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Abstract: Let f be a continuous function which is periodic with respect to the hexagon lattice, and let A be a lower
triangular infinite matrix of nonnegative real numbers with nonincreasing rows. The degree of approximation of the

function f by matrix means T
(A)
n (f) of its hexagonal Fourier series is estimated in terms of the modulus of continuity

of f.
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1. Introduction
Estimation of the degree of approximation is one of the most important problems in approximation theory.
Especially, mathematicians are interested in the degree of approximation of periodic functions. Fourier series
and their summation methods are most useful tools in study of approximation problems of such functions. The
degree of approximation by Cesàro, Nörlund, Riesz, and more general matrix means of trigonometric Fourier
series of continuous 2π−periodic functions was investigated by many authors in recent decades (see, for example
[1, 2, 9, 10, 13, 14, 18, 19]).

Investigation of the degree of approximation of functions of several real variables is also important.
Summation methods of multiple trigonometric Fourier series are used for studying approximation problems of
such functions (see, for example [15–17]), [20, Sections 5.3 and 6.3], [23, Vol II, Chapter XVII], [22, Part 2]. In
all of these studies it was assumed that the functions are 2π−periodic in each of their variables.

Approximation problems on nontensor product domains, for example on hexagonal domains of R2, are
studied by using another kind of periodicity. The periodicity defined by lattices allows us to study approximation
problems on such domains. In the Euclidean plane R2, besides the standard lattice Z2 and the rectangular

domain
[
− 1

2 ,
1
2

)2
, the simplest lattice is the hexagon lattice and the simplest spectral set is the regular hexagon.

The hexagon lattice has importance, since it offers the densest packing of the plane with unit circles. Now, we
give basic information about hexagonal lattice and hexagonal Fourier series. More detailed information can be
found in [11] and [21].

The generator matrix and the spectral set of the hexagonal lattice HZ2 are given by

H =

( √
3 0

−1 2

)
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and

ΩH =

{
(x1, x2) ∈ R2 : −1 ≤ x2,

√
3

2
x1 ±

1

2
x2 < 1

}
.

It is more convenient to use the homogeneous coordinates (t1, t2, t3) that satisfies t1 + t2 + t3 = 0 . As it is
pointed out in [21], using homogeneous coordinates reveals symmetry in various formulas. If we set

t1 := −x2

2
+

√
3x1

2
, t2 := x2, t3 := −x2

2
−

√
3x1

2
,

the hexagon ΩH becomes

Ω =
{
(t1, t2, t3) ∈ R3 : −1 ≤ t1, t2,−t3 < 1, t1 + t2 + t3 = 0

}
,

which is the intersection of the plane t1 + t2 + t3 = 0 with the cube [−1, 1]
3
.

We use bold letters t for homogeneous coordinates and we set

R3
H :=

{
t = (t1, t2, t3) ∈ R3 : t1 + t2 + t3 = 0

}
and

Z3
H := Z3 ∩ R3

H .

A function f : R2 → C is called H−periodic (or periodic with respect to the hexagon lattice) if

f (x+Hk) = f (x)

for all k ∈ Z2 and x ∈ R2. If we define t ≡ s (mod3) as

t1 − s1 ≡ t2 − s2 ≡ t3 − s3 (mod3)

for t = (t1, t2, t3) , s = (s1, s2, s3)∈ R3
H , it follows that the function f is H−periodic if and only if

f (t) = f (t+ s) whenever s ≡ 0 (mod3) , and

∫
Ω

f (t+ s) dt =

∫
Ω

f (t) dt
(
s ∈ R3

H

)

for H−periodic integrable function f [21] .
L2 (Ω) becomes a Hilbert space with respect to the inner product

⟨f, g⟩H :=
1

|Ω|

∫
Ω

f (t) g (t)dt,

where |Ω| denotes the area of Ω. The functions

φj (t) := e
2πi
3 ⟨j,t⟩ (t ∈ R3

H

)
,

971



GÜVEN/Turk J Math

where ⟨j, t⟩ is the usual Euclidean inner product of j and t, are H−periodic, and by a theorem of B. Fuglede,
the set {

φj : j ∈ Z3
H

}
becomes an orthonormal basis of L2 (Ω) [3] (see also [11]) .

For every natural number n, we define a subset of Z3
H by

Hn :=
{
j = (j1, j2, j3) ∈ Z3

H : −n ≤ j1, j2, j3 ≤ n
}
.

The subspace
Hn := span {φj : j ∈ Hn} (n ∈ N)

has dimension #Hn = 3n2 +3n+1, and its members are called hexagonal trigonometric polynomials of degree
n .

The hexagonal Fourier series of an H−periodic function f ∈ L1 (Ω) is

f (t) ∼
∑
j∈Z3

H

f̂jφj (t) , (1.1)

where

f̂j =
1

|Ω|

∫
Ω

f (t)φj (t)dt
(
j ∈ Z3

H

)
.

The nth hexagonal partial sum of the series (1.1) is defined by

Sn (f) (t) :=
∑
j∈Hn

f̂jφj (t) (n ∈ N) .

It is clear that

Sn (f) (t) =
1

|Ω|

∫
Ω

f (t− u)Dn (u) du,

where
Dn (t) :=

∑
j∈Hn

φj (t)

is the Dirichlet kernel of order n.

It is known that the Dirichlet kernel can be expressed as

Dn (t) = Θn (t)−Θn−1 (t) (n ≥ 1) , (1.2)

where

Θn (t) :=
sin (n+1)(t1−t2)π

3 sin (n+1)(t2−t3)π
3 sin (n+1)(t3−t1)π

3

sin (t1−t2)π
3 sin (t2−t3)π

3 sin (t3−t1)π
3

(1.3)

for t = (t1, t2, t3) ∈ R3
H [11] .

The degree of approximation of H−periodic continuous functions by Cesàro, Riesz, and Nörlund means
of their hexagonal Fourier series was investigated by the author in [4–8]. In the present paper, approximation
properties of more general means of hexagonal Fourier series are studied and generalizations of previous results
are obtained.
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2. Main results
Let CH

(
Ω
)

be the Banach space of complex valued H−periodic continuous functions defined on R3
H , whose

norm is the uniform norm:
∥f∥CH(Ω) := sup

{
|f (t)| : t ∈ Ω

}
.

The modulus of continuity of the function f ∈ CH

(
Ω
)

is defined by

ωH (f, δ) := sup
0<∥t∥≤δ

∥f − f (·+ t)∥CH(Ω) ,

where
∥t∥ := max {|t1| , |t2| , |t3|}

for t = (t1, t2, t3) ∈ R3
H . ωH (f, ·) is a nonnegative and nondecreasing function, and satisfies

ωH (f, λδ) ≤ (1 + λ)ωH (f, δ) (2.1)

for λ > 0 [21] .

A function f ∈ CH

(
Ω
)

is said to belong to the Hölder space Hα
(
Ω
)
(0 < α ≤ 1) if

Λα (f) := sup
t̸=s

|f (t)− f (s)|
∥t− s∥α

< ∞.

Hα
(
Ω
)

becomes a Banach space with respect to the Hölder norm

∥f∥Hα(Ω) := ∥f∥CH(Ω) + Λα (f) .

Let A = (an,k) (n, k = 0, 1, ...) be a lower triangular infinite matrix of real numbers. The A−transform
of the sequence (Sn (f)) of partial sums the series (1.1) is defined by

T (A)
n (f) (t) :=

n∑
k=0

an,kSk (f) (t) (n ∈ N) .

We shall assume that the lower triangular matrix A = (an,k) satisfies the conditions

an,k ≥ 0 (n = 0, 1, ..., 0 ≤ k ≤ n) , (2.2)

an,k ≥ an,k+1 (n = 0, 1, ..., 0 ≤ k ≤ n− 1) , (2.3)

and
n∑

k=0

an,k = 1 (n = 0, 1, ...) . (2.4)

Further, we use the notations

An,k :=

k∑
ν=0

an,ν (0 ≤ k ≤ n) , An (u) := An,[u] , an (u) := an,[u] (u > 0) ,
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where [u] denotes the integer part of u.

In the rest of the paper, the relation x ≲ y will mean that there exists an absolute constant c > 0 such
that x ≤ cy holds for quantities x and y .

Main results of this paper are the following.

Theorem 2.1 Let f ∈ CH

(
Ω
)

and let A = (an,k) (n, k = 0, 1, ...) be a lower triangular infinite matrix of real
numbers which satisfies (2.2) , (2.3) , and (2.4) . Then the estimate

∥∥∥f − T (A)
n (f)

∥∥∥
CH(Ω)

≲ log (n+ 1)

n∑
k=1

ωH (f, 1/k)

k
An,k (n ∈ N) (2.5)

holds .

Corollary 2.2 Let f ∈ Hα
(
Ω
)
(0 < α ≤ 1) and let the matrix A = (an,k) (n, k = 0, 1, ...) satisfies conditions

of Theorem 1. Then we have

∥∥∥f − T (A)
n (f)

∥∥∥
CH(Ω)

≲ log (n+ 1)

n∑
k=1

An,k

k1+α
(n ∈ N) . (2.6)

Theorem 2.3 Let 0 ≤ β < α ≤ 1 , f ∈ Hα
(
Ω
)

and let A = (an,k) (n, k = 0, 1, ...) be a lower triangular
infinite matrix of real numbers which satisfies (2.2) , (2.3) , and (2.4) . Then,

∥∥∥f − T (A)
n (f)

∥∥∥
Hβ(Ω)

≲ log (n+ 1)

(
n∑

k=1

An,k

k

)β/α( n∑
k=1

An,k

k1+α

)1−β/α

(n ∈ N) . (2.7)

For means of trigonometric Fourier series of continuous 2π−periodic functions, analogue of Theorem 1
was proved in [2] and analogue of Theorem 2 was proved in [14]. In these theorems, analogues of estimates (2.5)
and (2.7) do not contain the multiplier log (n+ 1) .

3. Proofs of main results

Proof [Proof of Theorem 2.1] It is clear that

∣∣∣f (t)− T (A)
n (f) (t)

∣∣∣ ≤ 1

|Ω|

∫
Ω

|f (t)− f (t− u)|

∣∣∣∣∣
n∑

k=0

an,kDk (u)

∣∣∣∣∣ du
≲ 1

|Ω|

∫
Ω

ωH (f, ∥u∥)

∣∣∣∣∣
n∑

k=0

an,kDk (u)

∣∣∣∣∣ du.
If we set Θ−1 (u) := 0, by (1.2) we get

∫
Ω

ωH (f, ∥u∥)

∣∣∣∣∣
n∑

k=0

an,kDk (u)

∣∣∣∣∣ du =

∫
Ω

ωH (f, ∥u∥)

∣∣∣∣∣
n∑

k=0

an,k (Θk (u)−Θk−1 (u))

∣∣∣∣∣ du.
974
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The function

t → ωH (f, ∥t∥)

∣∣∣∣∣
n∑

k=0

an,k (Θk (t)−Θk−1 (t))

∣∣∣∣∣
is symmetric with respect to variables t1, t2 , and t3 , where t = (t1, t2, t3) ∈ Ω. Hence it is sufficient to estimate
the integral over the triangle

∆ : =
{
t = (t1, t2, t3) ∈ R3

H : 0 ≤ t1, t2,−t3 ≤ 1
}

= {(t1, t2) : t1 ≥ 0, t2 ≥ 0, t1 + t2 ≤ 1} ,

which is one of the six equilateral triangles in Ω. By considering the formula (1.3) , we obtain

∫
∆

ωH (f, ∥t∥)

∣∣∣∣∣
n∑

k=0

an,k (Θk (t)−Θk−1 (t))

∣∣∣∣∣ dt

=

∫
∆

ωH (f, t1 + t2)

∣∣∣∣∣∣∣
n∑

k=0

an,k

 sin
(k+1)(t1−t2)π

3 sin
(k+1)(t2−t3)π

3 sin
(k+1)(t3−t1)π

3

sin
(t1−t2)π

3 sin
(t2−t3)π

3 sin
(t3−t1)π

3

− sin
k(t1−t2)π

3 sin
k(t2−t3)π

3 sin
k(t3−t1)π

3

sin
(t1−t2)π

3 sin
(t2−t3)π

3 sin
(t3−t1)π

3


∣∣∣∣∣∣∣ dt.

If we use the change of variables

s1 :=
t1 − t3

3
=

2t1 + t2
3

, s2 :=
t2 − t3

3
=

t1 + 2t2
3

, (3.1)

the integral becomes

3

∫
∆̃

ωH (f, s1 + s2)

∣∣∣∣∣
n∑

k=0

an,k

(
sin((k+1)(s1−s2)π) sin((k+1)s2π) sin((k+1)(−s1π))

sin((s1−s2)π) sin(s2π) sin(−s1π)

− sin(k(s1−s2)π) sin(ks2π) sin(k(−s1π))
sin((s1−s2)π) sin(s2π) sin(−s1π)

)∣∣∣∣∣ ds1ds2,
where ∆̃ is the image of ∆ in the plane, that is

∆̃ := {(s1, s2) : 0 ≤ s1 ≤ 2s2, 0 ≤ s2 ≤ 2s1, s1 + s2 ≤ 1} .

Since the integrated function is symmetric with respect to s1 and s2, estimating the integral over the triangle

∆∗ :=
{
(s1, s2) ∈ ∆̃ : s1 ≤ s2

}
= {(s1, s2) : s1 ≤ s2 ≤ 2s1, s1 + s2 ≤ 1} ,

which is the half of ∆̃, will be sufficient . The change of variables

s1 :=
u1 − u2

2
, s2 :=

u1 + u2

2
(3.2)

transforms the triangle ∆∗ to the triangle

Γ :=
{
(u1, u2) : 0 ≤ u2 ≤ u1

3
, 0 ≤ u1 ≤ 1

}
.
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Thus, we have to estimate the integral

In :=

∫
Γ

ωH (f, u1)

∣∣∣∣∣
n∑

k=0

an,kD
∗
k (u1, u2)

∣∣∣∣∣ du1du2,

where

D∗
k (u1, u2) =

sin ((k + 1) (u2)π) sin
(
(k + 1) u1+u2

2 π
)
sin
(
(k + 1)

(
u1−u2

2 π
))

sin ((u2)π) sin
(
u1+u2

2 π
)
sin
(
u1−u2

2 π
)

−
sin (k (u2)π) sin

(
k u1+u2

2 π
)
sin
(
k
(
u1−u2

2 π
))

sin ((u2)π) sin
(
u1+u2

2 π
)
sin
(
u1−u2

2 π
) .

By elementary trigonometric identities, we obtain

D∗
k (u1, u2) = D∗

k,1 (u1, u2) +D∗
k,2 (u1, u2) +D∗

k,3 (u1, u2) , (3.3)

where

D∗
k,1 (u1, u2) : = 2 cos

((
k +

1

2

)
u2π

)

×
sin
(
1
2u2π

)
sin
(
(k + 1) u1+u2

2 π
)
sin
(
(k + 1) u1−u2

2 π
)

sin (u2π) sin
(
u1+u2

2 π
)
sin
(
u1−u2

2 π
) ,

D∗
k,2 (u1, u2) : = 2 cos

((
k +

1

2

)
u1 + u2

2
π

)

×
sin (ku2π) sin

(
1
2
u1+u2

2 π
)
sin
(
(k + 1) u1−u2

2 π
)

sin (u2π) sin
(
u1+u2

2 π
)
sin
(
u1−u2

2 π
) ,

and

D∗
k,3 (u1, u2) : = 2 cos

((
k +

1

2

)
u1 − u2

2
π

)

×
sin (ku2π) sin

(
k u1+u2

2 π
)
sin
(
1
2
u1−u2

2 π
)

sin (u2π) sin
(
u1+u2

2 π
)
sin
(
u1−u2

2 π
) .

We partition the triangle Γ as Γ = Γ1 ∪ Γ2 ∪ Γ3, where

Γ1 : =

{
(u1, u2) ∈ Γ : u1 ≤ 1

n+ 1

}
,

Γ2 : =

{
(u1, u2) ∈ Γ : u1 ≥ 1

n+ 1
, u2 ≤ 1

3 (n+ 1)

}
,

Γ3 : =

{
(u1, u2) ∈ Γ : u1 ≥ 1

n+ 1
, u2 ≥ 1

3 (n+ 1)

}
.
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Hence, In = In,1 + In,2 + In,3, where

In,j :=

∫
Γj

ωH (f, u1)

∣∣∣∣∣
n∑

k=0

an,kD
∗
k (u1, u2)

∣∣∣∣∣ du1du2 (j = 1, 2, 3) .

We shall use the inequalities ∣∣∣∣ sinntsin t

∣∣∣∣ ≤ n, (n ∈ N) , (3.4)

and

sin t ≥ 2

π
t,
(
0 ≤ t ≤ π

2

)
(3.5)

to estimate integrals In,1, In,2 , and In,3. By (3.4),

In,1 =

∫
Γ1

ωH (f, u1)

∣∣∣∣∣
n∑

k=0

an,kD
∗
k (u1, u2)

∣∣∣∣∣ du1du2

≲
∫
Γ1

ωH (f, u1)

(
n∑

k=0

(k + 1)
2
an,k

)
du1du2

≤ (n+ 1)
2

1
3(n+1)∫

0

1
n+1∫
3u2

ωH (f, u1) du1du2 ≤ ωH

(
f,

1

n+ 1

)
.

If we divide Γ2 into two parts as

Γ′
2 : =

{
(u1, u2) ∈ Γ2 : u2 ≤ an,0

3 (n+ 1)

}
,

Γ′′
2 : =

{
(u1, u2) ∈ Γ2 : u2 ≥ an,0

3 (n+ 1)

}
,

we have In,2 = I ′n,2 + I ′′n,2, where

I ′n,2 :=

∫
Γ′
2

ωH (f, u1)

∣∣∣∣∣
n∑

k=0

an,kD
∗
k (u1, u2)

∣∣∣∣∣ du1du2

and

I ′′n,2 :=

∫
Γ′′
2

ωH (f, u1)

∣∣∣∣∣
n∑

k=0

an,kD
∗
k (u1, u2)

∣∣∣∣∣ du1du2.

We also need the inequality
ωH (f, δ2)

δ2
≤ 2

ωH (f, δ1)

δ1
(δ1 < δ2) , (3.6)
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which is obtained from (2.1) . By (3.5) and (3.6) ,

∫
Γ′
2

ωH (f, u1)

∣∣∣∣∣
n∑

k=0

an,kD
∗
k,1 (u1, u2)

∣∣∣∣∣ du1du2

≲

an,0
3(n+1)∫

0

1∫
1

n+1

ωH (f, u1)

u2
1

du1du2 =
an,0

3 (n+ 1)

1∫
1

n+1

ωH (f, u1)

u2
1

du1

≤ 2
an,0

3 (n+ 1)
(n+ 1)ωH

(
f,

1

n+ 1

) 1∫
1

n+1

du1

u1
≲ log (n+ 1)ωH

(
f,

1

n+ 1

)
.

By (3.4) , (3.5) , and (3.6) we obtain

∫
Γ′
2

ωH (f, u1)

∣∣∣∣∣
n∑

k=0

an,kD
∗
k,j (u1, u2)

∣∣∣∣∣ du1du2

≲ n

an,0
3(n+1)∫

0

1∫
1

n+1

ωH (f, u1)

u1
du1du2 = n

an,0
3 (n+ 1)

1∫
1

n+1

ωH (f, u1)

u1
du1

≤
1∫
1

n+1

ωH (f, u1)

u2
1

du1 ≲ log (n+ 1)ωH

(
f,

1

n+ 1

)
,

for j = 2, 3. These last two estimates yield

I ′n,2 ≲ log (n+ 1)ωH

(
f,

1

n+ 1

)
.

Since
sin 2x+ sin 2y + sin 2z = −4 sinx sin y sin z

for x+ y + z = 0, we also get the expression

D∗
k (u1, u2) = Hk,1 (u1, u2) +Hk,2 (u1, u2) +Hk,3 (u1, u2) , (3.7)

where

Hk,1 (u1, u2) : =
1

2

cos ((2k + 1)u2π)

sin
(
u1+u2

2 π
)
sin
(
u1−u2

2 π
) ,

Hk,2 (u1, u2) : = −1

2

cos
(
(2k + 1) u1+u2

2 π
)

sin (u2π) sin
(
u1−u2

2 π
) ,

Hk,3 (u1, u2) : =
1

2

cos
(
(2k + 1) u1−u2

2 π
)

sin (u2π) sin
(
u1+u2

2 π
) .
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By the method used in [12, p.179], we get

∣∣∣∣∣
n∑

k=0

an,k cos (2k + 1) t

∣∣∣∣∣ ≲ An

(
1

t

)
+ an

(
1

t

)
1

sin t
(0 < t < π) (3.8)

and ∣∣∣∣∣
n∑

k=0

an,k cos (2k + 1) t

∣∣∣∣∣ ≲ An

(
1

t

) (
0 < t ≤ π

2

)
. (3.9)

By (3.9) we obtain ∣∣∣∣∣
n∑

k=0

an,kHk,1 (u1, u2)

∣∣∣∣∣ ≲ 1

u2
1

An

(
1

πu2

)
(3.10)

and ∣∣∣∣∣
n∑

k=0

an,kHk,3 (u1, u2)

∣∣∣∣∣ ≲ 1

u1u2
An

(
3

πu1

)
(3.11)

for (u1, u2) ∈ Γ′′
2 ∪ Γ3. Also, for (u1, u2) ∈ Γ′′

2 ∪ Γ3, the relation (3.8) and the fact

sin
(u1π

2

)
≲ sin

(
(u1 + u2)π

2

)

yield ∣∣∣∣∣
n∑

k=0

an,kHk,2 (u1, u2)

∣∣∣∣∣ ≲ 1

u1u2
An

(
3

πu1

)
. (3.12)

If we consider (3.5) and (3.6) , we get

∫
Γ′′
2

ωH (f, u1)

∣∣∣∣∣
n∑

k=0

an,kHk,1 (u1, u2)

∣∣∣∣∣ du1du2

≲

1
3(n+1)∫
an,0

3(n+1)

1∫
1

n+1

ωH (f, u1)

u2
1

du1du2 ≤ 2 (n+ 1)ωH

(
f,

1

n+ 1

) 1
3(n+1)∫
an,0

3(n+1)

1∫
1

n+1

du1du2

u1

≤ log (n+ 1)ωH

(
f,

1

n+ 1

)
.
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(3.11) and (3.12) give

∫
Γ′′
2

ωH (f, u1)

∣∣∣∣∣
n∑

k=0

an,kHk,j (u1, u2)

∣∣∣∣∣ du1du2 ≲

1
3(n+1)∫
an,0

3(n+1)

1∫
1

n+1

ωH (f, u1)

u1u2
An

(
3

πu1

)
du1du2

= log

(
1

an,0

) 1∫
1

n+1

ωH (f, u1)

u1
An

(
3

πu1

)
du1 = log

(
1

an,0

) 3
π (n+1)∫

3
π

ωH

(
f, 3

πt

)
t

An (t) dt

= log

(
1

an,0

) n∑
k=1


3
π (k+1)∫

3
π k

ωH

(
f, 3

πt

)
t

An (t) dt

 ≤ log

(
1

an,0

) n∑
k=1

ωH

(
f, 1

k

)
k

An

(
3

π
(k + 1)

)

≤ log

(
1

an,0

) n∑
k=1

ωH

(
f, 1

k

)
k

An,k+1 ≲ log (n+ 1)

n∑
k=1

ωH

(
f, 1

k

)
k

An,k

for j = 2, 3. Hence, we get

I ′′n,2 ≲ log (n+ 1)

{
ωH

(
f,

1

n+ 1

)
+

n∑
k=1

ωH

(
f, 1

k

)
k

An,k

}
.

By considering (3.10) and (3.6) ,

∫
Γ3

ωH (f, u1)

∣∣∣∣∣
n∑

k=0

an,kHk,1 (u1, u2)

∣∣∣∣∣ du1du2 ≲

1
3∫
1

3(n+1)

1∫
3u2

ωH (f, u1)

u2
1

An

(
1

πu2

)
du1du2

≤ 2

3

1
3∫
1

3(n+1)

1∫
3u2

ωH (f, 3u2)

u1u2
An

(
1

πu2

)
du1du2 =

2

3

1
3∫
1

3(n+1)

ωH (f, 3u2)

u2
log

(
1

3u2

)
An

(
1

πu2

)
du2

≤ log (n+ 1)

1
3∫
1

3(n+1)

ωH (f, 3u2)

u2
An

(
1

πu2

)
du2 = log (n+ 1)

3
π (n+1)∫

3
π

ωH

(
f, 3

πt

)
t

An (t) dt

= log (n+ 1)

n∑
k=1


3
π (k+1)∫

3
π k

ωH

(
f, 3

πt

)
t

An (t) dt

 ≤ log (n+ 1)

n∑
k=1

ωH

(
f, 1

k

)
k

An

(
3

π
(k + 1)

)

≲ log (n+ 1)

n∑
k=1

ωH

(
f, 1

k

)
k

An,k.
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For j = 2, 3 have

∫
Γ3

ωH (f, u1)

∣∣∣∣∣
n∑

k=0

an,kHk,j (u1, u2)

∣∣∣∣∣ du1du2 ≲
1∫
1

n+1

u1
3∫
1

3(n+1)

ωH (f, u1)

u1u2
An

(
3

πu1

)
du2du1

=

1∫
1

n+1

ωH (f, u1)

u1
log ((n+ 1)u1)An

(
3

πu1

)
du1 ≤ log (n+ 1)

1∫
1

n+1

ωH (f, u1)

u1
An

(
3

πu1

)
du1

≲ log (n+ 1)

n∑
k=1

ωH

(
f, 1

k

)
k

An,k

by (3.11) and (3.12) . Thus, we get

In,3 ≲ log (n+ 1)

n∑
k=1

ωH

(
f, 1

k

)
k

An,k.

Since the sequence
(

An,k

k

)
is nonincreasing with respect to k we have

ωH

(
f,

1

n+ 1

)
≤ ωH

(
f,

1

n

)
=

nωH

(
f, 1

n

)
n

=

n∑
k=1

ωH

(
f, 1

n

)
n

=

n∑
k=1

ωH

(
f,

1

n

)
An,n

n
≤

n∑
k=1

ωH

(
f,

1

k

)
An,k

k
.

(2.5) follows from estimates of In,j (j = 1, 2, 3) and from the last estimate. 2

Proof [Proof of Theorem 2.3] By the same method used in proof of Theorem 1, we obtain

∫
Ω

∣∣∣∣∣
n∑

k=0

an,kDk (u)

∣∣∣∣∣ du ≲ log (n+ 1)

n∑
k=1

An,k

k
(3.13)

and ∫
Ω

∥u∥α
∣∣∣∣∣

n∑
k=0

an,kDk (u)

∣∣∣∣∣ du ≲ log (n+ 1)

n∑
k=1

An,k

k1+α
(0 < α ≤ 1) . (3.14)

We set en (t) := f (t)− T
(A)
n (f) (t) . Hence,∥∥∥f − T (A)

n (f)
∥∥∥
Hβ(Ω)

=
∥∥∥f − T (A)

n (f)
∥∥∥
CH(Ω)

+ Λβ (en) . (3.15)

Since

|en (t)− en (s)| ≤
1

|Ω|

∫
Ω

|f (t)− f (t− u)− f (s) + f (s− u)|

∣∣∣∣∣
n∑

k=0

an,kDk (u)

∣∣∣∣∣ du,
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we have to estimate the integral

Jn :=

∫
Ω

|f (t)− f (t− u)− f (s) + f (s− u)|

∣∣∣∣∣
n∑

k=0

an,kDk (u)

∣∣∣∣∣ du.
Since f ∈ Hα

(
Ω
)

we have

|f (t)− f (t− u)− f (s) + f (s− u)| ≲ ∥t− s∥α (3.16)

and
|f (t)− f (t− u)− f (s) + f (s− u)| ≲ ∥u∥α . (3.17)

Hence, by (3.16) and (3.13) we get

(Jn)
β
α =

∫
Ω

|f (t)− f (t− u)− f (s) + f (s− u)|

∣∣∣∣∣
n∑

k=0

an,kDk (u)

∣∣∣∣∣ du


β
α

≲ ∥t− s∥β
∫

Ω

∣∣∣∣∣
n∑

k=0

an,kDk (u)

∣∣∣∣∣ du


β
α

≲ ∥t− s∥β
(
log (n+ 1)

n∑
k=1

An,k

k

) β
α

.

Also, by (3.17) and (3.14) we obtain

(Jn)
1− β

α ≲

∫
Ω

∥u∥α
∣∣∣∣∣

n∑
k=0

an,kDk (u)

∣∣∣∣∣ du
1− β

α

≲
(
log (n+ 1)

n∑
k=1

An,k

k1+α

)1− β
α

.

Since

|en (t)− en (s)| ≤ Jn = (Jn)
β
α (Jn)

1− β
α

≲ ∥t− s∥β log (n+ 1)

(
n∑

k=1

An,k

k

) β
α
(

n∑
k=1

An,k

k1+α

)1− β
α

,

we get

|en (t)− en (s)|
∥t− s∥β

≲ log (n+ 1)

(
n∑

k=1

An,k

k

) β
α
(

n∑
k=1

An,k

k1+α

)1− β
α

(t ̸= s) ,

which implies

Λβ (en) ≲ log (n+ 1)

(
n∑

k=1

An,k

k

) β
α
(

n∑
k=1

An,k

k1+α

)1− β
α

.

The proof is finished by combining (2.6) and (3.15) . 2

982



GÜVEN/Turk J Math

4. Remarks
Remark 4.1 Let p = (pk) be a nonincreasing sequence of positive real numbers. If we take

an,k :=

{ pk

Pn
, 0 ≤ k ≤ n

0, k > n
,

where Pn :=
n∑

k=0

pk, then the matrix A = (an,k) satisfies (2.2) , (2.3) , and (2.4) . In this case T
(A)
n becomes

the Riesz mean

Rn (p; f) =
1

Pn

n∑
k=0

pkSk (f) .

Theorem 1 gives

∥f −Rn (p; f)∥CH(Ω) ≲
1

Pn
log

(
Pn

pn

) n∑
k=1

PkωH (f, 1/k)

k
(4.1)

for f ∈ CH

(
Ω
)
, and Theorem 2 yields

∥f −Rn (p; f)∥Hβ(Ω) ≲
1

Pn
log

(
Pn

pn

)( n∑
k=1

Pk

k

) β
α
(

n∑
k=1

Pk

k1+α

)1− β
α

(4.2)

for f ∈ Hα
(
Ω
)
, (0 ≤ β < α ≤ 1) .

Remark 4.2 Let p = (pk) be a nondecreasing sequence of positive real numbers. In this case the matrix
A = (an,k) with entries

an,k :=

{ pn−k

Pn
, 0 ≤ k ≤ n

0, k > n
,

satisfies (2.2) , (2.3) , and (2.4) , and T
(A)
n becomes the Nörlund mean

Nn (p; f) =
1

Pn

n∑
k=0

pn−kSk (f) .

If we set Qn,k :=
n∑

ν=n−k

pν , we conclude from Theorem 1

∥f −Nn (p; f)∥CH(Ω) ≲
1

Pn
log

(
Pn

p0

) n∑
k=1

Qn,kωH (f, 1/k)

k
(4.3)

for f ∈ CH

(
Ω
)
, and by Theorem 2 we get

∥f −Nn (p; f)∥Hβ(Ω) ≲
1

Pn
log

(
Pn

p0

)( n∑
k=1

Qn,k

k

) β
α
(

n∑
k=1

Qn,k

k1+α

)1− β
α

(4.4)

for f ∈ Hα
(
Ω
)

(0 ≤ β < α ≤ 1) .
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Remark 4.3 If we take pk = 1 (k = 0, 1, ...) , Rn (p; f) and Nn (p; f) become (C, 1) means S
(1)
n (f) , and both

of (4.1) and (4.3) reduce to

∥∥∥f − S(1)
n (f)

∥∥∥
CH(Ω)

≲ log (n+ 1)

n+ 1

n∑
k=1

ωH

(
f,

1

k

)

for f ∈ CH

(
Ω
)
. Furthermore, (4.2) and (4.4) give the estimate

∥∥∥f − S(1)
n (f)

∥∥∥
Hβ(Ω)

≲
{

log(n+1)
nα−β , α < 1

(log(n+1))2−β

n1−β , α = 1

for (C, 1) means of f ∈ Hα
(
Ω
)

(0 ≤ β < α ≤ 1) .
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