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Abstract: (Mszn, g™, D) is a 4-dimensional Walker manifold and this triple is also a pseudo-Riemannian manifold
(Ma2n, g®*) of signature (+ + ——) (or neutral), which is admitted a field of null 2-plane. In this paper, we consider
bi-Hermitian structures (¢1, ¢,) on 4-dimensional Walker manifolds. We discuss when these structures are integrable

and when the bi-K&hler forms are symplectic.

Key words: Almost complex structures, symplectic structures, almost Hermitian and Ké&hler structures, pseudobi-

Hermitian structures, Walker manifold.

1. Introduction
Let My, be a manifold with a neutral metric which is a pseudo-Rieamnnian metric g of signature (n,n). Let
QP (May,) be the set of all tensor fields of type (p,q) on Ma,. Manifolds, tensor fields, and connections are
assumed to be differentiable and of class C*°.

The pair (Mo, ) is called an almost complex manifold if the condition p? = —I is hold, where I is a
field of identity endomorphisms and ¢ is an affinor field ¢ € 31 (Ma,). The affinor field ¢ is integrable if and
only if there exists a torsion-free affine connection V with respect to which the structure tensor ¢ is covariantly

constant, i.e., Vo = 0. Moreover, if the Nijenhuis tensor of such an affinor field ¢ defined by

is equivalent to the vanish, then the almost complex structure ¢ is called integrable. In this case, the almost
complex manifold (Ma,, ) is called a complex manifold.

Let Ms, be a 4-dimensional complex manifold and ¢;, for ¢ = 1, 2, be two independent compatible
integrable almost complex structures. Here o1(x) # ¢a(z) for a point x in Ms,. Also, g metric is a Hermitian
metric with respect to both complex structures ¢; and @9, i.e.,

91X, 01Y) = g(X,Y) and g (p2X,2Y) = g (X,Y).

In this case, the quartet (Ma,, g,¢1,p2) is called bi-Hermitian manifold. If o;(x) # p2(x) everywhere

on Msy,, a bi-Hermitian structure (g, @1, =) is called strongly bi-Hermitian. The real function p is defined by

1
p= —Ztrace (p1 0 p2)
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or equivalently
102+ 209 = —2pl,

where p is the angle function of a bi-Hermitian structure and where I is the field of identity endomorphisms
[1,13].

An almost Hermitian structure on a manifold Ms, consists of a nondegenerate 2-form w, an almost
complex structure ¢ and a metric g satisfying the compatibility condition w (X,Y)=g(¢X,Y). If the 2-form
w is closed, i.e., dw = 0, a triple (g, p,w) is called an almost Kéhler structure. Also, the triple (g,p,w) is
called Kéahler structure if the almost complex structure ¢ is integrable [4].

Let (May,, g,¢1,p2) be a bi-Hermitian manifold. For such a structure we define 2-forms w; setting
w; (X,Y) =g (e;X,Y), i =1,2. If the 2-forms w; are closed (dw; = 0), the bi-Hermitian structure is called
bi-Kéahler. Such bi-Hermitian structures have been studied by many authors (see, e.g. [1-3, 13]).

2. Walker metrics
Let Ms, be a 4-dimensional manifold and ¢g* be a neutral metric (or g% is of signature (+ 4+ ——). g% is
called Walker metric if there exists a 2- dimensional null distribution D on Ms,,, which is parallel with respect

to g*. Such metrics are studied by Walker [15] and canonical form of the metric g is given by

g' = (gwij) = ) (2.1)

o= O O
—_ o O O
QO 2 O
SN0 = O

where a,b, and ¢ are some functions depending on the coordinates (xl,xQ,xS,x4). Note that the parallel

null 2-plane D is spanned locally by {0,302}, where 9; = % (i=1, 2, 3, 4). Such Walker manifolds are
intensively investigated (see, e.g. [4-12,14,15]).

3. Almost bi-Hermitian structures on a neutral 4-manifold

In this section, we consider 4-dimensional pseudo-Riemannian manifolds of neutral signature. For the next step,
it is appropriate to state a neutral metric ¢ and the almost complex structure ¢ in terms of an orthonormal
frame {e;} , (i=1, 2, 3, 4) of vectors and its dual frame {ej} , (=1, 2, 3, 4) of 1-forms. The metric g

is given by

10 0 0
01 0 0

g=0lne)=1 ¢ o _1 o (3.1)
00 0 -1

Let (May, ,g,%1,92) be a bi-Hermitian manifold. From identity (1 0 pe + 2091 = —2pl, two almost complex

structures ; and @9 can be written as:

0 3 -2 2
. 30 2 2
2 2 =30
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0 3 2 2
. 3 0 2 -2
P2 = (902]') = ) ) 0 3 (33)

2 =2 =3 0
According to g, @1, and 9, we have two kinds of Kéhler forms on 4-manifolds which are given by
w (X,Y) =g (01 X,Y) ,we (X,Y) = g (2 X,Y). (3-4)
Equation (3.4) is equivalent to in matrix notations in the following equation
w1 = <,01Tg7w2 = 802T9, (3.5)
where matrix @7 is the transpose matrix of matrix ¢ . From (3.1)-(3.3) and (3.5), we can write

0o -3 2 =2

3 0 -2 =2

wi = (W) = 9 9 o 3 |- (3.6)
2 2 -3 0
0 -3 -2 -2
3.0 -2 2

wp = (wai;) = 2 9 0 3 (3.7)
2 -2 -3 0

These Kéhler forms in terms of the local orthonormal basis {ej} (j=1, 2, 3, 4) of 1-forms are written
as:

wy = Zwlij ei/\ej =3¢ Ne? + 2 Aed —2et A et
i<j
—2e2 Ned —2e? Net +3e® A et (3.8)
Wy = Zw2ij ei/\ej =—3et ne? —2el ne® —2et At
i<j

—2e2 A ed 4 2e2 Aet 4 3ed A et (3.9)

4. Almost bi-Hermitian structures and bi-Kahler forms on Walker 4-manifolds
Let (Ma, ,g") be a Walker-4 manifold which is given in (2.1), where ¢g* is Walker metric and let {e;} and

{0;},(i =1, 2, 3, 4) be two orthonormal frames. Also, matrix A = (A;) of the change of coordinates satisfies:

g=ATgvA, (4.1)

where AT is the transpose matrix of A.
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Substituting (2.1) and (3.1) in (4.1), one of the matrices which we apply in the present analysis, we obtain

as:
0 _(1za 0 1ta
, 1-b (CQ ) (L) :
= L) = 2 2
A= (A) 2 . 0 o (4.2)
1 0 1 0
Also, matrix A = (A%) of the change of coordinates satisfies:
p=A"1p A, (4.3)
where A~! is the inverse matrix of A and it is given by:
0 1 c (F)
-1 0 =) o0
e I T T R (4.4)
1o —(%%) 0

Substituting (3.2), (4.2), and (4.4) in (4.3), the almost complex structure in (3.2) is obtained as the

following:
-2 5 5c—2a 3(5b—a)
/ -1 2 iGGb-a 2b — ¢
a'=(a5)=| % o 2 2 ) 1 : (4.5)
0 0 -5 -2

Similarly, substituting (3.3), (4.2), and (4.4) in (4.3), the almost complex structure in (3.3) is obtained
as the following;:
2 5 bc+2a 1(5b—a)

: -1 -2 I(5b—a) —2b-c
P2 = (902 j) =1 o o 2 9 ) 1 : (4.6)
0 0 -5 2

A matrix A = (A;) of the change of coordinates for the tensor fields of type (0,2) satisfies:
w=ATw A, (4.7)

where AT is the transpose matrix of A.
Substituting (3.6) and (4.2) in (4.7), the bi-K&hler form in (3.6) is obtained as:

0 0 —2 ~1
7 ’ 0 0 5 2
w'=(w'y)=| 5 0 1(—q —5b+4c) (4.8)
1 -2 —1(-a—5b+4c) 0

The bi-Kéahler form in (4.8) is written in terms of the coordinate basis as follows:

wll = Zwllij dz! /\dxj = —2dat Ada® — dat Adat + 5dz? A da+

1<j

2302
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1
2dz? A dxt + 5(—a — 5b+ 4c)da® A da?. (4.9)

Similarly, substituting (3.7) and (4.2) in (4.7), we obtain the bi-Kahler form in (3.7) as:

0 0 2 -1
’ ’ 0 0 5 _2
w2 = (“’2 J) | -2 -5 0 —L(a+5b+ 4c) (4.10)
12 (a+5b+4c) 0
Also, in terms of the coordinate basis, the bi-Kéhler form in (4.10) is written as follows:
w2/ = ng,ij da’ /\dxj = 2dz' Ada® — dat A dat + 5da? A dad—
i<y
1
2da” A da* — §(a+5b—|—4c)dsc3 A dz*, (4.11)
5. Integrability of ¢, and ¢, (bi-Hermitian structures)
The almost complex structure 90/ is integrable if and only if
(N@/)jk =i 0P =P kO ;=0 0 + @Oy ; =0. (5.1)

From (4.5) and (5.1), the Nijenhuis tensor of ¢;  in (4.5) has nonzero components as follows:

x " 25 5
N, =—NZ, = 2a, — 5¢y — ?bx + iax,

5 1
N3, =—N} = —iby + —ay, — 10b; + 5¢,

2
Y y 5 1
N:Cz = —sz = —10bx + 5C;¢ - §by + iay,

y y 5 1
N:Et = —Ntx = —be +4Cx - 2by -+ Cy + be — ia”f’
" " 25 5

Ny, = —N7, = 25¢; — 10a, + 20c, — 8a, — ?by + 250>
. 25 5
N}, =-N;, = ?bm — iax + 5S¢y — 2ay,
. . 25 5
Ny, = —Nyj, = ?bz — 3t + 5¢y — 2ay,
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5. 1
Ny, = =N}, = Sby — Say +10b; — ¢,

25¢ 5¢ 25b  ba 21b—a

<25b + 5a
_|_ -

1 > by + (=100 + 5¢) ¢y,

“11a — 25b 5b — 5
NY = NV = (‘l4+10c) by + <4“> g + <;—a> b, + (b—g>ay

—5b
—I—( +a) ¢y + (—=5c+2a) ¢y

2

From these equations, we have:

Theorem 5.1 The almost complex structure <p1/ is integrable if and only if the following PDFEs hold:

2by —c; =0,2by — ¢, =0,

5b; — a, = 0,5b, —a, = 0.
From (4.6) and (5.1), the Nijenhuis tensor of @,  in (4.6) has nonzero components as follows:

2
N, =—-NI, = —2a, — 5cy — ;bx + gaz,

5. 1
Niy = =Ni, = =5by + 5ay + 10, + 5e,

5 1
NY, = —NY = 10b; + bc, — iby + §ay,
v Y 5 1
Ny = —Nip = —8by —4cg +2by + ¢y + §b$ — g0
" . 25 b)
Nyz = _Nzy = 25693 + ].OCLI — 20Cy — 8ay — ?by + §ay,
" 25 )
Ngz = 7Nzy = ?bm — 5(11 -+ 5Cy -+ 2(1y,
25 5
Ny, = —Nyj, = ?bz — 5% —+ 5¢y + 2ay,
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5 1
N?;Ut = —Ntyy = iby — §ay — 10br — 50?67
25 5 250 5
N% = N2 = (20 —|—5a> be + (—; - 5b> s + (—2 + 2”) Cat
11b+a 25b — ba
( 1 + 20) ay + (4) by + (100 + 5¢) ¢y,

—11a — 25b b—
NY, = —-N} = <a451()c)bz+<5 1 a>am+<52c+a> by+

c —5b+a
(—5 - b) ay + <2) ¢y + (—5¢ — 2a) ¢y

From these equations, we have:
Theorem 5.2 The almost complex structure cpgl is integrable if and only if the following PDEs hold:

20b,. + 10¢, — 5b, + a, = 0,

25b, — 5a, + 10¢y + 4a, = 0. (5.3)

From (5.2) and (5.3), we can write the following integrability conditions for almost bi-Hermitian—Walker
structures.

Theorem 5.3 The triple (g%, <p/1, golz) is bi-Hermitian—Walker structure if and only if the following PDFEs hold:

aw:ay:bw:byzcl_zcyzo_ (5.4)

6. Symplectic structures

In this section, we focus our attention on bi-Kéahler forms (wll,wgl) which are symplectics, i.e,
dw; =0  (i=1, 2). (6.1)
From (4.9), external differential of w is written as:
dwl/ = —% (a1 + 5b1 — 4cq) dat A da® A dat — %(az + 5bg — 4ca) da® A dz® A da?.
Therefore, we have:

Theorem 6.1 The Kihler form in (4.9) is a symplectic form (dw, = 0) if the following PDEs hold:

a1 + 5by —4e; =0,

as + Bby — 4ey = 0. (62)
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From (4.11), external differential of w, is written as:

, 1 1 ;
dwy = —3 (a1 + 5by + de1) dzt A da® A da? — 5 (02 + 5b> + 4es) dz® A da® A da?.

Therefore, we have:

Theorem 6.2 The Kdihler form in (4.11) is a symplectic form (dwgl = 0) if the following PDEs hold:

ay + 5by + 4e¢; =0,

as + bby + 4co = 0. (63)

From Theorem 6.1 and Theorem 6.2, we can write the following theorem:

Theorem 6.3 The quinary (g, goll , @2/, wy wgl) is bi-Kdhler—Walker if and only if the following PDEs hold:

[9]

[10]

[11]
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a1+ 5b1 =0,¢1 =0,

as 4+ 5by = 0,¢c9 = 0. (6.4)
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