Modules in which semisimple fully invariant submodules are essential in summands

RAMAZAN YAŞAR

Follow this and additional works at: https://dctubitak.researchcommons.org/math

Part of the Mathematics Commons

Recommended Citation
Available at: https://dctubitak.researchcommons.org/math/vol43/iss5/20

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals.
Modules in which semisimple fully invariant submodules are essential in summands

Ramazan YAŞAR∗
Department of Mathematics, Hacettepe University, Ankara, Turkey

Received: 20.06.2019 • Accepted/Published Online: 07.08.2019 • Final Version: 28.09.2019

Abstract: One of the useful generalization of extending notion is FI-extending property. A module is called FI-extending if every fully invariant submodule is essential in a direct summand. In this paper, we explore Weak FI-extending concept by considering only semisimple fully invariant submodules rather than all fully invariant submodules. To this end, we call such a module Weak FI-extending. We obtain that FI-extending modules are properly contained in this new class of modules. Amongst other structural properties, we also deal with direct sums and direct summands of Weak FI-extending modules.

Key words: Extending module, socle of a module, C_{11}-module, Weak CS-module, fully invariant, FI-extending.

1. Introduction

All rings are associative with unity and modules are unital right modules. We use R to denote such a ring and M to denote a right R-module. Recall that a module is called CS (or extending) if every submodule is essential in a direct summand; equivalently, every complement submodule is a direct summand. Note that this condition has proved to be an important common generalization of the injective, semisimple and uniform module (i.e., every non zero submodule is essential in the module) notions (see [5, 10, 17]).

There have been a number of useful generalizations of the extending property, including the following:

(1) M is a weak CS module (or WCS)[11] if every semisimple submodule of M is essential in a direct summand of M;

(2) M is a C_{11}-module [12, 13] if each submodule of M has a complement that is a direct summand of M;

(3) M is an FI-extending module [1, 2] if every fully invariant submodule (i.e.; every submodule such that the image under all endomorphisms contained in itself) is essential in a direct summand of M.

For the aforementioned generalizations as well as different kind of recent developments in the theory, see [4, 8, 17].

In a similar manner to weak CS-modules [11], weak C_{11}-modules were introduced in [6] (see, also [18]). Recall that a module M is a weak C_{11} (or WCC_{11}-)module if each semisimple submodule of M has a complement that is a direct summand.

∗Correspondence: ryasar@hacettepe.edu.tr
2010 AMS Mathematics Subject Classification: Primary: 16D50; Secondary: 16D80

This work is licensed under a Creative Commons Attribution 4.0 International License.
In [16], the authors attempt to obtain results on direct summands of an FI-extending module. Since their main results therein contain gaps, in the present study, we introduce and investigate a weak version of FI-extending concept by considering only semisimple fully invariant submodules rather than all fully invariant submodules of the module. We call such a module Weak FI-extending (or, WFI-extending). In Section 2, we give some equivalent characterizations as well as structural properties of WFI-extending modules in common with WC_{11}-modules and FI-extending modules. In contrast to extending modules, we show that a direct sum of WFI-extending modules is also a WFI-extending module. Moreover, we provide examples which make it clear that the class of FI-extending modules is properly contained in the class of WFI-extending modules.

Observe that any nonuniform prime ring is an FI-extending module and it has essential socle. It follows that, there exist WFI-extending modules which are not WC_{11}. We have then, for any module, the following implications:

\[
\begin{align*}
CS \implies C_{11} \implies FI\text{-extending} \\
\downarrow \quad \downarrow \quad \downarrow \\
WCS \implies WC_{11} \implies WFI\text{-extending}
\end{align*}
\]

No other implications can be added to this table in general. To see why this is the case, we refer to [13, p.1814], [14, Example 11], [3, Proposition 1.2], [11, Example 1.1], [20, counterexample 3] and Example 2.4.

Recall that, it is not known that whether direct summands of Weak CS, Weak C_{11}, and FI-extending modules is also Weak CS, Weak C_{11} and FI-extending respectively or not. Motivated by the latter problem, in Section 3, we focus our attention on direct summands of WFI-extending (and also FI-extending) modules with a conditional direct summand property. Our results yield as corollary that direct summands of an FI-extending module with C_{3} and essential socle are also FI-extending. Furthermore, we obtain that if a module is WFI-extending (FI-extending, WC_{11}, WCS, C_{11}) with summand intersection property (SIP) then so does a direct summand of it.

Let R be any ring and M a right R-module. If X \subseteq M, then X \leq M, Soc X and E(M) denote X as a submodule of M, the socle of X and the injective hull of M respectively. For any unexplained terminology, definitions, and notations, see [5, 10, 17].

2. Weak FI-extending modules

In this section, we give some equivalent conditions to WFI-extending modules. Also, we obtain some structural properties of WFI-extending modules in common with WC_{11}-modules and FI-extending modules. We provide examples which show that the new class of modules properly contains the class of FI-extending modules. Since WFI-extending modules are based on the class of semisimple fully invariant submodules of the module, it is better to start with their basic properties.

Lemma 2.1 Let M be a right R-module. Then

(i) Any sum or intersection of semisimple fully invariant submodules of M is again a semisimple fully invariant submodule of M.

(ii) If \(M = \bigoplus_{i \in I} M_i \) and X is a semisimple fully invariant submodule of M, then \(X = \bigoplus_{i \in I} \pi_i(X) = \bigoplus_{i \in I} (M_i \cap X) \), where \(\pi_i \) is the i-th canonical projection homomorphism of M.
If A is semisimple fully invariant in B and B is semisimple fully invariant in M then A is semisimple fully invariant in M.

Proof Immediate by definitions.

Definition 2.2 A module M is called Weak FI-extending (or WFI-extending) if every semisimple fully invariant submodule of M is essential in a direct summand of M.

Observe that any WC_{11}-module and FI-extending module is WFI-extending. Moreover, any module which has zero socle (for example, a polynomial ring $R[x]$ over any ring R) is clearly a WFI-extending module. The following characterization shows that WFI-extending property behaves like FI-extending property in terms of complements and lifting homomorphisms.

Proposition 2.3 Let M be a module. The following conditions are equivalent.

(i) M is WFI-extending,

(ii) Every semisimple fully invariant submodule of M has a complement which is a direct summand,

(iii) For each semisimple fully invariant submodule X of M, there exists a complement submodule L of M and a complement K of L such that X is essential in L and any homomorphism from $L \oplus K$ to M lifts to M.

Proof (i)\iff(ii) Let X be a semisimple fully invariant submodule of M. First assume that M is WFI-extending. There exists $e^2 = e \in \text{End}(M)$ such that X is essential in eM. Hence, $(1 - e)M$ is the desired complement. Conversely, let cM be a complement of X, where $c^2 = c \in \text{End}(M)$. Let $x \in X$. Then $x = cx + (1 - c)x$. Since X is fully invariant, $cx \in X \cap cM = 0$. Thus, $X \subseteq (1 - c)M$, and so X is essential in $(1 - c)M$.

(i)\iff(iii) This equivalence is a direct consequence of [14, Lemma 2] (see, also [17, Lemma 3.97]).

Next we provide several WFI-extending modules which are not FI-extending.

Example 2.4 (i) [14, Example 11]. There exists a commutative valuation domain S such that every homomorphic image of S is a self-injective ring. There exists an ideal A of S such that S/A is a local ring which has zero socle. Let $T = S/A$ and J be the unique maximal ideal of T. Let R be the subring of $T \oplus T$ defined by $R = \{(t, t') | t - t' \in J\}$. Then R_R is not a C_{11}-module by [13, Proposition 3.2 and Theorem 3.10]. By [3, Proposition 1.3], R_R is not FI-extending. However, it is clear that R_R is WFI-extending.

(ii) [2, Example 4.11]. Let D be a simple domain which is not a division ring. Take $R = \begin{bmatrix} D & D \oplus D \\ 0 & D \end{bmatrix}$ then $I = \begin{bmatrix} 0 & D \oplus D \\ 0 & 0 \end{bmatrix}$ is an ideal of R i.e., I is a fully invariant submodule of R_R which is not essential in a right ideal direct summand of R. It follows that R_R is not FI-extending. Since $\text{Soc}(R_R) = 0$, R_R is WFI-extending.

(iii) [18, Proposition 14]. Let R, M, and K be as in [18, Proposition 14]. Note that K_R corresponds to the tangent bundle of the related sphere. Furthermore, K_R is an indecomposable module of uniform dimension.
bigger than one. Hence, \(K_R \) is not uniform. Let us take the trivial extension of \(R \) with \(K \), say \(T \). Thus, \[
T = \begin{bmatrix} R & K \\ 0 & R \end{bmatrix} = \left\{ \begin{bmatrix} r & x \\ 0 & r \end{bmatrix} \middle| r \in R, x \in K \right\}. \] Hence, \(T_T \) is a commutative indecomposable module which is not FI-extending [3, Proposition 1.3]. However, it is easy to see that \(T \) is WFI-extending.

There are more algebraic topological examples with the same type of last part of the former example. For the construction of these examples, see [9, Theorems 2.4 and 2.5]. Example 2.4 brings us the natural question, namely, when a WFI-extending module is an FI-extending module. Thus, we have the next result.

Proposition 2.5 Let \(M \) be a WFI-extending module with essential socle. Then \(M \) is FI-extending.

Proof Let \(X \) be a fully invariant submodule of \(M \). If \(X = 0 \) then \(M \) will do. Assume \(X \neq 0 \). Note that \(\text{Soc} X \) is a fully invariant submodule of \(X \). By Lemma 2.1, \(\text{Soc} X \) is a semisimple fully invariant submodule of \(M \). By hypothesis, there exists a direct summand \(L \) of \(M \) such that \(\text{Soc} X \) is essential in \(L \). Now \(M = L \oplus L' \) for some submodule \(L' \) of \(M \). It is clear that \(\text{Soc} X \) is essential in \(X \). Hence, \(X \cap L' = 0 \). Thus, \(\text{Soc} X \oplus L' \leq X \oplus L' \) and \(\text{Soc} X \oplus L' \) is essential in \(M \) yield that \(X \oplus L' \) is essential in \(M \). Hence, the result follows by Proposition 2.3.

Next result shows that the WFI-extending property is inherited by fully invariant submodules as in FI-extending concept (see [2, Proposition 1.2]).

Proposition 2.6 Let \(M \) be a WFI-extending module and \(X \) a fully invariant submodule of \(M \). Then \(X \) is WFI-extending.

Proof Let \(S \) be a semisimple fully invariant submodule of \(X \). By Lemma 2.1, \(S \) is semisimple fully invariant in \(M \). Hence, there is a direct summand \(D \) of \(M \) such that \(S \) is essential in \(D \). Let \(\pi : M \to D \) be the projection endomorphism. Then \(S = \pi(S) \leq \pi(X) \cap D = \pi(X) \). Hence, \(S \) is essential in \(\pi(X) \) and \(\pi(X) \) is a direct summand of \(X \).

Proposition 2.7 Let \(M \) be a module. Then \(M \) is WFI-extending if and only if for each semisimple fully invariant submodule \(S \) of \(M \) there exists \(e = e^2 \in \text{End}(E(M)) \) such that \(S \) is essential in \(e(E(M)) \) and \(e(M) \subseteq M \).

Proof Assume that \(M \) is WFI-extending. There exists a direct summand \(X \) of \(M \) such that \(S \) is essential in \(X \). Now \(M = X \oplus Y \) for some submodule \(Y \) of \(M \). Hence, there exists injective hulls \(E(X) \) and \(E(Y) \) such that \(E(M) = E(X) \oplus E(Y) \). Let \(e : E(M) \to E(X) \) be the projection endomorphism. Then \(e(M) \leq M \) and \(S \) is essential in \(e(E(M)) \). Conversely, let \(S \) be a semisimple fully invariant submodule of \(M \). Then \(S \) is essential in \(M \cap e(E(M)) = e(M) \). However, \(e(M) \) is a direct summand of \(M \). Hence, \(M \) is WFI-extending.

Recall that in contrast to extending (or CS) modules, some of their generalizations \(C_{11} \), \(WC_{11} \), FI-extending modules behave better on direct sums [13, Theorem 2.4], [6, Theorem 1.20], [2, Theorem 1.3]. To this end, we show that a direct sum of WFI-extending modules enjoys with WFI-extending property.

Theorem 2.8 Direct sums of modules with the WFI-extending property have again the WFI-extending property.
Proof Suppose the modules $M_i (i \in I)$ have the WFI-extending property. If S is a semisimple fully invariant submodule of the direct sum $M = \bigoplus_{i \in I} M_i$, then $S = \bigoplus_{i \in I} (S \cap M_i)$ by Lemma 2.1. Clearly, $S \cap M_i$ is a semisimple fully invariant submodule of M_i for each $i \in I$. By hypothesis, $S \cap M_i$ is contained as an essential submodule in a direct summand D_i of M_i for each $i \in I$. Then $D = \bigoplus_{i \in I} D_i$ is a direct summand of M that is an essential extension of the submodule S. \hfill \Box

Corollary 2.9 If M is a direct sum of FI-extending (e.g., C_{11}, WC_{11}, extending) modules, then M is WFI-extending.

Proof Clear by Theorem 2.8. \hfill \Box

3. Direct summands of Weak FI-extending modules

In this section, we deal with direct summands of WFI-extending modules. Recall that, it is not known so far whether direct summands of Weak CS, Weak C_{11}, and FI-extending modules is again Weak CS, Weak C_{11}, and FI-extending respectively or not. In this trend, it is also an open problem whether direct summands of a WFI-extending module are WFI-extending or not. However, we provide some positive answers for the former question by adding some conditional direct summand properties on the module. First of all, we prove the following easy result which provides a decomposition of a WFI-extending module.

Lemma 3.1 Let M be a WFI-extending module. Then $M = M_1 \oplus M_2$ where M_1 is a submodule of M with essential socle and M_2 a submodule of M with zero socle.

Proof Let S denote the socle of M. Then S is a semisimple fully invariant submodule of M. By assumption, there exist submodules M_1 and M_2 of M such that S is essential in M_1 and $M = M_1 \oplus M_2$. Now $S = \text{Soc} M = \text{Soc} M_1 \oplus \text{Soc} M_2$. Clearly, $\text{Soc} M_2 = 0$. Hence, $S = \text{Soc} M_1$. \hfill \Box

One might conjecture that whether the converse of Lemma 3.1 is true or not. However, the next example eliminates this possibility. Incidentally, we refer to [17, p. 257] and [15] for details on the construction of this interesting example.

Example 3.2 Let R be the ring in [15, An example]. Let $M_1 = R$ and $M_2 = R/I$ where $I = \text{Soc} R$. Note that I is essential in M_1 and $\text{Soc}(M_2) = 0$. Then the R-module $M = M_1 \oplus M_2$ is not WFI-extending. Assume the contrary that M is WFI-extending. Let N be a simple fully invariant submodule of M. Then there exists a direct summand L of M such that N is essential in L. Hence, $N = \text{Soc} N = \text{Soc} L$. By [17, Lemma 5.30], either $\text{Soc} L = 0$ or $\text{Soc} L = \text{Soc} M$. We have that either $N = 0$ or $N = I \oplus 0$. In any case, we have a contradiction. It follows that M is not WFI-extending.

Before proving our main results on direct summands of a WFI-extending module, we should give the following two observations which are basically related to our aim in this section. Firstly, observe that definitions of extending, WC_{11}, FI-extending and WFI-extending modules require direct summands but not uniqueness of them. Now, we obtain uniqueness up to isomorphism for the WFI-extending modules with a conditional direct summand property, C_3. Recall that a module M is said to satisfy the C_3 condition if the sum of any two direct summands of M with zero intersection is a direct summand of M (see [17]).

2331
Proposition 3.3 Let M be a WFI-extending module which satisfies C_3. If X is a semisimple fully invariant submodule of M then X is essentially contained in direct summands of M which are unique up to isomorphism.

Proof Assume that X is essentially contained in direct summands K and L of M. Then $M = K \oplus L$. Now, let $\pi : M \to K$ be the canonical projection. By C_3 condition, $M \oplus K'$ is also a direct summand of M which yields that $\pi(L)$ is a direct summand of K. Note that $\pi(L)$ is isomorphic to L and $X = \text{Soc} L = \text{Soc} K$. Thus, $\text{Soc}(L \oplus K') = X \oplus \text{Soc} K' = \text{Soc} \pi(L) \oplus \text{Soc} K'$ and $\text{Soc}\pi(L)$ is in X. Hence, by the modular law, $X = X \cap (\text{Soc} \pi(L) \oplus \text{Soc} K') = \text{Soc}\pi(L) \oplus (X \cap \text{Soc} K') = \text{Soc}\pi(L)$ which gives that X is contained in $\pi(L)$. It follows that $\pi(L)$ is essential in K. Since $\pi(L)$ is a direct summand of K, $\pi(L) = K \cong L$ which gives the result.

For the corresponding result on WC_{11}-modules to Proposition 3.3 (see [6, Proposition 1.7]). Our second observation is based on a structural property of fully invariant submodules. Let $M = M_1 \oplus M_2$ be a module. Let N be a fully invariant submodule of M_1. Then $N \oplus M_2$ need not be a fully invariant submodule in M.

There are several counterexamples but we give the following easy case as an example to make things clear.

Example 3.4 Let R be any ring and $M_1 = M_2 = R$. Let I be any ideal of R such that $I \neq R$, say $x \notin I$. Let $M = M_1 \oplus M_2$ be the R-module. Then I is a fully invariant submodule of M_1. Now, define the R-homomorphism $f : M \to M$ by $f(a,b) = (b,a)$. Then, $f(0,x) = (x,0) \notin I \oplus M_2$. Thus, $f(I \oplus R) = f(I \oplus M_2) = M_2 \oplus I$ is not contained in $I \oplus M_2$, i.e., $I \oplus M_2$ is not a fully invariant submodule of M.

In [16], the authors mistakenly use the former situation. Since the proofs of [16, Theorems 2.5, 2.7 and Corollaries 2.8, 2.9 and 2.10] are based on the above structural property, their mentioned results on FI-extending modules are invalid.

Now, we return to obtain results on direct summands of a WFI-extending module.

Theorem 3.5 If the module $M = M_1 \oplus M_2$ has the WFI-extending property and M_1 is a semisimple fully invariant direct summand then both M_1 and M_2 have the WFI-extending property.

Proof It is clear that M_1 is WFI-extending. To prove that M_2 is WFI-extending, let X be a semisimple fully invariant submodule of M_2. As M_1 is fully invariant in M, Hom$(M_1, M_2) = 0$. Thus $M_1 \otimes X$ is a semisimple fully invariant submodule of M. By hypothesis, there exists a direct summand N of M such that $M_1 \otimes X$ is essential in N. Now, $M = N \oplus W$ for some submodule W of M. Thus, $N = N \cap (M_1 \otimes M_2) = M_1 \otimes (N \cap M_2)$ by the modular law. Since $M_1 \otimes X \leq N$ and $X \leq M_2$, $X \leq N \cap M_2$. Moreover, the fact that $M_1 \otimes X$ is essential in N gives that X is essential in $N \cap M_2$. Thus, $M = N \oplus W = (N \cap M_2) \oplus M_1 \oplus W$. Therefore, $M_2 = (N \cap M_2) \oplus ((M_1 \oplus W) \cap M_1)$ by the modular law. Thus, X is essential in $N \cap M_2$ which is a direct summand of M_2. Thus, M_2 is WFI-extending.

Lemma 3.6 Let $M = M_1 \oplus M_2$. Then M_1 is WFI-extending module if and only if for every semisimple fully invariant submodule N of M_1, there exists a direct summand K of M such that $M_2 \subseteq K$, $K \cap N = 0$, and $K + N$ is essential in M.

Proof Assume that M_1 is WFI-extending module. Let N be a semisimple fully invariant submodule of M_1. By Lemma 2.1, there exists a direct summand L of M_1 such that $N \cap L = 0$, and $N \oplus L$ is essential
in M_1. Clearly $L \oplus M_2$ is a direct summand of M, $(L \oplus M_2) \cap N = 0$ and $(L \oplus M_2) \oplus N$ is essential in M. Conversely, suppose that M_1 has the stated property. Let H be a semisimple fully invariant submodule of M_1. By hypothesis, there exists a direct summand K of M such that $M_2 \subseteq K$, $K \cap H = 0$ and $K \oplus H$ is essential in M. Now, $K = K \cap (M_1 \oplus M_2) = (K \cap M_1) \oplus M_2$ so that $K \cap M_1$ is a direct summand of M, and hence also of M_1, $H \cap (K \cap M_1) = 0$ and $H \oplus (K \cap M_1) = M_1 \cap (H \oplus K)$ which is essential in M_1. By Lemma 2.1, M_1 is WFI-extending.

Theorem 3.7 Let a WFI-extending module $M = M_1 \oplus M_2$ be a direct sum of submodules M_1, M_2 such that $Soc M_2$ is essential in M_2 and for every direct summand K of M with $K \cap M_2 = 0$, $K \oplus M_2$ is a direct summand of M. Then M_1 is a WFI-extending module.

Proof Let N be a semisimple fully invariant submodule of M_1. Then, it is easy to check that $N_2 = \sum_{\varphi \in \text{Hom}(M_1, M_2)} \varphi(N_1)$ is a fully invariant submodule of M_2. Now, the argument in [19, Theorem 3.1] yields that $N_1 \oplus N_2$ is a fully invariant submodule of M. Thus, $Soc (N_1 \oplus N_2) = N_1 \oplus Soc N_2$ is semisimple fully invariant in M, by Lemma 2.1. By hypothesis, there exists a direct summand K' of M such that $N_1 \oplus Soc N_2$ is essential in K'. Thus $M = K \oplus K'$ for some submodule K of M and $(N_1 \oplus Soc N_2) \cap K = 0$, $(N_1 \oplus Soc N_2) \oplus K$ is essential in M. Since $Soc M_2$ is essential in M_2, $N_1 \cap M_2 = 0$. It follows that $N_1 \oplus M_2 \oplus K$ is essential in M. Observe that $M_2 \oplus K$ is a direct summand of M. By Lemma 3.6, M_1 is WFI-extending.

Theorem 3.7 applies in the case that M is a WFI-extending module satisfying condition C_3. Thus, we have at once:

Corollary 3.8 If M is a WFI-extending module satisfying C_3 and $M = M_1 \oplus M_2$ with $Soc M_2$ essential in M_2, then M_1 is WFI-extending.

Proof Immediate by Theorem 3.7.

Next result provides affirmative answer for the long standing open problem on direct summands of FI-extending [2] (and also WFI-extending) modules and brings new as well as correct version of [16, Corollary 2.10].

Corollary 3.9 If M is a WFI-extending module satisfying C_3 and $Soc M$ is essential in M, then any direct summand of M is FI-extending.

Proof Since any direct summand of M has essential socle, by Proposition 2.5 and Corollary 3.8 the result follows.

We apply former results to some more special cases including (relative) injectivity condition on one of the direct summand in the decomposition of the module.

Corollary 3.10 Let a WFI-extending module $M = M_1 \oplus M_2$ be a direct sum of submodules M_1, M_2 such that, $Soc M_2$ is essential in M_2 and M/M_1 is M_1-injective. Then M_1 is a WFI-extending module.

Proof Since M_2 is isomorphic to M/M_1, M_2 is M_1-injective. Let L be a direct summand of M such that $L \cap M_2 = 0$. By [5, Lemma 7.5], there exists a submodule H of M such that $H \cap M_2 = 0$, $M = H \oplus M_2$ and $L \subseteq H$. Now L is a direct summand of H and hence $L \oplus M_2$ is a direct summand of $M = H \oplus M_2$. By Theorem 3.7, M_1 is a WFI-extending module.
Corollary 3.11 Let a module $M = M_1 \oplus M_2$ be a direct sum of a submodule M_1 and an injective submodule M_2 with essential socle. Then M is WFI-extending if and only if M_1 is WFI-extending.

Proof If M is WFI-extending, then M_1 is WFI-extending by Corollary 3.10. Conversely, if M_1 is WFI-extending then M is WFI-extending by Theorem 2.8.

The conditional direct summand property, namely SIP, works well as a companion condition with extending properties e.g.; C_{11}, WC_{11}, and FI-extending. Recall that a module M is said to have SIP if the intersection of every pair of direct summands is also a direct summand of the module (see [17]). Notice that SIP is inherited by direct summands of a module with SIP [17, Lemma 2.74]. Now, we have the following result for the WFI-extending modules which corresponds to [19, Theorem 3.1].

Theorem 3.12 Let M be a WFI-extending module which has SIP. Then a direct summand of M is also WFI-extending which has SIP.

Proof Let $M = M_1 \oplus M_2$. Let us show that M_1 is a WFI-extending module which has SIP. First note that M_1 has SIP. Now, let N_1 be a semisimple fully invariant submodule of M_1. Then it can be seen that $N_2 = \sum_{\varphi \in \text{Hom}(M_1, M_2)} \varphi(N_1)$ is a fully invariant submodule of M_2. On using the argument in [19, Theorem 3.1], $N_1 \oplus N_2$ is a fully invariant submodule of M. Now, let us think of $\text{Soc}(N_1 \oplus N_2)$. Observe that $\text{Soc}(N_1 \oplus N_2) = N_1 \oplus \text{Soc}N_2$ which is fully invariant in $N_1 \oplus N_2$. By Lemma 2.1, $N_1 \oplus \text{Soc}N_2$ is a semisimple fully invariant submodule of M. By hypothesis, there exists a direct summand N of M such that $N_1 \oplus \text{Soc}N_2$ is essential in N. On the other hand, $N_1 \oplus \text{Soc}N_2$ is also essential in $(M_1 \cap N) \oplus (M_2 \cap N)$ which yields that N_1 is essential in $M_1 \cap N$. Since M has SIP, $M_1 \cap N$ is a direct summand of M. It follows that $M_1 \cap N$ is a direct summand of M_1. Hence, M_1 is WFI-extending.

Corollary 3.13 Let M be an FI-extending (or WC_{11}, WCS, C_{11}) module which has SIP. Then a direct summand of M is WFI-extending.

Proof Clear by Theorem 3.12.

It is well known that for any prime integer p; the \mathbb{Z}-modules $(\mathbb{Z}/\mathbb{Z}p) \oplus (\mathbb{Z}/\mathbb{Z}p^2)$ and $(\mathbb{Z}/\mathbb{Z}p) \oplus \mathbb{Q}$ are not extending (see [13, 14]). Observe that both of these module are FI (and hence WFI-)extending and have finite uniform dimensions. Then we have the useful result on WFI-extending modules with finite uniform dimension.

Proposition 3.14 Let R be a Dedekind domain and M an R-module with finite uniform dimension. Then any direct summand of M is WFI-extending.

Proof Let $M = M_1 \oplus M_2$ be the direct sum of submodules M_1 and M_2. Let us show that M_1 is WFI-extending. If M_1 is torsion-free, then M_1 has zero socle, in this case, M_1 is a WFI-extending module. Now, suppose that M_1 is not torsion-free. By [7, Theorem 9], it follows that $M_1 = N_1 \oplus N_2$, for some finitely generated module N_1 and injective submodule N_2. By [17, Theorem 4.12], N_1 is Weak CS; hence, it is WFI-extending. Now, M_1 is WFI-extending, by Theorem 2.8.

As an application of Theorem 2.8 to the direct summands of modules which are direct sum of uniform modules, we reach the following facts.
Corollary 3.15 Let \(M = U \oplus V \) be a direct sum of uniform modules \(U \) and \(V \). Then every direct summand of \(M \) is WFI-extending.

Proof Let \(D \) be a nonzero direct summand of \(M \). If \(D = M \) then \(D \) is WFI-extending by Corollary 2.9. If \(D \neq M \) then \(D \) is uniform; hence, it is WFI-extending.

Corollary 3.16 Let \(M \) be a \(\mathbb{Z} \)-module (i.e. Abelian group) such that \(M \) is a direct sum of uniform modules. Then any direct summand of \(M \) is WFI-extending.

Proof Let \(N \) be a direct summand of \(M \). Then \(N \) is also a direct sum of uniform modules by [17, Theorem 4.45]. Now, Corollary 2.9 gives the result.

References

