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Abstract: In this short note we give an exact count for the number of self-dual codes over a finite field Fq of odd
characteristic containing a given self-orthogonal code. This generalizes an analogous result of MacWilliams, Sloane, and
Thompson over the field F2 to arbitrary odd finite fields Fq .
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1. Introduction
Let Fq denote the finite field with q elements. A linear code C of length n over Fq is a subspace of Fn

q . On
Fn
q we have the standard symmetric bilinear form ⟨·, ·⟩ given by

⟨x, y⟩ =
n∑

i=1

xiyi,

for x = (x1, . . . , xn), y = (y1, . . . yn) ∈ Fn
q . For a code C we define its dual C⊥ by

C⊥ := {x ∈ Fn
q |⟨x, y⟩ = 0,∀y ∈ C}.

We call a code C self-orthogonal if C ⊆ C⊥ and self-dual if C = C⊥ . The number of self-orthogonal codes
of length n and dimension k is known; see Segre [7] for q odd and Pless [4] for q even. Moreover, over the
field F2 , MacWilliams et al. gave a count for the number of self-dual codes containing a given self-orthogonal
code. Over a general finite field Fq , Pless and Pierce [5] counted the number of self-dual codes containing a
given self-orthogonal vector. In this paper we generalize these results by giving an exact count for the number
of self-dual codes containing a given self-orthogonal code for an arbitrary finite field Fq , with q odd. In the
case that self-dual codes of given length do not exist over Fq , we count the number of maximal self-orthogonal
codes containing a given self-orthogonal code. We obtain the following result:

Theorem 1 Let Fq be a finite field of odd characteristic. Let C ⊆ Fn
q be a self-orthogonal code of dimension

k and length n .
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• If n is odd then there are no self-dual codes in Fn
q . The code C can be embedded in

(n−1)/2−k∏
i=1

(qi + 1)

maximal self-orthogonal codes of Fn
q (each of dimension (n− 1)/2).

• If n is even

– if 4|n or q ≡ 1 mod 4, then C is contained in

2 ·
(n−2)/2−k∏

i=1

(qi + 1)

self-dual codes of Fn
q (each of dimension n/2),

– otherwise there are no self-dual codes in Fn
q . The code C is contained in

n/2−k∏
i=2

(qi + 1)

maximal self-orthogonal codes of Fn
q (each of dimension n/2− 1).

For k = 1, we recover the result of Pless and Pierce [5] giving the number of self-dual codes containing a given
self-orthogonal codeword.

Note that Bassa and Stichtenoth [2] showed using Witt’s theorem that if self-dual codes over Fq of length
n exist, then every self-orthogonal code can be extended to a self-dual code. Here we give an exact count for the
number of ways this can be done. We do this using elementary calculations and the classification of different
types of geometries over a finite field.

2. Bilinear forms over finite fields
We recall some basic facts about bilinear forms. For details, see [1, 6]. Let k be a field of characteristic different
from 2 . Let V be a finite dimensional vector space over k and

⟨·, ·⟩ : V × V → k

be a symmetric bilinear form on V . The pair (V, ⟨·, ·⟩) will be called a symmetric bilinear space. By choosing
a basis B = {e1, e2, . . . , en} for the vector space V , we can associate the matrix

AB =
(
⟨ei, ej⟩

)
1≤i,j≤n

to the bilinear form ⟨·, ·⟩ . Let B′ = {e′1, e′2, . . . , e′n} be another basis for V . Then we have

AB′ = PTABP, (1)
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where P is the change of basis matrix from B′ to B and PT denotes the transpose of P . Hence, the matrix
of ⟨·, ·⟩ is well defined up to congruence. We define the discriminant of a (V, ⟨·, ·⟩) as the determinant of the
matrix associated to ⟨·, ·⟩ . From (1), we see that the discriminant of (V, ⟨·, ·⟩) is uniquely determined up to
multiplication by squares in k× .

Let (V, ⟨·, ·⟩V ) and (V ′, ⟨·, ·⟩V ′) be two symmetric bilinear spaces. A linear transformation σ : V → V ′

is called an isometry of symmetric bilinear spaces if for all u, v ∈ V we have

⟨σ(u), σ(v)⟩V ′ = ⟨u, v⟩V .

Two symmetric bilinear spaces (V, ⟨·, ·⟩V ) and (V ′, ⟨·, ·⟩V ′) will be called isomorphic if there exists a bijective
isometry σ : V → V ′ .

Let (V, ⟨·, ·⟩) be a symmetric bilinear space. Two vectors u, v ∈ V are said to be orthogonal if ⟨u, v⟩ = 0 .
For a subspace W of V , the orthogonal space W⊥ is defined by

W⊥ := {v ∈ V |⟨v, w⟩ = 0,∀w ∈ W}.

(V, ⟨·, ·⟩) will be called nondegenerate (regular), if V ⊥ = {0} . For subspaces U , W of V we have

U ⊆ W =⇒ W⊥ ⊆ U⊥. (2)

If (V, ⟨·, ·⟩) is nondegenerate, it can be shown that for a subspace W

dimV = dimW + dimW⊥. (3)

The subspace W of V is called totally isotropic if ⟨w1, w2⟩ = 0 for all w1, w2 ∈ W , or equivalently, if W ⊆ W⊥ .
If V is nondegenerate we see by Eq. (3) that for a totally isotropic subspace W we have dimW ≤ dimV/2 .

Next we consider the dimension of the maximal isotropic subspace of a symmetric bilinear space V .
Let (V, ⟨·, ·⟩) be a nondegenerate symmetric bilinear space and U,W be totally isotropic subspaces of V

with dimU ≤ dimW . Then by Witt’s theorem there exists a totally isotropic subspace U ′ containing U

with dimU ′ = dimW . In particular, all maximal totally isotropic subspaces of (V, ⟨·, ·⟩) have the same
dimension. Hence, the dimension of the maximal isotropic subspace is well defined. This dimension is given by
the classification in Theorem 2 below. By (2), all isotropic subspaces containing U must be in U⊥ . Therefore,
any maximal isotropic subspace containing U lies in U⊥.

We will implicitly use the following basic result about finite fields:
Let Fq be a finite field with q elements of characteristic different from 2 .

1. |F×
q /F×

q
2| = 2 .

2. If q ≡ 1 (mod 4) , then −1 is a square in Fq . If q ≡ 3 (mod 4) , then −1 is not a square in Fq .

The classification of symmetric bilinear spaces over Fq up to isometry (geometries over Fq ) is well known.
See [1, 6]. It can be summarized as follows

Theorem 2 Let Fq be a finite field with q elements. For any dimension n , there are two nondegenerate
symmetric bilinear spaces of dimension n over Fq , up to isometry. These are determined by the discriminant
(modulo squares) of the bilinear form.
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• If n is odd, there are two distinct geometries, called TYPE I and TYPE II, characterized by whether the
discriminant of the bilinear form is square or nonsquare. However, these geometries are similar; in both
cases the dimensions of the maximal isotropic subspaces are (n− 1)/2 .

• If n is even, there are two distinct geometries. A TYPE III geometry has discriminant equal to (−1)n/2

(modulo squares in Fq ) and the dimensions of its maximal isotropic subspaces are n/2 . Otherwise, we
have a TYPE IV geometry, and the maximal isotropic subspaces have dimension n/2− 1 .

On Fn
q we have the standard bilinear form ⟨·, ·⟩ given by

⟨x, y⟩ =
n∑

i=1

xiyi,

for x = (x1, . . . , xn), y = (y1, . . . yn) ∈ Fn
q . It is nondegenerate, its matrix is the n× n identity matrix In , and

its discriminant is 1 . A code is a subspace of Fn
q , and it is said to be self-orthogonal if it is a totally isotropic

subspace of (Fn
q , ⟨·, ·⟩) . A self dual code of length n over Fq exists if (Fn

q , ⟨·, ·⟩) is a geometry of TYPE III.

By Theorem 2, this is equivalent to 1 = (−1)n/2 modulo squares in Fq , and hence a self-dual code over Fq of
length n does exist if and only if (−1)n/2 is a square in Fq , i.e. if 4|n or q ≡ 1 mod 4 .

3. Embedding self-orthogonal codes into self-dual codes

Consider Fn
q with the standard bilinear form ⟨·, ·⟩ on Fq . Let C be a self-orthogonal code over Fq of dimension

k of length n . Let C⊥ be the dual code, which will have dimension n− k . Since C is self-orthogonal, we have
C ⊆ C⊥ . Consider the quotient space C⊥/C . It is again an Fq vector space of dimension n − 2k . We have
the canonical projection map π : C⊥ → C⊥/C . The bilinear form ⟨·, ·⟩ on Fq induces a bilinear form on the
quotient space C⊥/C

[·, ·] : C⊥/C × C⊥/C → Fq, [x+ C, y + C] = ⟨x, y⟩,

where x, y ∈ C⊥. It is immediate to see that [·, ·] is a well-defined bilinear form on C⊥/C . Moreover, [·, ·] is
nondegenerate.

Proposition 3 Consider the canonical projection map π : C⊥ → C⊥/C . Using π we can associate to each
subspace J of C⊥/C the subspace π−1(J) of C⊥ .

(i) This gives a bijective correspondence between subspaces of C⊥/C and subspaces of C⊥ containing C .

(ii) If J is a subspace of C⊥/C of dimension r , then π−1(J) is a subspace of C⊥ of dimension k + r .

(iii) If J is a totally isotropic subspace of C⊥/C , then π−1(J) is a totally isotropic subspace of C⊥ (hence
also of Fn

q ) containing C .

(iv) If M is a maximal isotropic subspace of C⊥/C , then π−1(M) is a maximal isotropic subspace of C⊥

containing C . Hence, π−1(M) is also a maximal isotropic subspace of Fn
q .
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(v) The number of maximal isotropic subspaces of C⊥/C is equal to the number of maximal isotropic subspaces
of Fn

q containing C .

Proof (i) and (ii) follow from the isomorphism theorem. (iii) Let α, β ∈ π−1(J). Then ⟨α, β⟩ = [α+C, β+C] =

[π(α), π(β)] = 0, since J is a totally isotropic subspace of C⊥/C . Therefore, π−1(J) is a totally isotropic
subspace of C⊥ (and hence also of Fn

q ) containing C . (iv) π−1(M) is an isotropic subspace of Fn
q , which

is maximal among the isotropic subspaces of C⊥ containing C . If U is a maximal isotropic subspace of Fn
q

containing C , then by (2), U ⊆ C⊥ and hence by the maximality of π−1(M) we have U = π−1(M) . Hence,
π−1(M) is a maximal isotropic subspace of C⊥ and Fn

q containing C . (v) follows directly from (iv). 2

Let {e1, ..., ek} be a basis of C and extend it to a basis {e1, ..., en−k} of C⊥ . A basis of C⊥/C is given
by {ek+1 + C, ..., en−k + C} . Denote by

G =
(
[ei + C, ej + C]

)
k+1≤i,j≤n−k

=
(
⟨ei, ej⟩

)
k+1≤i,j≤n−k

the matrix associated to the bilinear form [·, ·] on C⊥/C with respect to this basis. Our aim is to determine
the type of the geometry (C⊥/C, [·, ·]) . The dimension of C⊥/C is n− 2k , and we only need to determine the
discriminant of [·, ·] .

Extending {e1, ..., en−k} to a basis {e1, . . . , en} of Fn
q ({e1, . . . , ek} is a basis for C , and {e1, . . . , en−k}

is a basis for C⊥ ). The matrix corresponding to the bilinear form ⟨·, ·⟩ on Fn
q with respect to this basis is given

by

M =

 0k×k 0k×(n−2k) Dk×k

0(n−2k)×k G(n−2k)×(n−2k) E(n−2k)×k

DT
k×k ET

k×(n−2k) Zk×k

 .

Here G = G(n−2k)×(n−2k) is the matrix corresponding to the bilinear form [·, ·] on C⊥/C , and our aim is to
determine the determinant of G .

M is not necessarily the identity matrix since we have not chosen the standard basis for Fn
q , but a basis

coming from a basis for C and C⊥ . The matrix M is, however, congruent to the identity matrix and its
determinant is a square in Fq , say α . To determine the determinant of G we use column operations to turn M

into block diagonal form. More precisely, for 1 ≤ i ≤ k we interchange column i and column n− k + i . These
k column operations will multiply the determinant by (−1)k and result in the matrix M ′ with determinant
(−1)k · α .

M column operations
−−−−−−−−−−−−−→

 Dk×k 0k×(n−2k) 0k×k

E(n−2k)×k G(n−2k)×(n−2k) 0(n−2k)×k

Zk×k ET
k×(n−2k) DT

k×k

 = M ′

Determinants of block diagonal matrices are easily calculated:

detM ′ = detG · (detD)2 = (−1)k · detM = (−1)k · α,

with α ∈ F×
q
2 . We obtain the following:
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Proposition 4 (C⊥/C, [·, ·]) is a symmetric bilinear space of dimension n − 2k and discriminant (−1)k ∈

F×
q /F×

q
2 .

The number of maximal isotropic subspaces for geometries of each type was given by Segre [7]:

Proposition 5 (Segre) Let (V, ⟨·, ·⟩) be a symmetric bilinear form over Fq of dimension r , and the discrim-
inant d , where q is odd.

• If r is odd, then (V, ⟨·, ·⟩) is of TYPE I or TYPE II, and the maximal isotropic subspace of V has
dimension ν = (r − 1)/2 . The total number of maximal isotropic subspaces is given by

σr,ν =

ν∏
i=1

(qi + 1).

• If r is even and d = (−1)r/2 modulo squares in F×
q , then (V, ⟨·, ·⟩) is of TYPE III, and the maximal

isotropic subspace of V has dimension ν = r/2 . The total number of maximal isotropic subspaces is given
by

σr,ν = 2 ·
ν−1∏
i=1

(qi + 1).

• If r is even and d ̸= (−1)r/2 modulo squares in F×
q , then (V, ⟨·, ·⟩) is of TYPE IV, and a maximal

isotropic subspace of V has dimension ν = n/2− 1 . The total number of maximal isotropic subspaces is
given by

σr,ν =

ν+1∏
i=2

(qi + 1).

Combining Propositions 3, 4, and 5, we obtain Theorem 1.
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