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Abstract: We study reducible projective unitary representations (Ug)g∈G of a compact group G in separable Hilbert

spaces H . It is shown that there exist the projections Q and P for which V = span(UgQU∗
g , g ∈ G) is the operator

system and PVP = {CP} . As an example, a bipartite Hilbert space H = H⊗ H is considered. In this case, the action
of (Ug)g∈G has the property of transforming separable vectors to entangled.

Key words: Operator systems, covariant resolutions of identity, reducible unitary representations of compact groups,
quantum anticliques

1. Introduction
A subspace V consisting of bounded linear operators in a separable Hilbert space H is said to be an operator
system [5] if it is self-adjoint (V ∈ V implies V ∗ ∈ V ) and the identity operator I ∈ V . Recently, operator
systems have attracted the interest of researchers in the context of both functional analysis and quantum
information theory [1–4, 6, 7, 9, 10, 12]. It should be noted that operator systems are often called non-
commutative operator graphs.

The Kraus representation of a quantum channel generates the operator system [7]. The possibility of
transmitting quantum information via a channel with zero error is completely determined by the properties of
the operator system corresponding to this channel [3, 4, 9, 10]. Moreover, it is hoped that the proximity of the
two quantum channels [11] can be estimated using the corresponding operator systems.

Let G be a compact group with the Haar measure µ, µ(G) = 1 , and B is the sigma-algebra generated
by compact subsets of G , then the set of positive operators {M(B), B ∈ B} in a Hilbert space H is said to be
a resolution of identity if [8]

M(∅) = 0, M(G) = I,

M(∪jBj) =
∑
j

M(Bj), Bk ∩Bl = ∅ for k ̸= l, Bj ∈ B, (1.1)
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and a convergence in (1.1) is understood in the sense of strong operator topology. Let (Ug)g∈G be a projective
unitary representation of G in H . Then {M(B), B ∈ B} is said to be covariant with respect to the action of
(Ug)g∈G if

UgM(B)U∗
g = M(gB).

In [2], the study of operator systems generated by covariant resolutions of identity in the sense of

V = span{M(B), B ∈ B} (1.2)

was initiated. It is known [8] that in finite dimensional spaces H , any covariant resolution of identity
{M(B), B ∈ B} has the form

M(B) =

∫
B

UgM0U
∗
g dµ(g),

where M0 is some positive operator in H . In this case, (1.2) can be replaced with

V = span(UgM0U∗
g , g ∈ G). (1.3)

A particularly interesting case is the bipartite Hilbert space H = H ⊗ H . Then, a vector v ∈ H is said to be
separable if it can be represented in the form v = v1⊗v2 . In the opposite case, v is known as entangled. Given
a unit vector v ∈ H denote |v⟩ ⟨v| an orthogonal projection to the subspace {Cv} . We call a projection Q to be
separable if it can be represented as a sum of orthogonal projections |v⟩ ⟨v| for which v are separable vectors. In
[3, 4] operator systems generated by unitary representations of the circle group as well as the Heisenberg–Weyl
group G were studied in detail. Operator systems were constructed having the form (1.2) and (1.3) for which
M0 = Q are separable projections. Moreover it was proved that for such V there are projections P satisfying
the property

PVP = {CP}. (1.4)

The projections P, rankP ≥ 2, satisfying (1.4) are known as quantum anticliques for V [12]. In the present
paper, how these ideas work in general case is shown.

2. Reducible projective unitary representation of groups in an arbitrary separable Hilbert space
In this section, we do not take into account a tensor product structure of Hilbert space H . Consider a reducible
continuous projective unitary representation G ∋ g → Ug in H . Then, there are countably many resolutions
of H into the orthogonal sum

H = ⊕jHj , (2.1)

such that the restrictions
U (j)
g = Ug|Hj

(2.2)

determine cyclic representations of G . It means that for any j UgHj ⊂ Hj , g ∈ G , and there exist a unit

vector vj ∈ Hj such that the closer span(Ugvj , g ∈ G) = Hj . Since all irreducible representations of compact
group are finite dimensional, the following statement holds true.

Proposition 2.1 Suppose that at least one of the following conditions is satisfied
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• all representations (2.1) and (2.2) are irreducible;

• dimHj < +∞ and cyclic vectors vj has the property∫
G

Ug |vj⟩ ⟨vj |U∗
g dµ(g) =

1

dimHj
Qj ,

where Qj is an orthogonal projection on Hj .

Then, the positive operator

Q =
∑
j

dimHj |vj⟩ ⟨vj | (2.3)

generates an operator system by the formula

V = span(UgQU∗
g , g ∈ G). (2.4)

Proof It immediately follows that V is self-adjoint. Hence, it remains to prove that I ∈ V . Since
dimHj < +∞ , we get ∫

G

U (j)
g |vj⟩ ⟨vj |U (j)∗

g dµ(g) =
1

dimHj
Qj .

Thus, ∫
G

UgQU∗
g dµ(g) = I.

2

Now suppose that the spectral decompositions of U (j)
g contain the same projection |hj⟩ ⟨hj | for all g ∈ G .

Recall that two vectors v and h in a finite dimensional space K are said to be unbiased if

| ⟨v, h⟩ |2 =
1

dimK
. (2.5)

Proposition 2.2 Suppose that vectors hj and vj are unbiased for all j . Then, the projection

P =
∑
j

|hj⟩ ⟨hj |

is a quantum anticlique for (2.4).

Proof It follows from (2.5) that

|hj⟩ ⟨hj | |vj⟩ ⟨vj | |hj⟩ ⟨hj | = 1

dimHj
|hj⟩ ⟨hj | .

Taking into account (2.3), we get
PQP = P

because UgP = PUg are commuting for all g ∈ G . 2
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3. Operator systems in a bipartite Hilbert space
Here we shall give an explicit example showing how the techniques of the previous section works in a bipartite
finite dimensional Hilbert space H = H⊗ H . Denote by (|jk⟩) the basis in H consisting of separable vectors,
1 ≤ j, k ≤ dimH < +∞ . Together with (|jk⟩) , we consider the basis in H consisting of entangled vectors

hj
k =

1√
d

d∑
s=1

ei
2πks

d |s s+ j mod dimH⟩ .

Denote by Hj the subspaces spanned by vectors hj
k, 1 ≤ k ≤ dimH .

In the following statement we claim that the conditions of Proposition 1 are satisfied.

Theorem 3.1 Fix 1 ≤ m0, n0 ≤ dimH . Suppose that G ∋ g → Ug can be resolved in a sum of cyclic
representations

Ug = ⊕jUg|Hj

with the cyclic vectors vm0
j = |m0 m0 + j mod dimH⟩ and the projections |hj

n0
⟩ ⟨hj

n0
| are contained in the

spectral decompositions of Ug for all g ∈ G . Then, the projection

P =
∑
j

|hj
n0
⟩ ⟨hj

n0
|

is a quantum anticliques for the operator system

V = span(UgQU∗
g , g ∈ G), (3.1)

where
Q =

∑
j

|vm0
j ⟩ ⟨vm0

j | .

Remark 3.2 Since the projections UgQU∗
g have infinite ranks in general, we need to take a closer look at (3.1)

in the sense of strong operator topology to guarantee the inclusion I ∈ V .

Proof Proposition 1 implies that (3.1) is an operator system. Now it is enough to check that hj
n0

and vm0
j

are unbiased and the result follows from Proposition 2. 2
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