S(X,Z)g(Y, U)

+g(Y, Z)S(X,U)− g(X,Z)S(Y, U)]

+
r

(n− 1)(n− 2)
{g(Y, Z)g(X,U)− g(X,Z)g(Y, U)}, (3.21)

1895



CHAUBEY and YILDIZ/Turk J Math

where ′C(X,Y, Z, U) = g(C(X,Y )Z,U) . Using (3.16) and (3.17) in (3.21), we conclude that

′C(X,Y, Z, U) = − n

(n− 2)
′R(X,Y, Z, U) +

a

n− 2
{g(Y, Z)g(X,U)− g(X,Z)g(Y, U)}. (3.22)

The concircular curvature tensor C̆ [13] on (Mn, g) with respect to ∇ is defined by

′C̆(X,Y, Z, U) = ′R(X,Y, Z, U)− r

(n− 1)(n− 2)
{g(Y, Z)g(X,U)− g(X,Z)g(Y, U)} (3.23)

for arbitrary vector fields X , Y , Z, U on Mn , where ′C̆(X,Y, Z, U) = g(C̆(X,Y )Z,U) . Using equations (3.17)
and (3.23) in (3.22), we can find

(n− 2){′C(X,Y, Z, U) + ′C̆(X,Y, Z, U)} = −2 ′R(X,Y, Z, U). (3.24)

For the sufficient part, we suppose that the Riemannian manifold (Mn, g) equipped with a semisymmetric
nonmetric connection ∇̃ satisfies relation (3.24). Thus, we have the following from equations (3.1), (3.21),
(3.23), and (3.24):

S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY

= (n− 1){θ(Y, Z)X − θ(X,Z)Y − (θ(Y,X)− θ(X,Y ))Z}. (3.25)

Contracting equation (3.25) along the vector field Z , we obtain θ(X,Y ) = θ(Y,X) . Hence, the proof of Theorem
3.6 is completed. 2

Corollary 3.7 If an n-dimensional Riemannian manifold (Mn, g) , n > 2 , admits a semisymmetric nonmetric
connection ∇̃ whose curvature tensor vanishes and whose 1-form π is closed, then

(n− 2)′L(X,Y, Z, U) + nR(X,Y, Z, U) = 0.

Proof It is obvious that a Riemannian manifold (Mn, g) satisfies

′C(X,Y, Z, U) + ′C̆(X,Y, Z, U) = ′L(X,Y, Z, U) + ′R(X,Y, Z, U), (3.26)

where ′L is a conharmonic curvature tensor of type (0, 4) [9] defined by

′L(X,Y, Z, U) = ′R(X,Y, Z, U)− 1

n− 2
{S(Y, Z)g(X,U)

−S(X,Z)g(Y, U) + g(Y, Z)S(X,U)− g(X,Z)S(Y, U)}. (3.27)

In view of (3.24) and (3.26), we get the statement of Corollary 3.7. 2

4. Group manifolds with respect to the semisymmetric nonmetric connection

An n -dimensional Riemannian manifold (Mn, g) endowed with a semisymmetric nonmetric connection ∇̃ is
said to be a group manifold [14] if

(∇̃X T̃ )(Y, Z) = 0 and R̃(X,Y )Z = 0 (4.1)
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for arbitrary vector fields X , Y , and Z on Mn . In consequence of (2.14) and the first part of (4.1), we conclude
that

(∇̃Xπ)(Z)Y − (∇̃Xπ)(Y )Z = 0,

which shows that
(∇̃Xπ)(Y ) = 0 ⇐⇒ (∇Xπ)(Y ) = π(X)π(Y )− g(X,Y )π(P ), (4.2)

where equation (2.11) is used and n > 1 . Also, from equations (3.1) and (4.1), we have

R(X,Y )Z =
1

4
{π(Y )π(Z)X − π(X)π(Z)Y } − π(P )

2
{g(Y, Z)X − g(X,Z)Y }. (4.3)

Contracting (4.3) along the vector field X , we find that

S(Y, Z) =
(n− 1)

4
[π(Y )π(Z)− 2g(Y, Z)π(P )] , (4.4)

which is equivalent to

QY =
(n− 1)

4
[π(Y )P − 2π(P )Y ] . (4.5)

Changing Z with P in (4.4) and using (1.2) in it, we find that

S(Y, P ) = −n− 1

4
π(P )g(Y, P ).

This equation gives us the following proposition:

Proposition 4.1 Let an n-dimensional group manifold (Mn, g) , n > 1 , admit a semisymmetric nonmetric
connection ∇̃ . Then −n−1

4 π(P ) is an eigenvalue of the Ricci tensor S corresponding to the eigenvector P .

Also contracting (4.5) along Y , we get

r = − (n− 1)(2n− 1)π(P )

4
. (4.6)

Using equations (4.3) and (4.4) in (3.15), we have P = 0. Hence, we are in a position to state the following
theorem:

Theorem 4.2 Every group manifold (Mn, g) , n > 1 , endowed with a semisymmetric nonmetric connection ∇̃
is projectively flat.

We will also prove the following theorems.

Theorem 4.3 An n-dimensional group manifold (Mn, g) equipped with a semisymmetric nonmetric connection
∇̃ is P -conformally flat.
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Proof In consequence of equations (4.3), (4.4), (4.5), and (4.6), equation (3.20) assumes the form

C(X,Y )Z =
π(P )

4(n− 2)
[g(Y, Z)X − g(X,Z)Y ]− 1

4(n− 2)
{π(Y )X

−π(X)Y }π(Z)− n− 1

4(n− 2)
[π(Y )g(X,Z)− π(X)g(Y, Z)]P. (4.7)

An n -dimensional Riemannian manifold (Mn, g) is said to be P -conformally flat [15] if its nonvanishing
conformal curvature tensor C satisfies C(X,Y )P = 0 for all vector fields X and Y on Mn . Replacing Z

by P in (4.7), we can easily conclude that C(X,Y )P = 0 . Hence, the statement of Theorem 4.3 is verified. 2

Theorem 4.4 Every Ricci-symmetric group manifold (Mn, g) endowed with a semisymmetric nonmetric con-
nection ∇̃ satisfies π(P ) = 0 .

Proof Let (Mn, g) be an n -dimensional group manifold equipped with a semisymmetric nonmetric connection
∇̃ . The covariant derivative of (4.4) gives

(∇XS)(Y, Z) =
n− 1

4
[(∇Xπ)(Y )π(Z) + π(Y )(∇Xπ)(Z)

−2g(Y, Z)(∇Xπ)(P )− 2g(Y, Z)π(∇XP )], (4.8)

which becomes

(∇XS)(Y, Z) =
n− 1

4
{2π(X)π(Y )π(Z)− [π(Y )g(X,Z) + π(Z)g(X,Y )]}, (4.9)

where equation (4.2) is used.
A Riemannian manifold (Mn, g) of dimension n is said to be Ricci symmetric if and only if ∇S = 0 .

If possible, we suppose that the group manifold (Mn, g) is Ricci-symmetric, and then the last equation gives
π(P ) = 0 . Hence, the statement of Theorem 4.4 is proved. 2

Theorem 4.5 Suppose (Mn, g) is a group manifold of dimension n (> 1) endowed with a semisymmetric
nonmetric connection ∇̃ . A Ricci soliton (g, P, λ) on (Mn, g) to be shrinking, steady, and expanding according
as π(P ) is < , = , and > 0 , respectively.

Proof If (Mn, g) is a group manifold equipped with a semisymmetric nonmetric connection ∇̃ , then equation
(4.2) and Proposition 2.5 give

(LP g)(X,Y ) = 2{π(X)π(Y )− g(X,Y )π(P )} (4.10)

for arbitrary vector fields X and Y on Mn .
A triplet (g, V, λ) on an n -dimensional Riemannian manifold (Mn, g) is said to be a Ricci soliton [7] if

it satisfies the relation
LV g + 2S + 2λg = 0, (4.11)
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where V is a complete vector field on Mn and λ is a real constant. A Ricci soliton (g, V, λ) on (Mn, g) is said
to be shrinking, steady, and expanding if λ is negative, zero, and positive, respectively. Changing V with P

in (4.11) and then using equations (4.4) and (4.10), we find that

(n+ 3)π(X)π(Y )− 2(n+ 1)π(P )g(X,Y ) + 4λg(X,Y ) = 0 (4.12)

for arbitrary vector fields X and Y on Mn . Setting Y = P in (4.12), we get

{λ− (n− 1)

4
π(P )}π(X) = 0,

which shows that λ = (n−1)
4 π(P ) because π(X) ̸= 0 on Mn (in general). In view of the last expression, we can

easily observe that the Ricci soliton (g, P, λ) on Mn is shrinking, steady, and expanding if π(P ) <, = , and
> 0 , respectively. Thus, the statement of Theorem 4.5 is satisfied. 2

5. Submanifold of a Riemannian manifold with respect to the semisymmetric nonmetric connec-
tion

Let Mn−2 be an (n − 2) -dimensional submanifold of an n -dimensional Riemannian manifold Mn . Suppose
i : Mn−2 → Mn is an inclusion map such that for each p ∈ Mn−2 =⇒ p i ∈ Mn . The inclusion map i

induces a Jacobian map J : T (Mn−2) → T (Mn) , where T (Mn−2) and T (Mn) denote the tangent spaces to
Mn−2 at i and Mn at p i , respectively. Let G be a metric tensor of Mn and g be an induced metric tensor
of the submanifold Mn−2 at p i and i , respectively. Then we have

G(JX, JY ) ◦ p = g(X,Y ), ∀X, Y ∈ T (Mn−2).

Let N1 and N2 be two mutually orthogonal unit normal vector fields to the submanifold Mn−2 satisfying the
following relations:

a) G(JX,N1) = G(JX,N2) = G(N1, N2) = 0,

b) G(N1, N1) = G(N2, N2) = 1. (5.1)

Let ∇∗ be the induced connection on Mn−2 corresponding to the Levi-Civita connection ∇ of Mn . Then we
can write

∇JXJY = J(∇∗
XY ) + h1(X,Y )N1 + h2(X,Y )N2 (5.2)

for all vector fields X and Y on Mn−2 . Here h1 and h2 denote the second fundamental tensors of the
submanifold Mn−2 . Let ∇̃∗ be the induced connection of the submanifold Mn−2 corresponding to the
semisymmetric nonmetric connection ∇̃ of Mn defined as (2.1). Then for the unit normal vectors N1 and
N2 , we have

∇̃JXJY = J(∇̃∗
XY ) + µ1(X,Y )N1 + µ2(X,Y )N2 (5.3)

for arbitrary vector fields X and Y of Mn−2 and µ1 , µ2 denote the tensor fields of type (0, 2) of the submanifold
Mn−2 . Now we are going the prove the following theorem:

Theorem 5.1 The induced connection ∇̃∗ on the submanifold Mn−2 of the Riemannian manifold Mn endowed
with a semisymmetric nonmetric connection ∇̃ is also a semisymmetric nonmetric connection.
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Proof We have from (2.1)

∇̃JXJY = (∇JXJY ) +
1

2
{π(JY )JX − π(JX)JY } (5.4)

for arbitrary vector fields X and Y . In consequence of equations (5.2) and (5.3), equation (5.4) assumes the
form

J(∇̃∗
XY ) + µ1(X,Y )N1 + µ2(X,Y )N2 = J(∇∗

XY )

+h1(X,Y )N1 + h2(X,Y )N2 +
1

2
{π(JY )JX − π(JX)JY },

which gives

∇̃∗
XY = ∇∗

XY +
1

2
{π(Y )X − π(X)Y }, (5.5)

a) h1(X,Y ) = µ1(X,Y ) and b) h2(X,Y ) = µ2(X,Y ). (5.6)

Thus, the induced connections ∇̃∗ and ∇∗ on Mn−2 corresponding to the semisymmetric nonmetric and Levi-
Civita connections of the Riemannian manifold Mn are connected by equation (5.5). The torsion tensor T ∗ of
∇̃∗ is defined by

T ∗(X,Y ) = ∇̃∗
XY − ∇̃∗

Y X − [X,Y ] = π(Y )X − π(X)Y,

where equation (5.5) is used. Thus, the induced connection ∇̃∗ of the submanifold Mn−2 is semisymmetric.
Next, we have to prove that the connection ∇̃∗ is nonmetric; that is, ∇̃∗g ̸= 0 . We have

X g(Y, Z) = (∇̃∗
Xg)(Y, Z) + g(∇̃∗

XY, Z) + g(Y, ∇̃∗
XZ)

= g(∇∗
XY, Z) + g(Y,∇∗

XZ),

which reflects that (∇̃∗
Xg)(Y, Z) = 1

2{2π(X)g(Y, Z) − π(Y )g(X,Z) − π(Z)g(X,Y )} ̸= 0 . This shows that the

induced connection ∇̃∗ of the submanifold Mn−2 corresponding to the semisymmetric nonmetric connection
∇̃ is also semisymmetric nonmetric. Hence, the statement of the theorem is proved. 2

Theorem 5.2 Let Mn−2 be a submanifold of the Riemannian manifold Mn . Then:
(i) The mean curvatures of Mn−2 corresponding to the induced connections ∇̃∗ and ∇∗ coincide.
(ii) The submanifold Mn−2 will be totally geodesic with respect to ∇̃∗ if and only if it is totally geodesic for
∇∗ .
(iii) The submanifold Mn−2 is totally umbilical with respect to ∇̃∗ if and only if it is totally umbilical for ∇∗ .
(iv) The submanifold Mn−2 is minimal corresponding to ∇̃∗ if and only if it is also minimal for ∇∗ .

Proof We define
(∇∗J)(X,Y ) = (∇∗

XJ)(Y ) = ∇JXJY − J(∇∗
XY ),

(∇̃∗J)(X,Y ) = (∇̃∗
XJ)(Y ) = ∇̃∗

JXJY − J(∇̃∗
XY ).
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In view of equations (5.2) and (5.3), the above equations are considered in the forms

(∇∗
XJ)(Y ) = h1(X,Y )N1 + h2(X,Y )N2,

(∇̃∗
XJ)(Y ) = µ1(X,Y )N1 + µ2(X,Y )N2.

Let {e1, e2, ..., en−2} be a set of (n−2) orthonormal local vector fields in Mn−2 . Then the mean curvature tensor
H of the submanifold Mn−2 with respect to the connection ∇∗ is a function defined by H = 1

n−2

∑n−2
i=1 h(ei, ei) .

Let H∗ = 1
n−2

∑n−2
i=1 h(ei, ei) denote the mean curvature of Mn−2 with respect to the semisymmetric nonmetric

induced connection ∇̃∗ . In particular, if H = 0 on Mn−2 , then the submanifold is said to be a minimal
submanifold for ∇∗ . Also, if H∗ = 0 on Mn−2 , then the submanifold is said to be a minimal submanifold for
∇̃∗ .

On the other hand, the submanifold Mn−2 is said to be totally geodesic with respect to the Levi-Civita
connection ∇∗ if and only if h1 and h2 vanish identically on Mn−2 . If h1 and h2 are proportional to the
metric g , i.e. h1 = Hg and h2 = Hg , then the submanifold Mn−2 is said to be totally umbilical with respect to
the Levi-Civita connection ∇∗ . In a similar fashion, we can say that the submanifold Mn−2 is said to be totally
umbilical with respect to the semisymmetric nonmetric induced connection ∇̃∗ if µ1 and µ2 are proportional
to g (µ1 = H∗g and µ2 = H∗g) . The statements of Theorem 5.2 are obvious from the above discussions and
equation (5.6). 2

6. Example
Let

M3 = {(x, y, z) ∈ R3 : x, y, z( ̸= 0) ∈ R}

be a three-dimensional differentiable manifold, where (x, y, z) denotes the standard coordinate of a point in
R3 . Let us suppose that

e1 = eαz
∂

∂x
, e2 = eαz

∂

∂y
, e3 =

∂

∂z

is a set of linearly independent vector fields at each point of the manifold M3 and therefore it forms a basis for
the tangent space T (M3) . Here α is a positive real constant. We define a positive definite metric g on M3 as

gij =

{
2α for i = j
0 for i ̸= j

,

where i, j = 1, 2, 3 and it is given by g = 2α
[
e−2αz{dx⊗ dx+ dy ⊗ dy}+ dz ⊗ dz

]
. Let the 1 -form π be

defined by π(X) = g(X,P ) , where P = e3 . Then it is obvious that (M3, g) is a Riemannian manifold of
dimension 3 . The Lie brackets can be obtain by the above discussion as

[e1, e2] = 0, [e1, e3] = −αe1, [e2, e3] = −αe2.

With the help of the above results and Koszul’s formula,

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )

−g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ]),
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we find

∇e1e1 = αe3, ∇e1e2 = 0, ∇e1e3 = −αe1,

∇e2e1 = 0, ∇e2e2 = αe3, ∇e2e3 = −αe2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0,

where ∇ denotes the Levi-Civita connection corresponding to the metric g . The nonvanishing components
of the Riemannian curvature tensor and the Ricci tensor can be calculated by the formulae R(X,Y )Z =

∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z and S(X,Y ) =
∑3

i=1 g(R(ei, X)Y, ei) as

R(e1, e2)e1 = α2e2, R(e1, e3)e1 = α2e3, R(e1, e2)e2 = −α2e1,

R(e2, e3)e2 = α2e3, R(e1, e3)e3 = −α2e1, R(e2, e3)e3 = −α2e2,

S(e1, e1) = S(e2, e2) = S(e3, e3) = −2α2

and other components can be easily obtained by the symmetric properties. It is obvious that the scalar curvature
of (M3, g) is r = −6α2 .

In consequence of the above discussions and equation (2.1), we obtain

∇̃e1e1 = αe3, ∇̃e1e2 = 0, ∇̃e1e3 = 0,

∇̃e2e1 = 0, ∇̃e2e2 = αe3, ∇̃e2e3 = 0,

∇̃e3e1 = −αe1, ∇̃e3e2 = −αe2, ∇̃e3e3 = 0.

In view of the above results we can easily prove that equation (1.1) holds for all vector fields ei, (i = 1, 2, 3) ,
e.g., T̃ (e1, e3) = 2αe1 and π(e3)e2 − π(e2)e3 = 2αe1 . This shows that the linear connection ∇̃ defined as (2.1)
is a semisymmetric connection on (M3, g) . Also,

(∇̃e1g)(e1, e3) = −2α2 ̸= 0.

Similarly, we can verify this for other components. Hence, the semisymmetric connection ∇̃ is nonmetric on
(M3, g) . It is not hard to prove that the Levi-Civita connection ∇ satisfies

(∇Xπ)(Y ) = (∇Y π)(X)

for all X,Y = ei (i = 1, 2, 3) on (M3, g) . Thus, the manifold (M3, g) is closed with respect to the Levi-Civita
connection ∇ . Again by considering (∇̃Xπ)(Y ) = Xπ(Y )− g(∇̃XY, P ) , we observe that

(∇̃Xπ)(Y ) = (∇̃Y π)(X)

holds for all X,Y = ei on (M3, g) . Hence, the 1 -form is closed on (M3, g) with respect to the semisymmetric
nonmetric connection ∇̃ . This verifies Proposition 2.2.

Let X, Y, Z be vector fields of M3 . Then it can be expressed as a linear combination of e1 , e2 , and e3 ;
that is,

X = X1e1 +X2e2 +X3e3, Y = Y 1e1 + Y 2e2 + Y 3e3, and Z = Z1e1 + Z2e2 + Z3e3,
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where Xi , Y i , and Zi , i = 1, 2, 3 , are real constants. We have

′T̃ (X,Y, Z) = g(T̃ (X,Y ), Z)

= 4α2
[
(X1Y 3 −X3Y 1)Z1 + (Y 3X2 −X3Y 2)Z2

]
,

′T̃ (Y,X,Z) = −4α2
[
(X1Y 3 −X3Y 1)Z1 + (Y 3X2 −X3Y 2)Z2

]
,

′T̃ (Y, Z,X) = 4α2
[
(Y 1Z3 − Y 3Z1)X1 + (Z3Y 2 − Y 3Z2)X2

]
,

′T̃ (Z,X, Y ) = 4α2
[
(Z1X3 − Z3X1)Y 1 + (X3Z2 − Z3X2)Y 2

]
.

From the above relations, we conclude that ′T̃ (X,Y, Z) +′ T̃ (Y,X,Z) = 0 and ′T̃ (X,Y, Z) + ′T̃ (Y, Z,X) +

′T̃ (Z,X, Y ) = 0. Therefore, Theorem 2.3 is verified.

Straightforward calculations by considering the above facts and R̃(X,Y )Z = ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ −

∇̃[X,Y ]Z reveal that

R̃(ei, ej)ek = 0, for all i, j, k = 1, 2, 3.

That is, the Riemannian manifold (Mn, g) equipped with a semisymmetric nonmetric connection ∇̃ is flat.
The curvature tensor with respect to the Levi-Civita connection ∇ is

R(X,Y )Z = α2{
[
−X1Y 2Z2 −X1Y 3Z3 +X2Y 1Z2 +X3Y 1Z3

]
e1

+
[
X1Y 2Z1 −X2Y 1Z1 −X2Y 3Z3 +X3Y 2Z3

]
e2

+
[
X1Y 3Z1 +X2Y 3Z2 −X3Y 1Z1 −X3Y 2Z2

]
e3}.

Also,

S(Y, Z)X − S(X,Z)Y = −2α2{[X1Z1 +X2Z2 +X3Z3][Y 1e1 + Y 2e2 + Y 3e3]

−[Y 1Z1 + Y 2Z2 + Y 3Z3][X1e1 +X2e2 +X3e3]}.

In consequence of the last two equations and (3.15), we get P = 0 . That is, the manifold (M3, g) is projectively
flat. Thus, Theorem 3.5 is verified.
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