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Abstract: (M2n, g
w, D) is a 4-dimensional Walker manifold and this triple is also a pseudo-Riemannian manifold

(M2n, g
w) of signature (+ + −−) (or neutral), which is admitted a field of null 2-plane. In this paper, we consider

bi-Hermitian structures (φ1, φ2) on 4-dimensional Walker manifolds. We discuss when these structures are integrable
and when the bi-Kähler forms are symplectic.

Key words: Almost complex structures, symplectic structures, almost Hermitian and Kähler structures, pseudobi-
Hermitian structures, Walker manifold.

1. Introduction
Let M2n be a manifold with a neutral metric which is a pseudo-Rieamnnian metric g of signature (n, n) . Let
ℑp

q (M2n) be the set of all tensor fields of type (p, q) on M2n . Manifolds, tensor fields, and connections are
assumed to be differentiable and of class C∞ .

The pair (M2n, φ) is called an almost complex manifold if the condition φ2 = −I is hold, where I is a
field of identity endomorphisms and φ is an affinor field φ ∈ ℑ1

1 (M2n) . The affinor field φ is integrable if and
only if there exists a torsion-free affine connection ∇ with respect to which the structure tensor φ is covariantly
constant, i.e., ∇φ = 0 . Moreover, if the Nijenhuis tensor of such an affinor field φ defined by

Nφ (X,Y ) = [φX,φY ]− φ [φX, Y ]− φ [X,φY ] + [X,Y ]

is equivalent to the vanish, then the almost complex structure φ is called integrable. In this case, the almost
complex manifold (M2n, φ) is called a complex manifold.

Let M2n be a 4-dimensional complex manifold and φi , for i = 1, 2 , be two independent compatible
integrable almost complex structures. Here φ1(x) ̸= φ2(x) for a point x in M2n. Also, g metric is a Hermitian
metric with respect to both complex structures φ1 and φ2 , i.e.,

g (φ1X,φ1Y ) = g (X,Y ) and g (φ2X,φ2Y ) = g (X,Y ) .
In this case, the quartet (M2n, g, φ1, φ2) is called bi-Hermitian manifold. If φ1(x) ̸= φ2(x) everywhere

on M2n , a bi-Hermitian structure (g, φ1, φ2) is called strongly bi-Hermitian. The real function p is defined by

p = −1

4
trace (φ1 ◦ φ2)
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or equivalently
φ1 ◦ φ2 + φ2 ◦ φ1 = −2pI,

where p is the angle function of a bi-Hermitian structure and where I is the field of identity endomorphisms
[1,13].

An almost Hermitian structure on a manifold M2n consists of a nondegenerate 2-form w , an almost
complex structure φ and a metric g satisfying the compatibility condition w (X,Y)=g(φX, Y ) . If the 2-form
w is closed, i.e., dw = 0 , a triple (g, φ, w) is called an almost Kähler structure. Also, the triple (g, φ, w) is
called Kähler structure if the almost complex structure φ is integrable [4].

Let (M2n, g, φ1, φ2) be a bi-Hermitian manifold. For such a structure we define 2-forms wi setting
wi (X,Y ) = g (φiX,Y ) , i = 1, 2. If the 2-forms wi are closed (dwi = 0), the bi-Hermitian structure is called
bi-Kähler. Such bi-Hermitian structures have been studied by many authors (see, e.g. [1-3, 13]).

2. Walker metrics
Let M2n be a 4-dimensional manifold and gw be a neutral metric (or gw is of signature (+ + −−). gw is
called Walker metric if there exists a 2- dimensional null distribution D on M2n , which is parallel with respect
to gw. Such metrics are studied by Walker [15] and canonical form of the metric gw is given by

gw =
(
gwij

)
=


0 0 1 0
0 0 0 1
1 0 a c
0 1 c b

 , (2.1)

where a, b , and c are some functions depending on the coordinates
(
x1, x2, x3, x4

)
. Note that the parallel

null 2-plane D is spanned locally by {∂1, ∂2} , where ∂i =
∂

∂xi (i = 1, 2, 3, 4) . Such Walker manifolds are
intensively investigated (see, e.g. [4-12,14,15]).

3. Almost bi-Hermitian structures on a neutral 4-manifold
In this section, we consider 4-dimensional pseudo-Riemannian manifolds of neutral signature. For the next step,
it is appropriate to state a neutral metric g and the almost complex structure φ in terms of an orthonormal
frame {ei} , (i = 1, 2, 3, 4 ) of vectors and its dual frame

{
ej
}

, (j = 1, 2, 3, 4 ) of 1-forms. The metric g

is given by

g = (g (ei, ej)) =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (3.1)

Let (M2n , g, φ1, φ2) be a bi-Hermitian manifold. From identity φ1 ◦φ2 +φ2 ◦φ1 = −2pI , two almost complex
structures φ1 and φ2 can be written as:

φ1 =
(
φ1

i
j

)
=


0 3 −2 2
−3 0 2 2
−2 2 0 3
2 2 −3 0

 , (3.2)
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φ2 =
(
φ2

i
j

)
=


0 3 2 2
−3 0 2 −2
2 2 0 3
2 −2 −3 0

 . (3.3)

According to g, φ1 , and φ2 , we have two kinds of Kähler forms on 4-manifolds which are given by

w1 (X,Y ) = g (φ1X,Y ) , w2 (X,Y ) = g (φ2X,Y ) . (3.4)

Equation (3.4) is equivalent to in matrix notations in the following equation

w1 = φ1
T g, w2 = φ2

T g, (3.5)

where matrix φT is the transpose matrix of matrix φ . From (3.1)–(3.3) and (3.5), we can write

w1 =
(
w1ij

)
=


0 −3 2 −2
3 0 −2 −2
−2 2 0 3
2 2 −3 0

 , (3.6)

w2 =
(
w2ij

)
=


0 −3 −2 −2
3 0 −2 2
2 2 0 3
2 −2 −3 0

 . (3.7)

These Kähler forms in terms of the local orthonormal basis
{
ej
}

(j = 1, 2, 3, 4 ) of 1-forms are written
as:

w1 =
∑
i<j

w1ij ei
∧

ej = −3e1 ∧ e2 + 2e1 ∧ e3 − 2e1 ∧ e4

−2e2 ∧ e3 − 2e2 ∧ e4 + 3e3 ∧ e4, (3.8)

w2 =
∑
i<j

w2ij ei
∧

ej = −3e1 ∧ e2 − 2e1 ∧ e3 − 2e1 ∧ e4

−2e2 ∧ e3 + 2e2 ∧ e4 + 3e3 ∧ e4. (3.9)

4. Almost bi-Hermitian structures and bi-Kähler forms on Walker 4-manifolds
Let (M2n , gw) be a Walker-4 manifold which is given in (2.1), where gw is Walker metric and let {ei} and
{∂i} , (i = 1, 2, 3, 4) be two orthonormal frames. Also, matrix A =

(
Ai

j

)
of the change of coordinates satisfies:

g = AT gwA, (4.1)

where AT is the transpose matrix of A .
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Substituting (2.1) and (3.1) in (4.1), one of the matrices which we apply in the present analysis, we obtain
as:

A =
(
Ai

j

)
=


0 −

(
1−a
2

)
0 1+a

2
1−b
2 c −

(
1+b
2

)
c

0 −1 0 −1
1 0 1 0

 . (4.2)

Also, matrix A =
(
Ai

j

)
of the change of coordinates satisfies:

φ = A−1φ
′
A, (4.3)

where A−1 is the inverse matrix of A and it is given by:

A−1 =


0 1 c

(
1+b
2

)
−1 0 −

(
1+a
2

)
0

0 −1 −c 1−b
2

1 0 −
(
1−a
2

)
0

 . (4.4)

Substituting (3.2), (4.2), and (4.4) in (4.3), the almost complex structure in (3.2) is obtained as the
following:

φ1

′
=

(
φ1

′ i

j

)
=


−2 5 5c− 2a 1

2 (5b− a)
−1 2 1

2 (5b− a) 2b− c
0 0 2 1
0 0 −5 −2

 . (4.5)

Similarly, substituting (3.3), (4.2), and (4.4) in (4.3), the almost complex structure in (3.3) is obtained
as the following:

φ2
′
=

(
φ2

′ i

j

)
=


2 5 5c+ 2a 1

2 (5b− a)
−1 −2 1

2 (5b− a) −2b− c
0 0 −2 1
0 0 −5 2

 . (4.6)

A matrix A =
(
Ai

j

)
of the change of coordinates for the tensor fields of type (0, 2) satisfies:

w = ATw
′
A, (4.7)

where AT is the transpose matrix of A .
Substituting (3.6) and (4.2) in (4.7), the bi-Kähler form in (3.6) is obtained as:

w1
′
=

(
w1

′

ij

)
=


0 0 −2 −1
0 0 5 2
2 −5 0 1

2 (−a− 5b+ 4c)
1 −2 − 1

2 (−a− 5b+ 4c) 0

 . (4.8)

The bi-Kähler form in (4.8) is written in terms of the coordinate basis as follows:

w1
′
=

∑
i<j

w1
′

ij dxi
∧

dxj = −2dx1 ∧ dx3 − dx1 ∧ dx4 + 5dx2 ∧ dx3+
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2dx2 ∧ dx4 +
1

2
(−a− 5b+ 4c)dx

3 ∧ dx4. (4.9)

Similarly, substituting (3.7) and (4.2) in (4.7), we obtain the bi-Kähler form in (3.7) as:

w2
′
=

(
w2

′

ij

)
=


0 0 2 −1
0 0 5 −2
−2 −5 0 − 1

2 (a+ 5b+ 4c)
1 2 1

2 (a+ 5b+ 4c) 0

 . (4.10)

Also, in terms of the coordinate basis, the bi-Kähler form in (4.10) is written as follows:

w2
′
=

∑
i<j

w2
′

ij dxi
∧

dxj = 2dx1 ∧ dx3 − dx1 ∧ dx4 + 5dx2 ∧ dx3−

2dx2 ∧ dx4 − 1

2
(a+ 5b+ 4c)dx

3 ∧ dx4. (4.11)

5. Integrability of φ1
′ and φ2

′ (bi-Hermitian structures)

The almost complex structure φ
′ is integrable if and only if

(
Nφ′

)i

jk
= φ

′m

j ∂mφ
′ i

k − φ
′m

k ∂mφ
′ i

j − φ
′ i

m∂jφ
′m

k + φ
′ i

m∂kφ
′m

j = 0. (5.1)

From (4.5) and (5.1), the Nijenhuis tensor of φ1
′ in (4.5) has nonzero components as follows:

Nx
xz = −Nx

zx = 2ay − 5cy −
25

2
bx +

5

2
ax,

Nx
xt = −Nx

tx = −5

2
by +

1

2
ay − 10bx + 5cx,

Ny
xz = −Ny

zx = −10bx + 5cx − 5

2
by +

1

2
ay,

Ny
xt = −Ny

tx = −8bx + 4cx − 2by + cy +
5

2
bx − 1

2
ax,

Nx
yz = −Nx

zy = 25cx − 10ax + 20cy − 8ay −
25

2
by +

5

2
ay,

Ny
yz = −Nx

zy =
25

2
bx − 5

2
ax + 5cy − 2ay,

Nx
yt = −Nx

ty =
25

2
bx − 5

2
ax + 5cy − 2ay,
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Ny
yt = −Ny

ty =
5

2
by −

1

2
ay + 10bx − 5cx,

Nx
zt = −Nx

tz =

(
25c

2
− 5a

)
bx +

(
−5c

2
+ 5b

)
ax +

(
−25b

2
+

5a

2

)
cx +

(
21b− a

4
− 2c

)
ay

+

(
−25b+ 5a

4

)
by + (−10b+ 5c) cy,

Ny
zt = −Ny

tz =

(
−11a− 25b

4
+ 10c

)
bx +

(
5b− a

4

)
ax +

(
5c

2
− a

)
by +

(
b− c

2

)
ay

+

(
−5b+ a

2

)
cy + (−5c+ 2a) cx.

From these equations, we have:

Theorem 5.1 The almost complex structure φ1
′ is integrable if and only if the following PDEs hold:

2bx − cx = 0, 2by − cy = 0,

5bx − ax = 0, 5by − ay = 0. (5.2)

From (4.6) and (5.1), the Nijenhuis tensor of φ2
′ in (4.6) has nonzero components as follows:

Nx
xz = −Nx

zx = −2ay − 5cy −
25

2
bx +

5

2
ax,

Nx
xt = −Nx

tx = −5

2
by +

1

2
ay + 10bx + 5cx,

Ny
xz = −Ny

zx = 10bx + 5cx − 5

2
by +

1

2
ay,

Ny
xt = −Ny

tx = −8bx − 4cx + 2by + cy +
5

2
bx − 1

2
ax,

Nx
yz = −Nx

zy = 25cx + 10ax − 20cy − 8ay −
25

2
by +

5

2
ay,

Ny
yz = −Nx

zy =
25

2
bx − 5

2
ax + 5cy + 2ay,

Nx
yt = −Nx

ty =
25

2
bx − 5

2
ax + 5cy + 2ay,
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Ny
yt = −Ny

ty =
5

2
by −

1

2
ay − 10bx − 5cx,

Nx
zt = −Nx

tz =

(
25c

2
+ 5a

)
bx +

(
−5c

2
− 5b

)
ax +

(
−25b

2
+

5a

2

)
cx+

(
11b+ a

4
+ 2c

)
ay +

(
25b− 5a

4

)
by + (10b+ 5c) cy,

Ny
zt = −Ny

tz =

(
−11a− 25b

4
− 10c

)
bx +

(
5b− a

4

)
ax +

(
5c

2
+ a

)
by+

(
− c

2
− b

)
ay +

(
−5b+ a

2

)
cy + (−5c− 2a) cx.

From these equations, we have:

Theorem 5.2 The almost complex structure φ2
′ is integrable if and only if the following PDEs hold:

20bx + 10cx − 5by + ay = 0,

25bx − 5ax + 10cy + 4ay = 0. (5.3)

From (5.2) and (5.3), we can write the following integrability conditions for almost bi-Hermitian–Walker
structures.

Theorem 5.3 The triple (gw, φ
′

1, φ
′

2) is bi-Hermitian–Walker structure if and only if the following PDEs hold:

ax = ay = bx = by = cx = cy = 0. (5.4)

6. Symplectic structures

In this section, we focus our attention on bi-Kähler forms (w1

′
, w2

′
) which are symplectics, i.e,

dwi
′
= 0 (i = 1, 2) . (6.1)

From (4.9), external differential of w1
′ is written as:

dw1

′
= −1

2
(a1 + 5b1 − 4c1) dx

1 ∧ dx3 ∧ dx4 − 1

2
(a2 + 5b2 − 4c2) dx

2 ∧ dx3 ∧ dx4.

Therefore, we have:

Theorem 6.1 The Kähler form in (4.9) is a symplectic form (dw1
′
= 0) if the following PDEs hold:

a1 + 5b1 − 4c1 = 0,

a2 + 5b2 − 4c2 = 0. (6.2)
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From (4.11), external differential of w2
′ is written as:

dw2

′
= −1

2
(a1 + 5b1 + 4c1) dx

1 ∧ dx3 ∧ dx4 − 1

2
(a2 + 5b2 + 4c2) dx

2 ∧ dx3 ∧ dx4.

Therefore, we have:

Theorem 6.2 The Kähler form in (4.11) is a symplectic form (dw2
′
= 0) if the following PDEs hold:

a1 + 5b1 + 4c1 = 0,

a2 + 5b2 + 4c2 = 0. (6.3)

From Theorem 6.1 and Theorem 6.2, we can write the following theorem:

Theorem 6.3 The quinary (gw, φ1

′
, φ2

′
, w1

′
, w2

′ ) is bi-Kähler–Walker if and only if the following PDEs hold:

a1 + 5b1 = 0, c1 = 0,

a2 + 5b2 = 0, c2 = 0. (6.4)
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