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Abstract: We study the longest increasing subsequences in random involutions that avoid the patterns of length three
under the uniform probability distribution. We determine the exact and asymptotic formulas for the average length of
the longest increasing subsequences for such permutation classes.
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1. Introduction
A permutation σ = σ1σ2 · · ·σn on the set [n] := {1, 2, · · · , n} is any arrangement of the elements of [n] , which
can also be considered as a bijection on [n] where i → σi . A permutation σ is called an involution if σ = σ−1

where σ−1
i = j if and only if σj = i . We use Sn and Invn to denote the set of all permutations and involutions

of length n , respectively. For τ = τ1τ2 · · · τk ∈ Sk and σ = σ1σ2 · · ·σn ∈ Sn , it is said that τ appears as a
pattern in σ if there exists a subset of indices 1 ≤ i1 < i2 < · · · < ik ≤ n such that σis < σit if and only if
τs < τt for all 1 ≤ s, t ≤ k . If τ does not appear as a pattern in σ , then σ is called a τ -avoiding permutation.
For example, 132 ∈ S3 appears as a pattern in 246513 because it has the subsequences 24−−− 3 , 2− 6−−3 ,
2− 65−− , 2−−5− 3 , or −465−− . On the other hand 4213 ∈ S4 does not appear as a pattern in 246513 .
We denote by Sn(τ) the set of all τ -avoiding permutations of length n . More generally, for a set T of patterns,
we use the notation Sn(T ) =

⋂
τ∈T Sn(τ) . We denote the corresponding pattern-avoiding involution classes by

Invn(τ) and Invn(T ) . A nice introduction to the subject is provided in the fourth and fifth chapters of [4].
Specifically for more on the pattern-avoiding involutions, see [5, 10–12, 15–17, 20].

In this paper, we shall study the longest increasing subsequence problem on Invn(T ) under the uniform
probability distribution for subsets T ⊆ S3 . We use Ln(σ) to denote the length of the longest increasing
subsequence in σ , i.e.

Ln(σ) = max{k ∈ [n] : there exist 1 ≤ i1 < i2 < · · · < ik ≤ n and σi1 < σi2 < · · · < σik}.

Note that, in general, there might be more than one such subsequence. The problem of determining the
asymptotic behavior and limiting distribution of Ln on Sn under the uniform probability distribution has
led to very interesting and important research in the last fifty years, which made some unexpected connections
∗Correspondence: gokhan.yildirim@bilkent.edu.tr
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among different fields of mathematics and physics; see [1–3, 7, 8, 13, 18, 26] and references therein. Probabilistic
study of pattern-avoiding permutation classes has recently become an active area of research; for some recent
works in this direction, see [9, 19, 22–24].

The symmetries reverse and complement defined on Sn as σr
i = σn+1−i , σc

i = n + 1 − σi , respectively,
reduce the number of cases needed to be studied. Note that Invn(τ) = Invn(τ

−1) , and if σ ∈ Invn(τ) , then
σrc ∈ Invn(τ) . Note also that for any σ ∈ Invn , we have Ln(σ) = Ln(σ

rc) .
We will make use of some Dyck path arguments in our proofs. Recall that a Dyck path L of length 2n is

made up of n up steps (U) , (x, y) ↗ (x+ 1, y + 1) , and n down steps (D) , (x, y) ↘ (x+ 1, y − 1) , where the
path starts at (0, 0) , ends at (2n, 0) , and never falls below the x -axis. The left-factor of a Dyck path is made
up of all the steps that precede the last up step.

In some of our arguments, we will also use the well-known Robinson–Schensted correspondence. Recall
that a standard Young tableau is a Ferrers shape with n boxes such that each box contains an entry from
the set [n] where the columns and rows have entries appearing in increasing order. The Robinson–Schensted
correspondence is a mapping that takes a permutation σ ∈ Sn and returns a unique ordered pair (Pσ, Qσ)

of standard Young tableaux of the same shape and of size n [27]. The length of the first row in these two
standard Young tableaux corresponds to the length of the longest increasing subsequence in σ . Moreover, if the
correspondence maps σ to (Pσ, Qσ) , then it maps the inverse permutation σ−1 to the pair (Qσ, Pσ) . Therefore,
any involution σ ∈ Invn is identified with a unique single standard Young tableau Pσ .

We mainly use generating functions to prove our results, which are defined by

FT ;m(x) =
∑
n≥0

∑
σ∈Invn(T )
Ln(σ)=m

xn and FT (x, q) =
∑
m≥0

FT ;m(x)qm (1.1)

where T ⊆ S3 . For simplicity, we write Fτ for {τ} ⊆ S3 and Fτ,τ ′ for {τ, τ ′} ⊆ S3 . The coefficient of xn in a
generating function G(x) is represented by [xn]G .

In the rest of this paper, we use generic P to denote the uniform probability distribution on the sets
Invn(T ) with T ⊆ S3 . That is, for any subset A ⊆ Invn(T ) ,

P(A) =
|A|

| Invn(T )|
.

The cardinality of a set A is denoted by |A| . The expected value E(Ln) of the random variable Ln on Invn(T )

under P can be calculated by

E(Ln) =
1

| Invn(T )|
[xn]

∂

∂q
FT (x, q)

∣∣∣
q=1

(1.2)

where | Invn(T )| = [xn]FT (x, 1) .

It is a well-known fact that the generating function for the Catalan numbers 1
n+1

(
2n
n

)
is given by C(x) =

1−
√
1−4x
2x . Recall also that for any τ ∈ S3 , |Sn(τ)| = 1

n+1

(
2n
n

)
. For involutions, we have | Invn(τ)| =

(
n

⌊n/2⌋
)

for τ ∈ {123, 132, 213, 321} and | Invn(τ)| = 2n−1 for τ ∈ {231, 312} [28].
For two sequences {an}n≥1 and {bn}n≥1 , we write an ∼ bn if limn→∞

an

bn
= 1 .
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2. One-pattern case: E(Ln) on Invn(τ) with τ ∈ S3

2.1. τ = 123

The generating function for the number of involutions in Invn(123) is given by 1
1−x−x2C(x2) [28]. Note that

F123;m(x) = 0 for all m ≥ 3 . Clearly, F123;0(x) = 1 because the only involution σ with Ln(σ) = 0 is the empty
involution. If Ln(σ) = 1 and σ ∈ Invn(123) , then σ = n(n − 1) · · · 1 and hence F123;1(x) =

x
1−x . Therefore,

F123;2(x) =
1

1−x−x2C(x2) − 1− x
1−x = 1

1−x−x2C(x2) −
1

1−x . Since the coefficient of xn in 1
1−x−x2C(x2) is given by(

n
⌊n/2⌋

)
, we have

E(Ln) =
1 + 2

((
n

⌊n/2⌋
)
− 1

)
(

n
⌊n/2⌋

) ∼ 2.

2.2. τ = 132, 213

Recall that the Chebyshev polynomials of the second kind [25] are defined by the following recurrence relation:

Un+1(x) = 2xUn(x)− Un−1(x) with U0(x) = 1 and U1(x) = 2x.

By symmetries under reverse and complement, we have that F132(x, q) = F213(x, q) .
Note that |{σ ∈ Invn(132) : Ln(σ) = k}| = | Invn(132, 12 · · · k+1) \ Invn(132, 12 · · · k)| . The generating

function for the number of involutions in Invn(132, 12 · · · k) is given by Gk(x) =
1

xUk(1/2x)

∑k−1
j=0 Uj(1/2x) [16].

Hence,

F132;m(x) =
1

xUm+1(1/2x)

m∑
j=0

Uj(1/2x)−
1

xUm(1/2x)

m−1∑
j=0

Uj(1/2x).

Moreover, we know that F132;m(x) = Gm+1(x)−Gm(x) is the generating function for the number of left factors
of Dyck paths of length n that have height m [16]; see also Sequence A132890 in [29]. Thus, by Theorem 3 in
[21], and also Sequence A132891 in [29], we get

E(Ln) ∼ ln(2)
√
2πn.

2.3. τ = 231, 312

By symmetries under reverse and complement, we have that F231(x, q) = F312(x, q) . Note that any nonempty
involution σ ∈ Invn(231) can be written as σ = j · · · 1σ′ where σ′ is an involution on {j+1, j+2, . . . , n} that
avoids 231 and j ≥ 1 [11]. Thus,

F231(x, q) = 1 +
xq

1− x
F231(x, q),

where 1 counts the empty involution, xq
1−x counts the nonempty decreasing sequence j(j−1) · · · 1 , and F231(x, q)

counts the involutions σ′ . Note that the coefficient of xn in ∂
∂qF231(x, q) |q=1 is given by (n + 1)2n−2 for all

n ≥ 1 . Thus,

E(Ln) =
n+ 1

2
.

2185



MANSOUR and YILDIRIM/Turk J Math

2.4. τ = 321

By the Robinson–Schensted correspondence, we see that each involution σ in Invn(321) with Ln(σ) = m has
at most two rows and exactly m columns (in its corresponding Young tableau). By distinguishing between the
cases where σ has one row or two rows, we obtain

F321(x, q) = 1 +
∑
n≥1

xnqn +
∑
n≥2

n−1∑
m=⌈n/2⌉

2m+ 1− n

m+ 1

(
n

m

)
qmxn.

Note that 1 counts the empty involution;
∑

n≥1 x
nqn counts the involutions with one row, which are 12 · · ·n ∈

Invn(321) ; and the last term counts the involutions with two rows. Note also that the number of involutions
σ with two rows and m columns, i.e. Ln(σ) = m , is given by 2m+1−n

m+1

(
n
m

)
; see [15]. Recall that any standard

Young tableau Y with at most two rows and n boxes can be represented as a left factor of a Dyck path L as
follows: whenever we read an entry j from the first (second) row of Y , we create an up (down) step in L , for all
j = 1, 2, . . . , n . For instance, the involution 2143 ∈ Inv4(321) can be represented as a standard Young tableau

Y =
13
24

and as a left factor UDUD of a Dyck path. Hence, by Sequence A014314 in [29], we get that the total

number of all up steps in all the left factors of Dyck paths of length n , which is equal to
∑

σ∈Invn(321)
Ln(σ) ,

is given by the following formulas:

if n = 2k, then it equals 22k−1 + (2k − 1)

(
2k − 1

k

)
, and if n = 2k + 1, then it equals 22k + 2k

(
2k + 1

k

)
.

Hence, by [28], we have

E(L2k) =
22k−1 + (2k − 1)

(
2k−1

k

)(
2k
k

) ∼ k and E(L2k+1) =
22k + 2k

(
2k+1

k

)(
2k+1

k

) ∼ 2k + 1

2
,

which leads to

E(Ln) ∼
n

2
.

3. Two-pattern case: E(Ln) on Invn(τ, τ
′) with {τ, τ ′} ⊆ S3

In this section, we determine E(Ln) on Invn(τ, τ
′) for any {τ, τ ′} ⊆ S3 . There are 15 possible cases but thanks

to the symmetries, Invn(τ, τ
′) = Invn(τ

−1, (τ ′)−1) or Ln(σ) = Ln(σ
rc) , we only need to consider some specific

cases. See the Table. Note that Invn(123, 321) = ∅ for n ≥ 5 . Hence, we omit this case.
We will first deal with the case T = {132, 213} , which requires more work than the other cases considered

in Theorem 3.3. Recall that a composition of a nonnegative integer n is any sequence c = c1c2 · · · cm of positive
integers such that c1 + · · ·+ cm = n . In this context c1, · · · , cm are called parts of c . A composition is called
palindromic if it reads the same from left to right as from right to left. For example, the compositions of 4 are
4, 31, 22, 211, 13, 121, 112, 1111 and the palindromic compositions of 4 are 4, 22, 121, 1111 . We use Pn to denote
the set of all palindromic compositions of n . The following lemma gives a bijection between Invn(132, 213)

and Pn .
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Table. Summary of the two pattern-avoiding cases. For each case, we have some corresponding pairs under symmetries
Invn(τ, τ

′) = Invn(τ
−1, (τ ′)−1) or Ln(σ) = Ln(σ

rc) .

Case τ, τ ′ Symmetric pair E(Ln) Case τ, τ ′ Symmetric pair E(Ln)

A 123, 132 123, 213 ∼ 2 D
132, 231

213, 312
132, 312 = n+1

2

B 123, 231 123, 312 = 2− 1
n E 132, 321 213, 321 ∼ 3n

4

C 231, 321 312, 321 ∼ 1+
√
5

2
√
5
n F 231, 312 —– = n+1

2

Theorem 3.2 132, 213 213, 231 ∼ log2 n

Lemma 3.1 There exists a bijection f : Invn(132, 213) → Pn such that the length of the longest increasing
subsequence in σ equals the maximal part of f(σ) for all σ ∈ Invn(132, 213) .

Proof Note that any involution σ ∈ Invn(132, 213) can be written either as 12 · · ·n or as σ = (n+1− j)(n+

2− j) · · ·nσ′12 · · · j with 1 ≤ j ≤ n/2 such that σ′ is an involution of {j+1, j+2, . . . , n− j} that avoids both
132 and 213 . Define Ia,b = a(a+1) · · · b for all a ≤ b . Thus, by induction, there exists j1, j2, · · · jm of positive
integers such that

σ = In+1−j1,nIn+1−j1−j2,n−j1 · · · In+1−j1−···−jm,n−j1−···−jm−1
Ij1+j2+···+jm+1,n−j1−···−jm

Ij1+j2+···+jm−1+1,j1+···+jm · · · Ij1+1,j1+j2I1,j1 .

If we define f(σ) = j1j2 · · · jm(n − 2j1 − · · · − 2jm)jm · · · j2j1 , then f(σ) is a palindromic composition of
n . Clearly, f is a bijection between Invn(132, 213) and Pn . Moreover, the length of the longest increasing
subsequence in σ is m if and only if the maximal part of the palindromic composition f(σ) is m . 2

We define the random variable Xn on Pn as the maximal part in a uniformly random palindromic
composition of n . By Lemma 3.1, we have Ln(σ) = Xn(f(σ)) for all σ ∈ Invn(132, 213) and hence E(Ln) =

E(Xn) for all n .

Theorem 3.2 Consider E(Ln) on Invn(132, 213) under the uniform probability distribution. Then we have
E(Ln) ∼ log2 n .

Proof We will show that E(Xn) ∼ log2 n . Define P e
n (P o

n ) to be the set of all palindromic compositions of
n with even (odd) number of parts, respectively. Let pe(n) = |P e

n| , po(n) = |P o
n | , and p(n) = pe(n) + po(n) .

Clearly, p(n) = 2⌊n/2⌋ . We define Xe
n (Xo

n ) to be a random variable on P e
n (P o

n ) as the maximal part in a
uniformly random palindromic composition of n with even (odd) number of parts, respectively. Thus,

E(Xn) =
pe(n)

p(n)
E(Xe

n) +
po(n)

p(n)
E(Xo

n).

By Remark 3 and Theorem 4 in [6], we have pe(2n) = po(2n) = 2n−1 , pe(2n + 1) = 0 , and po(2n + 1) = 2n .
Hence,

E(X2n) =
1

2
E(Xe

2n) +
1

2
E(Xo

2n), (3.1)

E(X2n+1) = E(Xo
2n+1). (3.2)
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Step 1: We will show that E(Xe
2n) ∼ log2 n . For any palindromic composition σ = σ1 · · ·σ2m ∈ P e

2n ,
we define fe(σ) = 0σ1−110σ2−11 · · · 0σm−1 , where as denotes the word aa · · · a with s occurrences of the letter
a . Clearly, fe is a bijection between P e

2n and the set of binary words of length n− 1 . Moreover, the maximal
part of σ is m if and only if the length of the maximal run, maximal s such that 0s is a subword, in fe(σ) is
m− 1 . Thus, by Proposition V.1 in [14], we have

E(Xe
2n) ∼ log2 n.

Step 2: We will show that E(Xo
2n) ∼ log2 n . Let σ = σ1 · · ·σ2m+1 ∈ P o

2n , so σi = σ2m+2−i for all i =

1, 2, . . . ,m , which implies that σm+1 is an even number. We define fo(σ) = 0σ1−110σ2−11 · · · 0σm−110σm+1/2−1 .
Clearly, fo is a bijection between P o

2n and the set of binary words of length n− 1 . Moreover, the maximal size
of part in σ is at most the length of the maximal run in fo(σ) + σm+1/2 . Hence, by Proposition V.1 in [14],
we have

E(Xo
2n) ≤ log2 n+

∑
σ1···σ2m+1∈P o

2n
σm+1

po(2n)
.

Note that the generating function for the number of σ ∈ P o
2n according to the size of the middle part in

σ is given by

A(x, q) =
∑
m≥0

x2m

(1− x2)m

∑
s≥1

x2sq2s =
(1− x2)x2q2

(1− 2x2)(1− x2q2)

= q2x2 + (q4 + q2)x4 + (q6 + q4 + 2q2)x6 + (q8 + q6 + 2q4 + 4q2)x8 + · · · ,

which leads to ∑
σ1···σ2m+1∈P o

2n
σm+1

po(2n)
=

[x2n] ∂
∂qA(x, q) |q=1

[x2n]A(x, 1)
∼ 4.

Hence,
E(Xo

2n) ≤ log2 n+ 4 ∼ log2 n.

By the mapping σ1 · · ·σ2m ∈ P e
2n to σ1 · · ·σm−1(2σm)σm+1 · · ·σ2m ∈ P o

2n (see Remark 3 and Theorem
4 in [6]), we see that E(Xe

2n) ≤ E(Xo
2n) . Hence,

E(Xe
2n) ≤ E(Xo

2n) ≤ log2 n+ 4 ∼ log2 n,

which proves that E(Xo
2n) ∼ log2 n .

By E(Xo
2n) ∼ log2 n , E(Xe

2n) ∼ log2 n , and (3.1), we obtain E(X2n) ∼ log2 n .
Step 3: We will show that E(Xo

2n+1) ∼ log2 n . By using the above arguments, we also have

E(Xe
2n) ≤ E(Xo

2n+1) ≤ log2 n+

∑
σ1···σ2m+1∈P o

2n+1
σm+1

po(2n+ 1)
.

Note that the generating function for the number of σ ∈ P o
2n+1 according to the size of the middle part

in σ is given by

B(x, q) =
∑
m≥0

x2m

(1− x2)m

∑
s≥1

x2s−1q2s−1 =
(1− x2)xq

(1− 2x2)(1− x2q2)

= qx+ (q3 + q)x3 + (q5 + q3 + 2q)x5 + (q7 + q5 + 2q3 + 4q)x7 + · · · ,
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which leads to ∑
σ1···σ2m+1∈P o

2n+1
σm+1

po(2n+ 1)
=

[x2n+1] ∂
∂qB(x, q) |q=1

[x2n+1]B(x, 1)
∼ 3.

Thus,
E(Xo

2n+1) ≤ log2 n+ 3 ∼ log2 n.

Hence, by Step 1, we have
E(Xe

2n) ≤ E(Xo
2n+1) ≤ log2 n+ 3 ∼ log2 n,

which proves that E(Xo
2n+1) ∼ log2 n . Thus, by (3.2), we have E(X2n+1) ∼ log2 n , which completes the proof.

2

The following theorem covers the remaining cases.

Theorem 3.3 Consider E(Ln) on Invn(T ) under the uniform probability distribution. Then we have:

A- If T = {123, 132} , then E(Ln) ∼ 2 .

B- If T = {123, 231} , then E(Ln) = 2− 1
n .

C- If T = {231, 321} , then E(Ln) ∼ 1+
√
5

2
√
5
n .

D- If T = {132, 231} , then E(Ln) =
n+1
2 .

E- If T = {132, 321} , then E(Ln) ∼ 3n
4 .

F- If T = {231, 312} , then E(Ln) =
n+1
2 .

Proof

• Case A. By [16], we see that the generating function for the number of involutions in Invn(123, 132) is
given by G3(x) =

1+x
1−2x2 . Note that FT ;m(x) = 0 for all m ≥ 3 , FT ;0(x) = 1 , which counts only the empty

involution, and FT ;1(x) =
x

1−x , which counts the involutions n · · · 21 . Thus, FT ;2(x) = G3(x)− x
1−x − 1 .

Hence,

F123,132(x, q) = 1 +
xq

1− x
+ q2

(
1 + x

1− 2x2
− 1

1− x

)
.

Therefore, by taking the derivative at q = 1 and then finding the coefficient of xn ,

E(Ln) =
(2−

√
2)(−

√
2)n−2 + (2 +

√
2)
√
2
n−2 − 1

(2−
√
2)(−

√
2)n−4 + (2 +

√
2)
√
2
n−4 ∼ 2.

• Case B. By Section 2.3, we see that any involution σ in Invn(123, 231) can be written as σ =

j · · · 1n · · · (j + 1) with 1 ≤ j ≤ n . We also know that the generating function for the number of in-

volutions in Invn(123, 231) is given by 1−x+x2

(1−x)2 [16]. Note that FT ;m(x) = 0 for all m ≥ 3 , FT ;0(x) = 1 ,

FT ;1(x) =
x

1−x , and hence FT ;2(x) =
x2

(1−x)2 . Therefore,

F123,231(x, q) = 1 +
xq

1− x
+

q2x2

(1− x)2
.
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By taking the derivative at q = 1 and then finding the coefficient of xn , we get E(Ln) = 2− 1/n .

• Case C. By Subsection 2.3, we see that any involution σ in Invn(231, 321) can be written as either
σ = 1σ′ or 21σ′′ where σ′, σ′′ are 231- and 321-avoiding involutions. Thus,

F231,321(x, q) = 1 + xqF231,321(x, q) + x2qF231,321(x, q),

where 1 counts the empty involution, xqF231,321(x, q) counts the involutions of type 1σ′ , and x2qF231,321(x, q)

counts the involutions of type 21σ′′ . Therefore, we obtain

F231,321(x, q) =
1

1− xq − x2q
.

By taking the derivative at q = 1 and then finding the coefficient of xn , we get

E(Ln) =

3
5
√
5

(
1−

√
5

2

)n+1

− 3
5
√
5

(
1+

√
5

2

)n+1

+ n+1
5

(
1+

√
5

2

)n+2

+ n+1
5

(
1−

√
5

2

)n+2

1√
5

(
1+

√
5

2

)n+1

− 1√
5

(
1−

√
5

2

)n+1 ,

which gives E(Ln) ∼ 1+
√
5

2
√
5
n .

• Case D. Any involution σ in Invn(132, 231) can be written as σ = j(j − 1) · · · 1(j + 1)(j + 2) · · ·n for
some 1 ≤ j ≤ n . Thus,

F132,231(x, q) = 1 +
xq

1− x

(
1 +

xq

1− xq

)
,

where 1 counts the empty involution, xq/(1 − x) counts the involutions of type j = n , and x2q2/((1 −

x)(1− xq)) counts the involutions of type 1 ≤ j ≤ n− 1 . Hence, E(Ln) =
(n+1

2 )
n = n+1

2 .

• Case E. Any involution σ in Invn(132, 321) can be written as σ = (j + 1)(j + 2) · · · (2j)12 · · · j(2j +

1)(2j + 2) · · ·n for 0 ≤ j ≤ n/2 . Thus,

F132,321(x, q) = 1 +
xq

1− xq
+

x2q

(1− xq)(1− x2q)
,

where 1 counts the empty involution, xq/(1 − xq) counts the involutions of type j = 0 , and x2q/((1 −
xq)(1− x2q)) counts the involutions of type 1 ≤ j ≤ n/2 . Hence,

E(Ln) =
1
16 (6n

2 + 10n+ 1) + 1
16 (2n− 1)(−1)n

1
4 (2n+ 3 + (−1)n)

∼ 3n

4
.

• Case F. By Section 2.3, we have that Invn(231, 312) = Invn(231) . Hence, E(Ln) =
n+1
2 .

2

The cases T ⊆ S3 with |T | ≥ 3 can readily follow from similar methods we use in this paper.
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