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Abstract: In this note we give an algorithm to determine the rational homotopy type of the free and pointed mapping
spaces map(F (Rm, k), Sn) and map∗(F (Rm, k), Sn) . An explicit description of these spaces is given for k = 3 . The
general case for n odd is also presented as an immediate consequence of the rational version of a classical result of Thom.

1. Introduction
We are interested in determining the rational homotopy type of the spaces map(F (Rm, k),Sn) and
map∗(F (Rm, k),Sn) of free and pointed continuous maps from the configuration spaces of k particles in Rm

to the n -dimensional sphere. These spaces are useful. For instance, since F (Rm, 2) ≃ Sm−1 , they include
mapping spaces between spheres whose rational homotopy type have already been described in [4]. Also, recall
that the generalized Randakumar and Ramana Rao problem∗ [1, 13], a strong generalization of the classical
Borsuk–Ulam theorem, asks whether a convex m -dimensional polytope can be partitioned into k convex pieces
on which m − 1 continuous functions are equalized (m, k ≥ 2). Whenever k is a prime power, an affirmative
answer [1, Thm. 1.2] follows from the nonexistence of Σk -equivariant maps F (Rm, k) −→ S(W⊕m−1

k ) . Here,
Wk is the hyperplane of Rk of equation x1 + · · ·+ xk = 0 and S(W⊕m−1

k ) is the unit sphere on the direct sum
of m − 1 copies of Wk . Observe that the symmetric group Σk naturally acts on both spaces by permuting
coordinates and columns respectively, and S(W⊕m−1

k ) is just a special Σk representation of S(m−1)(k−1)−1 .
For k = 3 , we obtain the following decomposition in which, for simplicity in the notation, we denote

M(m,n) = map(F (Rm, 3),Sn) and M∗(m,n) = map∗(F (Rm, 3),Sn) .

Theorem 1 (i) For n odd and any m ≥ 2 ,

M(m,n) ≃Q



Sn ×K(Q, n− (m− 1))3 ×K(Q, n− 2(m− 1))2, if n > 2(m− 1),
Sn ×K(Q, n− (m− 1))3, if m− 1 < n < 2(m− 1),⊔
N

Sn, if n = m− 1,

Sn, if n < m− 1.

∗Correspondence: garvin@uma.es

This work is licensed under a Creative Commons Attribution 4.0 International License.

∗Nandakumar R. Fair partitions. Blog entry, http://nandacumar.blogspot.de/2006/09/cutting-shapes.html, 2006.
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M∗(m,n) ≃Q



K(Q, n− (m− 1))3 ×K(Q, n− 2(m− 1))2, if n > 2(m− 1),
K(Q, n− (m− 1))3, if m− 1 < n < 2(m− 1),⊔
N

∗, if n = m− 1,

∗, if n < m− 1.

(ii) For n = 2 and any m ≥ 2 ,

M(m, 2) ≃Q



S2, if m > 4,⊔
N

S2, if m = 4,

(S1)3 × S2 ⊔
⊔
N

(S1)2 × S3, if m = 3,

X ⊔
⊔
N

S1 ×He ×K(Q, 2)3 × S3, if m = 2.

M∗(m, 2) ≃Q



∗, if m > 4,⊔
N

∗, if m = 4,⊔
N

(S1)3, if m = 3,⊔
N

Y ×K(Q, 2)3 , if m = 2.

(iii) For n even greater than 2 and m ≥ 2 ,

M(m,n) ≃Q


Sn, if m > 2n,⊔
N

Sn, if m = 2n,

K(Q, 2n−m)× Sn, if n+ 2 ≤ m ≤ 2n− 1.

M∗(m,n) ≃Q


∗, if m > 2n,⊔
N

∗, if m = 2n,

K(Q, 2n−m), if n+ 2 ≤ m ≤ 2n− 1.

Here He is the Heisenberg manifold, X is a rational space which is the total space in a rational fibration of the
form

(S1)2 ×K(Q, 2)3 → X → (S1)3 × S2,

and Y is the nilmanifold [10] whose minimal model is

(Λ(a1, b1, c1, x1, y1), d), dx1 = a1b1, dy1 = b1c1,

with subscripts indicating degree (see Section 3 for details). As usual, ≃Q means “rationally equivalent to” and⊔
denotes disjoint union.
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The method used in the proof may well serve as an algorithm to compute map(F (Rm, k),Sn) and
map∗(F (Rm, k),Sn) for given integers m, k ≥ 2 and n ≥ 1 . However, the general case for more than three
particles for n even, does not produce such a straight decomposition. Nevertheless, whenever n is odd, Sn is
rationally an H -space and the spaces map(F (Rm, k),Sn) , map∗(F (Rm, k),Sn) can be easily decomposed as
products of Eilenberg-MacLane spaces in view of the rational version, both free and pointed, of the classical
work of Thom [9, 14], see Proposition 1:

Theorem 2 Denote M(m, k, n) = map(F (Rm, k),Sn) and M∗(m, k, n) = map∗(F (Rm, k),Sn) . Then:

M(m, k, n) ≃Q



k−1∏
j=0

K(Q, n− j(m− 1))[
k

k−j], if n > (k − 1)(m− 1),

⊔
N

l−1∏
j=0

K(Q, n− j(m− 1))[
k

k−j]

 , if n = l(m− 1),

1 ≤ l ≤ k − 1,
l∏

j=0

K(Q, n− j(m− 1))[
k

k−j], if l(m− 1) < n < (l + 1)(m− 1),

1 ≤ l ≤ k − 2,

Sn, if n < m− 1.

M∗(m, k, n) ≃Q



k−1∏
j=1

K(Q, n− j(m− 1))[
k

k−j], if n > (k − 1)(m− 1),

⊔
N

l−1∏
j=1

K(Q, n− j(m− 1))[
k

k−j]

 , if n = l(m− 1),

1 ≤ l ≤ k − 1,
l∏

j=1

K(Q, n− j(m− 1))[
k

k−j], if l(m− 1) < n < (l + 1)(m− 1),

1 ≤ l ≤ k − 2,

∗, if n < m− 1.

Here, as in [8], the brackets
[

k
k−j

]
represent the unsigned Stirling numbers of the first kind.

As an illustrative example, for the case including the generalized Randakumar and Ramana Rao problem,
we get directly:

Corollary 1 If either m or k is an odd number, then:
For m ≥ 3 ,

map(F (Rm, k),S(m−1)(k−1)−1) ≃Q

k−2∏
j=0

K(Q, (k − (j + 1))(m− 1)− 1)[
k

k−j],

map∗(F (R2, k),S(m−1)(k−1)−1) ≃Q

k−2∏
j=1

K(Q, (k − (j + 1))(m− 1)− 1)[
k

k−j].
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For m = 2 ,

map(F (R2, k),Sk−2) ≃Q
⊔
N

k−3∏
j=0

K(Q, k − (2 + j))[
k

k−j]

 ,

map∗(F (R2, k),Sk−2) ≃Q
⊔
N

k−3∏
j=1

K(Q, k − (2 + j))[
k

k−j]

 . □

2. Preliminaries
We will use basic results from rational homotopy theory for which [7] has become a standard reference. Via
the classical adjoint functors between the categories of commutative differential graded algebras (CDGA’s
henceforth) over Q which is always assumed to be the ground field, and simplicial sets, given by piecewise
linear forms and realization,

SSets →← CDGA,

one has the notion of (Sullivan) model of a nonnecessarily connected space Z such that all its components are
nilpotent [3]: By such a model we mean a cofibrant Z -graded free commutative differential graded algebra whose
simplicial realization has the same homotopy type as the Milnor simplicial approximation of the rationalization
of Z .

If (ΛW,d) is a model of Z in this sense and u : ΛW → Q the model of a 0 -simplex of Z , consider the
differential ideal Ku generated by A1 ∪A2 ∪A3 , being

A1 = W<0, A2 = dW 0, A3 = {α− u(α) : α ∈W 0}.

Then (ΛW,d)/Ku is again a free commutative differential graded algebra of the form (Λ(W
1 ⊕ W≥2), du)

in which W
1 is a complement in W 1 of d(W 0) up to identifications given by A1 and A3 , see [3, S4] for

details. Then [2, 4.3], (Λ(W 1⊕W≥2), du) is a Sullivan model of the path component of Z containing the fixed
0 -simplex.

In particular, if X is a nilpotent finite CW-complex and Y is a finite type CW-complex then the
components of the free and pointed mapping spaces map(X,Y ) and map∗(X,Y ) are nilpotent [11] and the
above applies. We briefly recall the Haefliger model [9] of these spaces and its components following the
presentation in [2, 3].

Let B be a finite dimensional commutative differential graded algebra model of X and let A = (ΛV, d)

be a Sullivan model of Y . We denote by B♯ the differential graded coalgebra dual of B , B♯ = Hom(B,Q) ,
with the grading (B♯)−n = (B♯)n = Hom(Bn,Q) . Consider the free commutative differential graded algebra
Λ(A ⊗ B♯) generated by the Z -graded vector space A ⊗ B♯ , with the differential d induced by the one on A

and B♯ . Let I ⊂ Λ(A⊗B♯) be the differential ideal generated by 1⊗ 1− 1 , and the elements of the form

a1a2 ⊗ β −
∑
j

(−1)|a2||β′
j |(a1 ⊗ β′

j)(a2 ⊗ β′′
j ), a1, a2 ∈ A, β ∈ B♯,
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where the coproduct on β is, ∆β =
∑

j β
′
j ⊗ β′′

j . The inclusion V ⊗B♯ ↪→ A⊗B♯ induces an isomorphism of
graded algebras

ρ : Λ(V ⊗B♯)
∼=−→ Λ(A⊗B♯)/I

and thus d̃ = ρ−1dρ defines a differential in Λ(V ⊗ B♯) . We can do the same construction taking (B+)
♯

(elements of B♯ of negative degree) instead of B♯ , and taking ∆̄ (the reduced coproduct) instead of ∆ .

Then [2, 3], the commutative differential graded algebra (Λ(V ⊗ B♯), d̃) is a model of map(X,Y ) , and

the commutative differential graded algebra (Λ(V ⊗B♯
+), d̃) is a model of map∗(X,Y ) .

Now, let ϕ : (ΛV, d) → (B, δ) a model of a given map f : X → Y . The morphism ϕ induces a natural

augmentation denoted also by ϕ :
(
Λ(V ⊗B♯), d̃

)
→ Q which can be thought as the model of the 0 -simplex of

the mapping space representing f . Applying the process above we obtain the Sullivan algebra

(
Λ
(
V ⊗B♯

1
⊗ (V ⊗B♯)≥2

)
, d̃φ

)
which is a Sullivan model of the component mapf (X,Y ) of the free mapping space containing f [3]. In the
same way, (

Λ
(
V ⊗B♯

+

1

⊗ (V ⊗B♯
+)

≥2
)
, d̃φ

)
is a Sullivan model of map∗f (X,Y ) .

The next result will be used in next sections. It may be considered a rational reformulation of the classical
decomposition of Thom [14], see also [9].

Proposition 1 Let X be a formal finite nilpotent complex and let Y be of the rational homotopy type of a
finite type H-space. For j ≥ 0 , let

Nj =
∑

r−s=j

dimΠr(Y )⊗Q · dimHs(X;Q),

N ′
j =

∑
r−s=j, s ̸=0

dimΠr(Y )⊗Q · dimHs(X;Q).

Then,

map(X,Y ) ≃Q

{∏
j≥1 K(Q, j)Nj if N0 = 0,⊔
N

(∏
j≥1 K(Q, j)Nj

)
if N0 ̸= 0.

map∗(X,Y ) ≃Q

{∏
j≥1 K(Q, j)N

′
j if N ′

0 = 0,⊔
N

(∏
j≥1 K(Q, j)N

′
j

)
if N ′

0 ̸= 0.

Proof As X is a formal space, B = (H∗(X;Q), 0) is a model of X . On the other hand the minimal model
of the H-space Y is of the form A = (ΛV, 0) . Then, (Λ(V ⊗B♯), 0) is a model of map(X,Y ) .
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Observe that for any j ,

dim(V ⊗B♯)j =
∑

r+s=j

= dimV r · dim(B♯)s

=
∑

r−s=j

dimΠr(Y )⊗Q · dimHs(X;Q) = Nj ,

dim(V ⊗B♯
+)

j =
∑

r+s=j, s ̸=0

dimV r · dim(B♯
+)

s

=
∑

r−s=j, s ̸=0

dimΠr(Y )⊗Q · dimHs(X;Q) = N ′
j .

Now, both in the free or pointed case, there is only one component as long as (V ⊗B♯)0 = 0 or (V ⊗B♯
+)

0 = 0 ,
that is, whenever N0 = 0 or N ′

0 = 0 . Otherwise, as the differential is trivial, there are a countable number of
components, as nonhomotopic augmentations in (V ⊗ B♯)0 or (V ⊗ B♯

+)
0 . On the other hand, again by the

triviality of the differential, it is clear that each component is of the homotopy type of
∏

j≥1 K(Q, j)Nj in the

free case and
∏

j≥1 K(Q, j)N
′
j in the pointed case.

2

3. The proofs

We first prove Theorem 1 by applying the procedure in Section 2 to obtain a model of map(F (Rm, 3),Sn) .
Then, we identify from this model the rational homotopy type of its components.

A CDGA model of the configuration space F (Rm, k) is given by its rational cohomology algebra as these
spaces are formal [12]. It is well known [5] that H∗(F (Rm, k);Q) , is given by

H∗(F (Rm, k);Q) = Λ(aij)/I, i ≠ j, i, j = 1, . . . , k, (1)

where | aij |= m− 1 , and I is the ideal generated as follows:

I = ⟨aij − (−1)maji, a2ij , aijajr + ajrari + ariaij⟩.

For k = 3 , we have

H∗(F (Rm, 3)) =
Λ(a12, a13, a21, a23, a31, a32)

I
,

with | aij |= m− 1 , aji = (−1)maij , aij
2 = 0 and

a12 a23 + a23 a31 + a31 a12 = 0.

Then, as a graded vector space B = H∗(F (Rm, 3)) is concentrated in degrees 0 , m− 1 and 2(m− 1) ,

B = Q ⊕ ⟨a12, a13, a23⟩ ⊕ ⟨a12 a23, a13 a23⟩.

Hence, its dual vector space is

B♯ = H∗(F (Rm, 3);Q) = H0 ⊕Hm−1 ⊕H2(m−1),
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where H0 = Q = ⟨1⟩ , Hm−1 = ⟨α12, α13, α23⟩ , and H2(m−1) = ⟨α12,23, α13,23⟩ . Here 1, α12, α13, α23, α12,23, α13,23

simply denotes the dual basis of 1, a12, a13 , a23, a12 a23, a13 a23 .
Now, if n is odd, we may apply Proposition 1 and a straightforward computation proves the assertion

(i) of Theorem 1.
From now on, we assume that n is an even integer and fix the minimal model of Sn given by (Λ(x, y), d)

with | x |= n , | y |= 2n− 1 , dx = 0 and dy = x2 .
We will also need the ring structure of B = H∗(F (Rm, 3)) which is given by the following table:

1 a12 a13 a23 a12 a23 a13 a23
1 1 a12 a13 a23 a12 a23 a13 a23
a12 a12 0 a12 a23 − a13 a23 a12 a23 0 0
a13 a13 (−1)m−1a12 a23 + (−1)ma13 a23 0 a13 a23 0 0
a23 a23 (−1)m−1a12 a23 (−1)m−1a13 a23 0 0 0

a12 a23 a12 a23 0 0 0 0 0
a13 a23 a13 a23 0 0 0 0 0

From it, one explicitly determines the coproduct ∆ on B♯ :

∆(1) = 1⊗ 1,

∆(α12) = 1⊗ α12 + α12 ⊗ 1,

∆(α13) = 1⊗ α13 + α13 ⊗ 1,

∆(α23) = 1⊗ α23 + α23 ⊗ 1,

∆(α12,23) = 1⊗ α12,23 + α12,23 ⊗ 1 + (−1)m+1α12 ⊗ α23 + α23 ⊗ α12 + (−1)m+1α12 ⊗ α13 + α13 ⊗ α12,

∆(α13,23) = 1⊗ α13,23 + α13,23 ⊗ 1 + (−1)m+1α13 ⊗ α23 + α23 ⊗ α13 + (−1)mα12 ⊗ α13 − α13 ⊗ α12.

Hence, following the procedure in Section 1, one obtain a model of map(F (Rm, 3),Sn) of the form

(Λ(V ⊗B♯), d̃),

where

V ⊗B♯ =⟨x⊗ 1, x⊗ α12, x⊗ α13, x⊗ α23, x⊗ α12,23, x⊗ α13,23,

y ⊗ 1, y ⊗ α12, y ⊗ α13, y ⊗ α23, y ⊗ α12,23, y ⊗ α13,23⟩,

in which x⊗ 1, x⊗ α12, x⊗ α13, x⊗ α23, x⊗ α12,23, x⊗ α13,23 are cycles and
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d̃(y ⊗ 1) =(x⊗ 1)2,

d̃(y ⊗ α12) =2(x⊗ 1)(x⊗ α12),

d̃(y ⊗ α13) =2(x⊗ 1)(x⊗ α13),

d̃(y ⊗ α23) =2(x⊗ 1)(x⊗ α23),

d̃(y ⊗ α12,23) =2
(
(x⊗ 1)(x⊗ α12,23),

+ (−1)m+1(x⊗ α12)(x⊗ α23) + (−1)m+1(x⊗ α13)(x⊗ α23)
)
,

d̃(y ⊗ α13,23) =2
(
(x⊗ 1)(x⊗ α13,23),

+ (−1)m+1(x⊗ α13)(x⊗ α23) + (−1)m(x⊗ α12)(x⊗ α13)
)
.

To simplify the notation, write V ⊗B♯ = W , d̃ = d ,

x = x⊗ 1, y = y ⊗ 1,

pi+j−2 = x⊗ αij , qi+j−2 = y ⊗ αij ,

ri+j−2 = x⊗ αij,rs, si+j−2 = y ⊗ αij,rs.

Then,
(ΛW,d) = (Λ(x, y, p1, p2, p3, q1, q2, q3, r1, r2, s1, s2), d),

where x , pi , rj are cycles (i = 1, 2, 3 and j = 1, 2) and

d(y) = x2,
d(qi) = 2xpi, i = 1, 2, 3 ,
d(s1) = 2(xr1 + (−1)m+1p1p3 + (−1)m+1p2p3),
d(s2) = 2(xr2 + (−1)m+1p1p2 + (−1)mp2p3).

The degrees of the generators are:
| x |= n,
| y |= 2n− 1,
| pi |= n−m+ 1, i = 1, 2, 3 ,
| qi |= 2n−m, i = 1, 2, 3 ,
| ri |= n− 2m+ 2, i = 1, 2 ,
| si |= 2n− 2m+ 1, i = 1, 2 .

For the pointed maps, the procedure given in Section 2 produces the following model of map∗(F (Rm, 3),Sn) .
Writing W+ = V ⊗B♯

+ and with the same notation for the generators, this model is

(ΛW+, d) = (Λ(p1, p2, p3, q1, q2, q3, r1, r2, s1, s2), d),

where
d(s1) = (−1)m+12(p1p3 + p2p3),
d(s2) = (−1)m+12(p1p2 − p2p3),

and the rest of generators are cycles.
We first deal with the case n = 2 and analyze each component in the cases m > 4 , m = 4 , m = 3 and

m = 2 .
For m > 4 , we have:
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degree W
3 y
2 x
1
0
· · ·

4−m q1, q2, q3
3−m p1, p2, p3
· · ·

5− 2m s1, s2
4− 2m r1, r2

In this case, there are no generators in degree 0 , so the only possible augmentation ΛW → Q is the
trivial one, that is, there is only one component. Also, there are no generators in degree 1 , so projecting over
the the generators of negative degree we obtain the Sullivan model of the map(F (Rm, 3),S2) which turns out
to be the minimal model of S2 . For the pointed mapping space, observe that W+ is concentrated in negative
degrees and therefore map∗(F (Rm, 3),S2) ≃Q ∗ .

For m = 4 , we have:

degree W
3 y
2 x
1
0 q1, q2, q3
−1 p1, p2, p3
−2
−3 s1, s2
−4 r1, r2

The existence of generators q1, q2, q3 in degree zero provides an augmentation ϕ : (ΛW,d) → Q for each triad
λ1, λ2, λ3 of rational numbers given by

ϕ(q1) = λ1, ϕ(q2) = λ2, ϕ(q3) = λ3.

Note that different triads produces nonhomotopic augmentations as they induce different cohomology mor-
phisms. Therefore, there are a countable number of components in the rationalization of map(F (R4, 3),S2) .
It is straightforward to check that any of them has the same model as S2 , i.e. map(F (R4, 3),S2) ≃Q

⊔
N S2 .

As before, W+ is concentrated in nonpositive degree so that each component of the pointed mapping space is
rationally contractible: map∗(F (R4, 3),S2) ≃Q

⊔
N ∗ .

For m = 3 , we have:

degree W
3 y
2 x
1 q1, q2, q3
0 p1, p2, p3
−1 s1, s2
−2 r1, r2
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Observe that in this case, an augmentation ϕ : (ΛW,d)→ Q is determined also by a triad of rational numbers
λi = ϕ(pi ), i = 1, 2, 3 , which satisfy the equations ϕ(dsj) = 0 , j = 1, 2 . In other words, each augmentation
corresponds to a solution of the system, {

λ2(λ1 − λ3) = 0,
λ3(λ1 + λ2) = 0.

These are {(λ, 0, 0), (0, λ, 0), (0, 0, λ), (λ,−λ, λ)}λ∈Q . Note also that different solutions correspond to nonhomo-
topic augmentations and hence, the mapping space has a countable number of components.

The model of the component corresponding to λ = 0 is (Λ(q1, q2, q3), 0)⊗ (λ(x, y), d) , that is, the model
of S1 × S1 × S1 × S2 . For the rest of the cases, straightforward computations provide models of S1 × S1 × S3 .

Thus, map(F (R3, 3),S2) ≃Q (S1)3 × S2 ⊔
⊔

N(S1)2 × S3 .
In the pointed case, we obtain that the model of each component is (Λ(q1, q2, q3), 0) and therefore

map∗(F (R3, 3),S2) ≃Q
⊔

N(S1)3 .
For m = 2 , we have:

degree W
3 y
2 x, q1, q2, q3
1 p1, p2, p3, s1, s2
0 r1, r2

and each augmentation ϕ : (ΛW,d)→ Q is determined by a pair of rational numbers ϕ(r1) = λ1 and ϕ(r2) = λ2 .
According to the procedure in Section 1, the model of the corresponding component is:

(ΛW≥1, d) = (Λ(x, y, p1, p2, p3, q1, q2, q3, s1, s2), d),

in which x, p1, p2, p3 are cycles and
dy = x2,

dqi = 2xpi, i = 1, 2, 3,

ds1 = 2(λ1x− p1p3 − p2p3),

ds2 = 2(λ2x− p1p2 + p2p3).

For λ1 = λ2 = 0 , this is the model of a rational space X that is the total space of a rational fibration of the
form

(S1)2 ×K(Q, 2)3 → X → (S1)3 × S2.

In the rest of the cases, that is λi ̸= 0 for some i = 1, 2 , changing basis and discarding the contractible
part, we obtain the model

(Λ(x1, y1, z1, t1, u2, v2, w2, u3), d),

where subscripts indicates degree, and all generators are cycles except
dt1 = x1y1 . The realization is

S1 ×He ×K(Q, 2)3 × S3,

where He is the Heisenberg manifold whose rational model is precisely

(Λ(x1, y1, z1, t1), d), dt1 = x1y1.
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Adding up,

map(F (R2, 3),S2) ≃Q X ⊔
⊔
N

S1 ×H ×K(Q, 2)3 × S3.

In the based case, all the components have the same model,

(Λ(p1, p2, p3, s1, s2, q1, q2, q3), d),

in which the pi ’s are cycles and

ds1 = ±2(p1p3 + p2p3) , ds2 = ±2(p1p2 − p2p3).

It is not difficult to modify this model to get

(Λ(a1, b1, c1, x1, y1), d)⊗ (Λ(u2, v2, w2), 0),

where dx1 = a1b1 and dy1 = b1c1 , here subscripts indicates degree. Let Y be the realization of the first factor
which has the homotopy type of a nilmanifold [10]. It is clear that the second one realizes as K(Q, 2)3 and
thus,

map∗(F (R2, 3),S2) ≃Q
⊔
N

Y ×K(Q, 2)3.

We now tackle the case n even greater or equal than 4. For it, as before, we fix (Λ(x, y), d) the minimal
model of Sn . We also distinguish different cases.

For m > 2n , and arguing as before, we obtain only one component with the same model as Sn in the
free case and Q in the pointed case. Hence,

map(F (Rm, 3),Sn) ≃Q Sn and map∗(F (Rm, 3),Sn) ≃Q ∗.

For m = 2n the model is of the form (Λ(x, y), d)⊗ (Λz, 0) in the free case and (Λz, 0) in the based case,
with z of degree 0 . There is trivially a countable number of augmentations and the model of the corresponding
component is the model of the Sn in the free case and contractible in the pointed case. Thus,

map(F (Rm, 3),Sn) ≃Q
⊔
N

Sn and map∗(F (Rm, 3),Sn) ≃Q
⊔
N

∗.

For n+2 ≤ m ≤ 2n−1 the model is of the form (Λ(x, y), d)⊗(Λz2n−m, 0) in the free case and (Λz2n−m, 0)

in the pointed one. From here we deduce that

map(F (Rm, 3),Sn) ≃Q K(Q, 2n−m)× Sn,

map∗(F (Rm, 3),Sn) ≃Q K(Q, 2n−m).

This completes the proof of Theorem 1.
We finish with the proof of Theorem 2. Recall the explicit description of H∗(F (Rm, k);Q) given in (1).

Hence, this cohomology is concentrated in degrees 0 , m− 1 , 2(m− 1) , …, (k− 1)(m− 1) . Now, from the work
of Fadell and Neurwith [6], the Poincaré series of F (Rm, k) is

(1 + tm−1)(1 + 2tm−1) · · · (1 + (k − 1)tm−1).
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From this and the fact [8] that

(1 + t)(1 + 2t) · · · (1 + (k − 1)t) =

k∑
j=1

[
k

j

]
tj

we obtain the dimensions of the nontrivial cohomology of F (Rm, k) :

dimHj(m−1)(F (Rm, k);Q) =

[
k

k − j

]
for j = 0, 1, 2, · · · , k − 1 .

The proof finishes with a direct computation using Proposition 1.
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