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Ḃaku, Azerbaijan

Received: 13.12.2019 • Accepted/Published Online: 21.02.2020 • Final Version: 17.03.2020

Abstract: The work is devoted to study the existence and uniqueness of the classical solution of the inverse boundary
value problem of determining the lowest coefficient in one fourth order equation. The original problem is reduced to
an equivalent problem. The existence and uniqueness of the integral equation are proved by means of the contraction
mappings principle, and we obtained that this solution is unique for a boundary value problem. Further, using these
facts, we prove the existence and uniqueness of the classical solution for this problem.
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1. Introduction
Modern problems of natural science lead to study qualitatively new problems, a vivid example of which is the
class of nonlocal problems for partial differential equations. The study of such problems is caused by both
theoretical interest and practical necessity. There are many cases where the needs of practice lead to the
problem of determining the coefficients or the right side of a differential equation from some known data from
its solution. Such problems are called inverse problems of mathematical physics. If the the solution and the
right-hand side of equations are unknown, then the inverse problem will be linear; if the solution and at least
one of the coefficients are unknown, then the inverse problem will be nonlinear.

Among non-local problems, of great interest are problems with integral conditions. Such integral con-
ditions appear in the mathematical modeling of phenomena associated with a physical plasma [18], the spread
of heat [2, 6], and the process of moisture transfer in capillary-simple media [7], issues of demography and
mathematical biology, as well as in the study of some inverse problems of mathematical physics. Questions of
solvability of problems with non-local integral conditions for partial differential equations are studied in the
papers [4, 8, 11]. Inverse problems with an integral redefinition condition for partial differential equations were
studied in [5, 9, 13–17]. The purpose of this work is to prove the uniqueness and existence of solutions of the
inverse boundary value problem for a single fourth-order equation with integral condition.

2. Problem statement and its reduction to an equivalent task

Consider for equation [3]
utt(x, t)− uxxxx(x, t) = a(t)u(x, t) + f(x, t), (2.1)
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in the domain DT = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T} an inverse boundary problem with boundary conditions

u(x, 0) = φ(x), ut(x, T ) = ψ(x)(0 ≤ x ≤ 1), (2.2)

with periodic conditions

u(0, t) = u(1, t), ux(0, t) = ux(1, t), uxx(0, t) = uxx(1, t)(0 ≤ t ≤ T ), (2.3)

with nonlocal integral condition
1∫

0

u(x, t)dx = 0(0 ≤ t ≤ T ), (2.4)

and with an additional condition
u(x0, t) = h(t)(0 ≤ t ≤ T ), (2.5)

where x0 ∈ (0, 1) –-fixed number, f(x, t) , φ(x) ,ψ(x) ,h(t) -–given functions, u(x, t) and a(t)–- desired
functions. Denote

C2,4(DT ) =
{
u(x, t) : u(x, t) ∈ C2(DT ), uxxx(x, t), uxxxx(x, t) ∈ C(DT )

}
.

Definition 2.1 The classical solution of the inverse boundary value problem(2.1)-(2.5) is the pair {u(x, t), a(t)}
of functions u(x, t) ∈ C2,4(DT ) and a(t) ∈ C[0, T ] satisfying equation (2.1) in DT , condition (2.2) in [0, 1]

and conditions (2.3)-(2.5) in [0, T ] .

For investigating problem (2.1)-(2.5), firstly we consider the following problem:

y′′(t) = a(t)y(t)(0 ≤ t ≤ T ), (2.6)

y(0) = 0, y′(T ) = 0, (2.7)

where a(t) ∈ C[0, T ] -given function, � y = y(t) -unknown function, and if y(t) is the solution of problem
(2.6),(2.7)then y(t) is continuous on [0, T ] together with all derivatives contained in equation (2.6) and satisfying
conditions (2.6),(2.7) in the ordinary sense. The following lemma is proved:

Lemma 2.2 [12] Let function a(t) ∈ C[0, T ] such that

∥a(t)∥C[0,T ] ≤ R = const,

and
1

2
T 2R < 1,

where R is a constant. Then problem (2.6),(2.7) has only a trivial solution.

Along with the inverse boundary problem (2.1) - (2.5), we consider the following auxiliary inverse
boundary value problem. It is required to define a pair {u(x, t), a(t)} of functions u(x, t) in C2,4(DT ) and a(t)

in C[0, T ] from (2.1)-(2.3) and
uxxx(0, t) = uxxx(1, t)(0 ≤ t ≤ T ), (2.8)
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h′′(t)− uxxxx(x0, t) = a(t)h(t) + f(x0, t)(0 ≤ t ≤ T ). (2.9)

The following theorem is valid:

Theorem 2.3 Let φ(x), ψ(x) ∈ C[0, 1], h(t) ∈ C2[0, T ], h(t) ̸= 0 , (0 ≤ t ≤ T ) , f(x, t) ∈ C(DT ),
1

∫
0
f(x, t)dx =

0(0 ≤ x ≤ 1) and the consistency conditions

1∫
0

φ(x)dx = 0,

1∫
0

ψ(x)dx = 0,

φ(x0) = h(0), ψ(x0) = h′(T )

be satisfied. Then the following statements are valid:

1. Each classical solution {u(x, t), a(t)} of the problem (2.1)-(2.5) is also a solution of problem (2.1) - (2.3),
(2.8), (2.9);

2. Each solution {u(x, t), a(t)} of (2.1) - (2.3), (2.8), (2.9) is a classical solution of the problem (2.1) -
(2.5), if

1

2
T 2 ∥a(t)∥C[0,T ] < 1.

Proof Let {u(x, t), a(t)} be a solution of problem (2.1)-(2.5). Integrating the equation (2.1) over x from 0

to 1 , we have:

d2

dt2

1∫
0

u(x, t)dx− (uxxx(1, t)− uxxx(0, t)) =

= a(t)

1∫
0

u(x, t)dx+

1∫
0

f(x, t)dx(0 ≤ t ≤ T ). (2.10)

Assuming that
1∫
0

f(x, t)dx = 0(0 ≤ t ≤ T ) , with considering (2.4), we easily come to fulfillment (2.8). Further,

considering h(t) ∈ C2[0, T ] and differentiating twice (2.5), we obtain:

utt(x0, t) = h′′(t)(0 ≤ t ≤ T ). (2.11)

From (2.1) we get:
utt(x0, t)− uxxxx(x0, t) = a(t)u(x0, t) + f(x0, t)(0 ≤ t ≤ T ). (2.12)

Hence, taking into account (2.5) and (2.11), we come to fulfillment (2.9). Now, suppose that {u(x, t), a(t)} is
a solution of problem (2.1)-(2.3), (2.8), (2.9). Then from (2.8) and (2.10) we get:

d2

dt2

1∫
0

u(x, t)dx− a(t)

1∫
0

u(x, t)dx = 0 (0 ≤ t ≤ T ). (2.13)
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From (2.2) and
1∫
0

φ(x)dx = 0 ,
1∫
0

ψ(x)dx = 0 , we have:

1∫
0

u(x, 0)dx =

1∫
0

φ(x)dx = 0,

1∫
0

ut(x, T )dx =

1∫
0

ψ(x)dx = 0. (2.14)

Since, by Lemma 2.1, the problem (2.13), (2.14) has only a trivial solution,
1∫
0

u(x, t)dx = 0 , i.e. fulfilled

conditions (2.4).
Now, from (2.9) and (2.14), we obtained:

d2

dt2
(u(x0, t)− h(t)) = a(t)(u(x0, t)− h(t))(0 ≤ t ≤ T ). (2.15)

Further, due to (2.2) and φ(x0) = h(0) ,ψ(x0) = h′(T ) , we have:

{
u(x0, 0)− h(0) = φ(x0)− h(0) = 0,
ut(x0, T )− h′(T ) = ψ(x0)− h′(T ) = 0.

(2.16)

From (2.15) and (2.16), due to Lemma 2.1,we conclude that the condition (2.5) is satisfied. The theorem is
proved. 2

3. Investigation of the existence and uniqueness of a classical solution of an inverse boundary
value problem

Suppose that the data of the problem (2.1)-(2.3),(2.8),(2.9) satisfy the following conditions:

1. φ(x) ∈ C4[0, 1], φ(5)(x) ∈ L2(0, 1), φ(0) = φ(1), φ′(0) = φ′(1), φ′′(0) = φ′′(1), φ′′′(0) = φ′′′(1), φ(4)(0) =

φ(4)(1) ;

2. ψ(x) ∈ C2[0, 1], ψ(3)(x) ∈ L2(0, 1), ψ(0) = ψ(1), ψ′(0) = ψ′(1), ψ′′(0) = ψ′′(1) ;

3. f(x, t), fx(x, t), fxx(x, t) ∈ C(DT ), fxxx(x, t) ∈ L2(DT ), , f(0, t) = f(1, t) ,
fx(0, t) = fx(1, t), fxx(0, t) = fxx(1, t)(0 ≤ t ≤ T ) ;

4. h(t) ∈ C2[0, T ], h(t) ̸= 0(0 ≤ t ≤ T ) .

Obviously, [1],
1, cosλ1x, sinλ1x, ..., cosλkx, sinλkx, ... (3.1)

is a basis in L2(0, 1) , where λk = 2kπ(k = 0, 1, ...) . Since the system (3.1) forms basis in L2(0, 1) , it is obvious
that for each solution {u(x, t), a(t)} problems (2.1)-(2.3),(2.8),(2.9) first komponent u(x, t) has the form:

u(x, t) =

∞∑
k=0

u1k(t) cosλkx+

∞∑
k=1

u2k(t) sinλkx(λk = 2πk), (3.2)
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where

u10(t) =

1∫
0

u(x, t)dx, u1k(t) = 2

1∫
0

u(x, t) cosλkxdx(k = 1, 2, ...),

u2k(t) = 2

1∫
0

u(x, t) sinλkxdx(k = 1, 2, . . .).

Then, applying the formal scheme of the Fourier method, to determine the desired coefficients u1k(t)(k =

0, 1, . . .) , u2k(t)(k = 1, 2, . . .) funtions u(x, t) , from (2.1) and (2.3) we obtained:

u′′10(t) = F10(t;u, a)(0 ≤ t ≤ T ), (3.3)

u′′ik(t)− λ4kuik(t) = Fik(t;u, a)(0 ≤ t ≤ T ; i− 1, 2; k = 1, 2, . . .), (3.4)

u10(0) = φ10, u
′
10(T ) = ψ10, (3.5)

uik(0) = φik, u
′
ik(T ) = ψik(i = 1, 2; k = 1, 2, . . .), (3.6)

where
F1k(t;u, a) = f1k(t) + a(t)u1k(t)(k = 0, 1, ...),

f10(t) =

1∫
0

f(x, t)dx, f1k(t) = 2

1∫
0

f(x, t) cosλkxdx (k = 0, 1, . . .),

φ10 =

1∫
0

φ(x)dx, ψ10 = 2

1∫
0

ψ(x)dx,

φ1k(t) = 2

1∫
0

φ(x) cosλkxdx, ψ1k(t) = 2

1∫
0

ψ(x) cosλkxdx (k = 0, 1, . . .),

F2k(t) = a(t)u2k(t) + f2k(t), f2k(t) = 2

1∫
0

f(x, t) cosλkxdx (k = 0, 1, . . .),

φ2k(t) = 2

1∫
0

φ(x) sinλkxdx, ψ2k(t) = 2

1∫
0

ψ(x) sinλkxdx (k = 0, 1, . . .),

Further, from (3.3)-(3.6) we find:

u10(t) = φ10 + ψ10t+

T∫
0

G0(t, τ)F10(τ ;u, a)dτ, (3.7)
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uik(t) =
ch(λ2k(T − t))

ch(λ2kT )
φik +

sh(λ2kt)

λ2kch(λ
2
kT )

ψik+

+
1

λ2k

T∫
0

Gk(t, τ)Fik(τ ;u, a)dτ(i = 1, 2; k = 1, 2, ...), (3.8)

where

G0(t, τ) =

{
−t, t ∈ [0, τ ],
−τ, t ∈ [τ, T ],

Gk(t, τ) =


sh(λ2

k(T−(t−τ)))−sh(λ2
k(T+t−τ))

2ch(λ2
kT )

, t ∈ [0, τ ],
sh(λ2

k(T−(t−τ)))−sh(λ2
k(T−(t+τ)))

2ch(λ2
kT )

, t ∈ [τ, T ].

After substitution of expressions u1k(t)(k = 0, 1, ...) and u2k(t)(k = 1, 2, ...) in (3.6), determining the
components of the solution u(x, t) of the problem (2.1)-(2.3),(2.8),(2.9), we get:

u(x, t) = φ10 + ψ10t+

T∫
0

G0(t, τ)F10(τ ;u, a)dτ+

+

∞∑
k=1

{
ch(λ2k(T − t))

ch(λ2kT )
φ1k +

sh(λ2kt)

λ2kch(λ
2
kT )

ψ1k+

+
1

λ2k

T∫
0

Gk(t, τ)F1k(τ ;u, a)dτ

 cosλkx+

+

∞∑
k=1

{
ch(λ2k(T − t))

ch(λ2kT )
φ2k +

sh(λ2kt)

λ2kch(λ
2
kT )

ψ2k+

+
1

λ2k

T∫
0

Gk(t, τ)F2k(τ ;u, a)dτ

 sinλkx. (3.9)

Now, from (2.8), considering (3.2), we have:

a(t) = [h(t)]
−1 {h′′(t)− f(x0, t)−

−
∞∑
k=1

λ4ku1k(t) cosλkx0 +
∞∑
k=1

λ4ku2k(t) sinλkx0

}
. (3.10)

In order to get the equation for the second component of the solution of the problem (2.1)-(2.3),(2.8),(2.9), we
substitute the expression (3.8) in (3.10):

a(t) = [h(t)]
−1

{
h′′(t)− f(x0, t)−

∞∑
k=1

λ4k

[
ch(λ2k(T − t))

ch(λ2kT )
φ1k+
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+
sh(λ2kt)

λ2kch(λ
2
kT )

ψ1k +
1

λ2k

T∫
0

Gk(t, τ)F1k(τ ;u, a)dτ

 cosλkx0−

−
∞∑
k=1

λ4k

[
ch(λ2k(T − t))

ch(λ2kT )
φ2k +

sh(λ2kt)

λ2kch(λ
2
kT )

ψ2k+

+
1

λ2k

T∫
0

Gk(t, τ)F2k(τ ;u, a)dτ

 sinλkx0

 . (3.11)

Thus, the solution of problem (2.1)-(2.3),(2.8),(2.9) is reduced to the solution of system(3.9), (3.11) for the
unknown functions u(x, t) and a(t) . Using the definition of the solution of the problem (2.1)-(2.3),(2.8),(2.9),
we prove the following lemma.

Lemma 3.1 If {u(x, t), a(t)} –any classical solution of problem (2.1)-(2.3),(2.8),(2.9), then the functions

u10(t) =
1∫
0

u(x, t)dx , u1k(t) = 2
1∫
0

u(x, t) cosλkxdx , u2k = 2
1∫
0

u(x, t) sinλkxdx (k = 1, 2, . . .) satisfy system

(3.7), (3.8).

Remark 3.2 From Lemma 3.1 it follows that to prove the uniqueness of the solution of the problem (2.1)-
(2.3),(2.8),(2.9) enough to prove the uniqueness of the solution of the problem (3.9), (3.11).

Now, in order to study the problem (2.1)-(2.3),(2.8),(2.9) we consider the following spaces:

1. We denote by B5
2,T [10] ,a consisting of all functions u(x, t) of the form

u(x, t) =

∞∑
k=0

u1k(t) cosλkxdx+

∞∑
k=0

u2k(t) sinλkxdx (λk = 2πk),

considered in DT , where each of the functions form u1k(t)(k = 0, 1, ...) and u2k(t)(k = 1, 2, ...) are
continuous on [0, T ] and

JT (u) ≡ ∥u10(t)∥C[0,T ] +

( ∞∑
k=1

(λ5k ∥u1k(t)∥C[0,T ])
2

) 1
2

+

+

( ∞∑
k=1

(λ5k ∥u2k(t)∥C[0,T ])
2

) 1
2

< +∞.

The norm in this set is defined as follows:

∥u(x, t)∥B5
2,T

= JT (u).

2. The spaces E5
T denote the space consisting of a topological product

B5
2,T × C[0, T ].
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The norm of element z + {u, a} is determined by the formula

∥z∥E5
T
= ∥u(x, t)∥B5

2,T
+ ∥a(t)∥C[0,T ] .

It is obvious that B5
2,T and E5

T are Banach spaces.

Now in the space E5
T consider the operator

Φ(u, a) = {Φ1(u, a),Φ2(u, a)} ,

where

Φ1(u, a) = ũ(x, t) ≡
∞∑
k=0

ũ1k(t) cosλkx+

∞∑
k=1

ũ2k(t) sinλkx,

Φ2(u, a) = ã(t),

where ũ10(t), ũik(t)(i = 1, 2; k = 1, 2, ...) and ã(t) are equal to the right hand sides of (3.7), (3.8) � (3.11).
Now with the help of easy transformations we find:

∥ũ10(t)∥C[0,T ] ≤ |φ10|+ T |ψ10|+

+2T
√
T

 T∫
0

|f10(τ)|2dτ


1
2

+ 2T 2∥a(t)∥C[0,T ]∥u10(t)∥C[0,T ], (3.12)

( ∞∑
k=1

(
λ5k ∥ũik(t)∥C[0,T ]

)2) 1
2

≤ 2

( ∞∑
k=1

(
λ5k |φik|

)2) 1
2

+

+2

( ∞∑
k=1

(
λ3k |ψik|

)2) 1
2

+ 4
√
T

 T∫
0

∞∑
k=1

(
λ3k |fik(τ)|

)2+

+4T ∥a(t)∥C[0,T ]

( ∞∑
k=1

(
λ5k ∥uik(t)∥C[0,T ]

)2) 1
2

(i = 1, 2), (3.13)

∥ã(t)∥C[0,T ] ≤
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

{
∥h′′(t)− f(x0, t)∥C[0,T ] +

( ∞∑
k=1

λ−2
k

) 1
2

×

×
2∑

i=1

( ∞∑
k=1

(λ5k |φik|)2
) 1

2

+

( ∞∑
k=1

(λ3k |ψik|)2
) 1

2

+
√
T

 T∫
0

∞∑
k=1

(λ3k |fik(τ)|)2dτ


1
2

+

+ T ∥a(t)∥C[0,T ]

( ∞∑
k=1

(λ5k ∥uik(t)∥C[0,T ])
2

) 1
2

 . (3.14)
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Further, from (3.12)-(3.14) we have:

∥ũ(x, t)∥B5
2,T

≤ A1(T ) +B1(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B5
2,T

, (3.15)

∥ã(t)∥C[0,T ] ≤ A2(T ) +B2(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B5
2,T

, (3.16)

where
A1(T ) = ∥φ(x)∥L2(0,1) + T∥ψ(x)∥L2(0,1) + 2T

√
T∥f(x, t)∥L2(DT )+

+2
∥∥∥φ(5)(x)

∥∥∥
L2(0,1)

+ 2
∥∥∥ψ(3)(x)

∥∥∥
L2(0,1)

+ 4
√
T ∥fxxx(x, t)∥L2(DT ) ,

B1(T ) = 2T 2 + 4T.

A2(T ) =
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

{
∥h′′(t)− f(x0, t)∥C[0,T ] +

( ∞∑
k=1

λ−2
k

) 1
2

×

× 2

[∥∥∥φ(5)(x)
∥∥∥
L2(0,1)

+
∥∥∥ψ(3)(x)

∥∥∥
L2(0,1)

+ 2
√
T ∥fxxx(x, t)∥L2(DT )

]}
,

B2(T ) = 2
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

( ∞∑
k=1

λ−2
k

) 1
2

T.

From inequalities (3.15)-(3.16) we conclude:

∥ũ(x, t)∥B5
2,T

+ ∥ã(t)∥C[0,T ] ≤ A(T ) +B(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B5
2,T

, (3.17)

where
A(T ) = A1(T ) +A2(T ), B(T ) = B1(T ) +B2(T ).

So, we can prove the following theorem:

Theorem 3.3 Let all conditions 1.-4. be fulfilled and

(A(T ) + 2)2B(T ) < 1. (3.18)

Then the problem (2.1)-(2.3),(2.8),(2.9) has a unique solution in the sphere K = KR(∥z∥E3
T
≤ R = A(T ) + 2)

of the space E5
T .

Proof In the space E5
T consider the equation

z = Φz, (3.19)

where z = {u, a} , the components Φi(u, a)(i = 1, 2) , of the operator Φ(u, a) , are determined by the right hand
sides of equations (3.9) and (3.11). Consider the operator Φ(u, a) in the sphere K = KR from E5

T . Similar to
(3.17) we obtained that for any z, z1, z2 ∈ KR the following estimate are valid:

∥Φz∥E3
T
≤ A(T ) +B(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B3

2,T
+
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+A(T ) +B(T ) (A(T ) + 2)
2
, (3.20)

∥Φz1 − Φzs∥E3
T
≤

≤ B(T )TR(∥a1(t)− a2(t)∥C[0,T ] + ∥u1(x, t)− u2(x, t)∥B3
2,T

. (3.21)

Then from (3.20) and (3.21), with considering (3.18),it follows that operator Φ acts in the sphere K = KR and
it is contraction mapping. Therefore, in the sphere K = KR the operator Φ has a unique fixed point {u, a} ,
that is a solution of equation (3.19). The function u(x, t) , as the element of the space B5

2,T , has continuous
derivatives u(x, t), ux(x, t), uxx(x, t), uxxx(x, t) and uxxxx(x, t) in DT .

From (3.4) it is easy to see that

( ∞∑
k=1

(
λk ∥u′′ik(t)∥C[0,T ]

)2) 1
2

≤
√
2

( ∞∑
k=1

λ−2
k

) 1
2

×

×

( ∞∑
k=1

(
λ5k ∥uk(t)∥C[0,T ]

)2) 1
2

+ ∥∥fx(x, t) + a(t)ux(x, t)∥∥L2(0,1)

 (i = 1, 2).

Then it follows that utt(x, t) is continuous in DT . It is easy to verify that (2.1) and conditions (2.2), (2.3), (2.8)
and (2.9) are satisfied in the ordinary sense. Consequently, it is a solution to problem (2.1)-(2.3), (2.8),(2.9),
and, by virtue of the lemma 3.1, it is unique. Theorem is proved. 2

Using the theorem 2.2 we proved the following Lemma.

Theorem 3.4 Let all the conditions of the Theorem 3.2

1∫
0

f(x, t)dx = 0(0 ≤ t ≤ T ),
1

2
(A(T ) + 2)T 2 < 1,

and condition of approval

1∫
0

φ(x)dx = 0,

1∫
0

ψ(x)dx = 0,φ(x0) = h(0), ψ(x0) = h′(T )

be satisfied. Then, problem (2.1)-(2.5) has in the sphere K = KR(∥z∥E3
T,T

≤ R = A(T ) + 2) from E5
T unique

classical solution.
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