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Abstract: In this paper, an analogous of the Heisenberg’s inequality is established and three inequalities that constitute

local uncertainty principle for the generalized Fourier—Laguerre transform in several variables are developed.
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1. Introduction

It is well known that the uncertainty principle asserts that a nonzero function and its Fourier transform cannot
both be sharply localized. In quantum mechanics, this principle says that an observer cannot simultaneously and
precisely determine the values of position and momentum of quantum particule. A mathematical formulation
of this physical idea, usually called Heisenberg’s inequality, was developed by Heisenberg [5] in 1927, for
f € L*(R"), as follows:

(/nx?|f($)|2da?> (/Rn»sﬂf(é)fds) > i (/Rn|f(x)|2dx>2, 1<j<n,

where f is the Fourier—Plancherel transform given for f € L (R™) N L% (R™) by

ey L —i(€,x)
FO = g [ @

Other formulations of this principle have been given in several works [1, 11-13]. Recently, many works have
been dedicated to generalize this principle by considering generalized Fourier transforms like Dunkl transform

[14, 17], Hankel transform [15], Fourier-Laguerre transform [10] (in case of Laguerre function of one variable).

In 1978, Faris [2] obtained various inequalities that generalize and improve the Heisenberg uncertainty
principle. These results were called local uncertainty principles and they say that not only must the transform
of a concentrated function be spread out, but that it cannot be too localized at any point. In 1987, Price [9]
developed a family of inequalities in their sharpest forms which more directly displays the principle of local

uncertainty as follows:
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e Let a > 7, there exists a constant K, which verifies the following inequality for all measurable set F

of R™ such that 0 < m (E) < +oc and f € L? (R"):

2_n

~ 2 n
[ |F@[ de < Keam (1155 11" 105

where

S

LE)TO-2) (2 1)
o = i (3) (- 3)

20

e Let 0 < a < 3, there exists a constant C, , such that for all measurable set £ of R™ and f € L? (R™)

we have:
~ 2 a
LIF @] de < o (@ 121" 112,

where

2 9 2a_q
n (6] "
Can: 1 5 e o\ 1——
) <2n+1a2ﬂ-21" (g)) < n >

The aim of this paper is to establish Heisenberg inequality and local principle inequalities related to the
multivariate Laguerre function. At the end of this paper, we prove that the Heisenberg inequality can be
deduced from the inequalities of local uncertainty principle that we will establish. Notice that, in framework of
Laguerre function of one variable, analogous results are obtained by Rahmouni in [10].

The outline of the content of this paper is as follows:

In the second section, we give some results concerning the generalized Fourier-Laguerre transform §, (in
case of Laguerre function of several variables), which can be useful later. In the third section, we establish the
Heisenberg’s inequality : if a, b > 0 then there exists C' := C (a,n,a,b) > 0 such that for all f € L2 (K) we

have

—a __
a+2b

(mNES )

_2b
1, Ol I3 5

2O, -

Ve

In the fourth section, building on the ideas of Faris [2] and Price [8, 9], we develop a family of inequalities
in their sharpest forms which constitute the local uncertainty principle for the generalized Fourier—Laguerre

transform as follows :

e Let 3 be a real number such that 0 < 8 < |a| +n+ 1, there is a constant K := K («, ,n) such that for
all f € L? (K) and every measurable set E C N* x R with 0 < 7, (E) < oo,

I3 (f) xlla., < K (7o (E)) T

o],

e Let 8 be a real number such that 8 > |a] + n+ 1, there is a constant M := M (a, 8,n) such that for
every f € L2 (K) and every measurable set £ C N* x R with 0 < v, (E) < oo, we have

1 laltnt1 |a|+n+1

I8 () XE N, <M (0 EDH 1o, 7 s, 7
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e Let 3= |al+n+1, then there is a constant Q := Q (a,n) such that for all nonzero function f € L2 (K)
and measurable set £ C N™ x R such that 0 < 7, (E) < co, we have

1 1—1
15 (f) xEll,, <Q(a (B)20=H50 | fy,"

1
B

@ ol
2,Ma

2. Preliminaries
In this section, we collect some results which constitute harmonic analysis associated with the multivariate

Laguerre function. For more details we refer the reader to [7].
Let K = [0,400)" X R and a = (a1, - ,a,) € (0,400)™. For (m,\) € K = N" x R, we define the
function V7 | on K by

oy (x,t) = ei’\tS% (\)\| x2) ,

m,A

where 22 = (2%,---,22) for x = (21, -+ ,7,) € (0,400)" and £% is the Laguerre function with several

variables of degree |m| and order a defined on [0,400)" by

n

Lo (x) = H Lok (xy)

k=1

L3 being the Laguerre function on Ry of degree my and order oy which is

L7k is the Laguerre polynomial of degree my and order ay.

Notice that for £k € N and 5 > 0 the Laguerre polnomial L’g is defined in terms of the generating function by

=X s 1 .
L (r) = ———5 e T (2.1)
poars (1 - t)B+

We denote by L%, the multivariate Laguerre polynomial of degree |m| and order o defined by

Lo, (x) = [] Lok (2x): 2 € [0,+00)" .
k=1

The generalized Fourier—Laguerre transform § is defined on K=N"xR by :

5(F) (m,)\):/Kf(x,t)\Il,‘f%_,\ () dna (2,) , f € LL(K) |

where drn,, is the positive measure defined on K by :
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We denote LP (K), 1 < p < 400, the space of measurable functions on K such that

1/

Pl (/K|f($,t)|p Ane (x,t)>p < 400

and L? (K) , 1 < p < 400, the space of measurable functions on K such that

1
o, = ([ om0 0 () < o0
dv, being the positive measure defined on K by :

/]Kg(m’)\) dve (m, ) = (27T)"_1 Z L2 (0) / g (m,\) ‘/\||04+n d\

meNn R
The generalized Fourier—Laguerre transform § satisfies the Plancherel formula
I8 (Dl = 1115, -
A generalized convolution product * is defined on K and verifies the inequality
1S glla . < fll2, 9l
where f € L2 (K) and g € L}, (K) (see [7]).

Notation 2.1 We denote by :

1. 6, the dilation on K defined by :

0p (x,t) = (gx, ta) , 0>0.

2. 5; the dilation on K defined by :

5; (m,A) = (m,7?X), r>0.

3. |.lx the homogenous norm on K related to the family of dilations (0,) -

IS

@0l = (Jlall* +4¢)

4. A the operator defined on K by :

2
A=T2_4 FQ""E
! ox)

where T'y and Ty are defined on [7, Page 5].
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5. ||z the quasinorm on K defined by :

(om Wl =41 (fml + )

6. Bk, the ball in K centered at (Ogn,0) of radius r
Bk, = {(z,t) € K; |(@,t)]x <r} ,
Bf{,r its complementary in K and Xy, » Xsg their characteristic functions.
is the ball in K centered at (Onn o) of radius r

Similarly, Bg

,T

By, = {(m, N eR; [(m,A)]g < r} .

7. fo the dilated of the function f defined on K by :
o, = 00 1 (53 (1))

preserving the LL (K) norm of f with respect to the measure dn, .

Lemma 2.2 (1) Let ¥ = {(z,t) e K | |(x,t)|x =1} be the unit sphere in K. We denote by wq,n the surface
area of ¥ and Q, , the volume of the ball Bk 1. Then,

()

onan=3T (ja| +n)T (7‘6“';"“)

wa,n =

and

Wa,n
Qan

T2 (jal+nt1)

(2) The measure of BR,r with respect to the Plancherel measure dvy, is finite and we have

Yo (BK r) = r‘a|+n+15a,n ) (2.4)
where
,R_n712n 1 [al+n+1
Ean = ——— L2 (0
’ |a\+n+1m§n ()<4m+2a|+2n)
Proof

(1) We begin by remembering that the polar coordinates in R™ are given by the following smooth diffeomor-

phism ¢, from the open set

{(r,el,...,en,l); r € (0,400); (61)1cicns € (0,m)" % and 6, E(—W,W)}
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into R™ deprived of a half closed hyperplane,

k—1 n—1
o(r,01,...,0,_1)=r cos@kHsinﬁj ,HsinHj

J=1 I<k<n—1 77!

The Jacobian of ¢ is given by :
n—2
rnl H (sin )" "1,
k=1

By a similar reasoning to [4, Lemma 1], we consider the following smooth

diffeomorphism
G : (0, +00)" x (—g, g) — (0,400)" xR

2
(s,0) — ( cos(@)s,”i”sin(@))

of which the Jacobian is equal to @ (cos 0)%_1. Using firstly G and then ¢, we can deduce that if f

is an integrable function on K, then

+oo
/K F (@, 8) dne (2, 1) = /0 /Z p2lalb2nt (5 (¢)) dedr (2.5)

where

¢ = (\/COSH ©(1,01,...,60h_1), 811219) eX,

for 6 € (=5,%) and (6;),<;c,, ;€ (0, g)n—l :

The surface area of ¥ is given by :

J,
P
= % <H F(ozkl+ 1)) (/_2 (COSQ)‘O‘Hn*l d9>

k=1 Bl

Wa,n

n—1 jus
2
X | I / (cos B;)*** T (sin Qk)2 i +2n = 2k =1 oy, ,
k=170

where |af, = Z a;. We remind that the beta function is defined for % (a) > 0 and R (b) > 0 by :
j=k+1

I'(a)T(b)

B(a,b):/O sl (1—s) s = NCET)
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By straightforward calculus using a suitable change of variable and the beta function, we find the advertised

value of wq . The volume €, , is simply deduced from relation (2.5) :

1
W
Qa,n:/ dna (%t):/ /r2‘“|+2”+1dr dg = — Lam
B 0 /2 2(Jel +n+1)

(2) We notice that
r

() €By = AN <— .
4 (jml + =)

Then, the equality (2.4) is simply deduced since

Vo (BK,T) = 2ngnt Z Ly, (0)/04(‘”1‘4r 3 ))\laH_nd)\.

meN™

Furthermore, we have
L3, (0) _ La)
(4[m] +2]a] +2n)! T et

m L2 (0)
d k that LY (0) ~ —~—— Th the famil — ble if and onl
and we know that L;* (0) X Tt D) en, the family E |m|la\+n+1 is summable if and only
meN™
mit...mon

if the family Z

meN™

W is also summable. We deduce that -, (BKT) is finite since from [16,

1
chapter XIV], Z ——— is summable.

n+1
meN™ | |
O
3. Heisenberg’s inequality for the generalized Fourier-Laguerre transform
In this section, we use the heat kernel associated with the differential operator
- o2 20, +1 0 0?
L=- — — p—
Z <8:Uﬁ + xy  Oxy +xk8t2>
k=1
to establish the Heisenberg’s inequality.
Notice that the operators A and L satisfy these properties which are proved in [7]
L\IJ%,)\ = |(ma)‘>|K \II’I?;L,)\ )
a 4 g
qum,k = |(xat)|]K (m,A)
S(Lf)(m,A) = —=|(m, Mg S (f) (m, A) . (3.1)
We define L for b € R, as in [18, Page 117] . Then, by (3.1) we get
b
T (L2f) (m, A) = [(m, N[z T (f) (m, ) (3.2)
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Proposition 3.1 Let s > 0. Define the heat kernel hg associated with the operator L by, for each (xz,t) € K,

hy (2, 1) = / el we | (2,1) dya (m, ).
K

Then

_ Al SN :
he (z,t) = (270)" 1 |7 - coth(2Als) LiXt gy
(@) = (2m) /R<23mh(2|x|s)> ¢ €

Proof For s> 0 and (z,t) € K, we have

hs(a,t) = (2m)"" Y L5, (0) / e s ImNEwe | (2, ) A1 dA
meNn R

= (m)" ! / R (z) eMd,
R

where
Csl(mn) | llzl? s o J+n
h? (1‘) = Z (6 I( ’)‘)‘Ke 2 HLmkk (l/\|xi) |>\|‘0‘|+ )
meN™ k=1
CRUI® o\ [(af4n)s |y (lal+n - —4|A|mys 1 o 2
= e 2 e [A| H Z e Lok (I 23) | -
k=1 \mpeN

We use relation (2.1) to obtain the desired equality. O

By a straightforward calculation, we obtain:

Proposition 3.2 The heat kernel hs satisfies the following properties for all (x,t) in K

0
(1) <L+68) (hs (x,t)) =0.
(2) For s, t >0, hyxhy =hgsie.

(3) hs(z,t) >0, hy(z,t) = hs (x,—t) and / hs (z,t) dne (x,t) = 1.
K

(4) For all ¢ >0, we have hyz (8, (z,t)) = o~ 2+t (2 ¢).
Furthermore,
F(hs) (mA\) =e™° [(m: Mg

A reasoning similar to [6, Lemma 3.5] allows us to prove the following inequality:

Lemma 3.3
he (z,t) < Csf(la‘+n+1)67%|($,t)\§ :

where A and C are two positive constants.
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For the proof of the main result of this section namely the inequality of Heisenberg, we will need the

following two lemmas:

Lemma 3.4 The function hs belongs to L? (K) and we have

_lal+nt1
2

||hs\|2},,a = Dans ) (3.3)

where

1
n—1 ptoo lol+n 2
Do, =" / o du)
’ 2l J, sinh (4u)

Proof By the Plancherel formula (2.2), we have

17

O ¢

n=1 [ —al(al+n)s
(2m) /Re H

k=1

< ST Lok (0) e—slmk8> I[N

mp€EN

Using the generating function identity (2.1) for each Laguerre polynomial Lgk we get

—1 e s e loe]+

= e | (ahl?zm)i o

n— e’} |a\+n
S 187(Ia\+n+1> e du
2lal 0 2sinh (4u) ’

2
||h‘SH2,17&

O
We denote by {H® | s> 0} the heat semigroup associated to the operator L, where H® (x,t) =
fxhs(z,1).
Lemma 3.5 Let 0 < a < |a|+n+ 1, then for all f in L% (K) there exists a positive constant C' such that
1 ()2, < 52 M@ O - (3.4)

Proof For r >0, weput f. = fx, and f"=f— f.. Then

[ @)l < [f (@ 0] (2, )]k -
The above relation together with relation (2.3) and the fact that ||k, , =1 give us the following inequalities
I (F W2y < iy WPslly e S U o, < 77 M@ D)k fllsy, - (3.5)
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On the other hand, we use relations (2.3) and (3.3) to find

IH (f)llam, = e * hsllay,,

1frll1 o 15l

IN

< Wl |16 Ol x|, DI S,
%
S ( Wa,n > T(7a+|a\+n+1)fDa n
2(—a+|aj+n+1) '
_laltn+1
x s @ )l £y,
< Copr oD =B @ e fl,, (3.6)

where

Nl

wan
C,n,=D .
o “’"(2(—a+|al+n+1)>

Using relations (3.5) and (3.6), we deduce that, for all » > 0,

I1H* (f)

2,70 ||f = h8||2,na < fex h8||2,na + 1" * h8||2,na

< o ||(a, t)|% f||2 " (1 + Ca,nr(laH”Jrl)S* \al%wrl) .
In particular for r = /s, we get

I f = hSHQ,nQ < (1+Capn) 5% |||($at)|]%f||2,na .

Theorem 3.6 Let a, b> 0. Then, there exists C := C (a,n,a,b) > 0 such that for all f € L2 (K) we have

a
a+2b

[ NS D" = Cll oy, - (3.7)

_2b
1, Ol Fll35

Proof

1. Assume that 0 < a < |o| +n+ 1 and b < 1. By using relation (3.4), we get
[z, < IHs (Hllyp, + 11— Hs) (f)

O @Ol + [ 0= Y GD 1) 1], 38

2,Na

IN

Let g = (sL)bf. Then, for ¢t > 0, since the function: ¢ — (1 —e~*)¢~* is bounded when b < 1, we
deduce by the Plancherel formula (2.2) and relation (3.2) that

- maar],, = (=) s

2,%a

Cos” |[|m NEF ()], (3.9)

2%

IN
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Substituting (3.9) in (3.8), we get

1fll,, <C ( G O ., +s”H|<m,A>|%%<f>Hm) ~

Optimizing in s, we obtain for all 0 < a < |a|+n+1 and b <1

R
a+2b

11l < C U@ Ol Flae ([10m, A& F (f)

3.10
. (3.10)

m, A

b
[(m, Nz [(m, Nz
2. Let 0<a<|a|+n+1and b>1. Then, we have ————= <14 | ———=] for all € > 0. It follows
€ €

that

12, Mg & Dl < Nl +7 [[1m NIES (1)

2,%a

Optimizing in €, we get

1
b

1l6m Mg & (D, <bO— 11 l58 |[l0m 2155 ()

2,%

We get the desired inequality from the above relation together with the following inequality

_a_
a+2
2 Yo

1l < C G DIE AT [l16m, Vg 3 (F)

which is deduced from relation (3.10) .

3. If a > |a| +n+ 1, then for all € > 0 we have

(@Bl o, M)
9

|K . It follows
Sa

(@ Dl Fllo,,, <ellf

o T €M@ Ol fll,, -
Optimizing in &, we get

1—1

1_ 1
@, Ol 1y, < ala=1 " Il Ml Ol £l5,. - (3.11)

From relation (3.10), we have

i b T
1f1l2,., < CllIG@ )k iz |[1ms Mg S (f) o, (3.12)
Combining relations (3.11) and (3.12), we get the result.
O
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4. Local uncertainty principle

In this section, we establish three inequalities in their sharpest form that constitute local uncertainty principle

associated with the multivariate Laguerre function.

Theorem 4.1 Let 8 be a real number such that 0 < 8 < |a|+n+1, there is a constant K := K («, 8,n) such
that for all f € L% (K) and every measurable set E C K with 0 < Yo (F) < 00, we have

s < K (o (E))TimD

15 (f) xe

1@ DIE /]

)
2,Na

where

s
K — [@an (=B + || +n+1)\ZTF30  |a|4+n+1
- 22 “BHlalFn+l

Proof Let 0 <3 <|a|+n+1 and fe L2 (K). For all r >0, we have

18 (D xelan, < 18 Fxs) Xellyn, + |18 (Fxse) xel,..

1
< (a (B)? I3 (X8 loo , + 18 (FX5) 5,
1
g (’ya (E))2 ||fXB7‘ 1,M« + H% (fXB;) ’27’)’a . (41)
On the one hand, by Hélder’s inequality, we get
1x8 N, < ||l 0l (@ Dl f
XB, 1,Ma >~ ) K XB, ) K
2,Na 2,Ma
S s [0 31 (4.2)
where
w 3
A = o .
o (2<—6 +laf +n+ 1))
On the other hand, we apply Plancherel formula (2.2), we get
I8 (Fxae)llan, = I1x8ell,
< i@ ol xe| i@ o]
0, N 2,Ma
< i@, (4.3)
2,Na
Now, combining the relations (4.1), (4.2), and (4.3), the following relation holds for all r > 0,
- 3 - al+n
15 (f) xelly,, < (r Bt (Vo (B))Z Ay g pr Pl +1> H|(x7t)|£fH2n :
We minimize the above relation to find the desired inequality. O
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Theorem 4.2 Let 8 be a real number such that § > |a| +n+ 1, there is a constant M := M («, 8,n) such
that for every f € L2 (K) and every measurable set E C K with 0 < yq (E) < 00, we have

QH_,H. |0‘\+n+1
I3 (F) xplly ., < M (0 (B)) X017
where
1
2 _laltnt1
TWa,n < |OZ| +n—+1 ) 28
M =
2(8 - (Ja| +n+ 1)) sin (WWT”H) —(la| +n+1)

Proof Since 8 > |a| +n + 1, the function

(2,1) —> (1 + |(x,t)|§f)_

belongs to L} (K) N L2 (K). By using Hélder’s inequality, a straightforward calculus gives us the following
inequalities, for every function f in L2 (K),

112

< H 1+|:ct)23) :

2,Na

112 2
2 2
[[CRATETES I I (R (0T34
2, M 2,Na

TWa,n 2 2

o (<t (1515,.. + 0l 7] ) (1.4
sin ( m=F5—"— Me

B

IN

2
Let ¢ > 0, we replace f by f, in relation (4.4). Since ||fg\|§77 = o Aal+n+1) ||f||§na and H|(x,t)|ﬂ’8< fo

Na

2
p?h—2(lal+n+1) H|(m,t)|§f” , we get for all o >0

2,Na

2 TWa,n —2(Jal+n+1) 2 28—2(|a|+n+1) H B H2
< + x,t .
Wl < o (o ¢ 1713, +e ol
Minimizing over ¢ > 0, we get
) 2(|a\+n+1> glaltntt ‘*"“
11, < M2 015, [COI .
The inequality above gives us the result since we have
1 1
15 () xellay., < I8 (NDlaqy. o (E)? < Ifl,, (a (£)? .
O
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Theorem 4.3 Let 8 = |a| +n + 1, then there is a constant Q := Q (a,n) such that for all nonzero function

f € L2 (K) and measurable set E C K such that 0 < Yo (E) < 00, we have

1
B

I8 () x5l <D (va (B) 75D || £l 7 ||I(2, )5 £

)
2,Na

where

= (Len (ol T (1 L Y i

2 la] +n

Proof Since f = |a]+n+1> 1, we have for all € >0

B
|(x7t)|]K; (m,t) cK.

@0l

€ eh

Thus, we get

1. ke Fll, < €1+ IR 1],

Minimizing the right hand side on e, we get

IO Pl < BB = D 7! 0l A7

The result follows from the relation above and the following inequality which is deduced from Theorem 4.1

135 xel., < (wa,n (|;¥| + n)) (al+nt1) (1 N 1 )

lal +n
1
X (e (B) T (@, )] £l -
O
As an application of the local uncertainty principle, based on the work of Ghobber and Jaming [3], we

are able to regain the Heisenberg’s inequality as it is detailed below

1. First case : Assume that 0 < a < |a]+n+1 and b > 0. Using Plancherel formula (2.2) and Theorem
4.1, we get for all r >0

£, = I8,

K (v (B, )) ™ @0l S, 4 lom VS ()]

2

Xz, S(f)H2 +‘

K,r 2. Yo

XBﬂ%rg(f)

2,Ya
2

IN

2% ’
By relation (2.4), we deduce that

2

1/

2 —=Tal¥n 2 — b
e S KP4 [l NSO,
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where K is given in Theorem 4.1.

By minimizing the right hand side of the above inequality over r > 0, we get the following inequality:

R T
a+2b

o NIEF ()]

_2b
1, Ol I35

> Ya,n,ab ||fH2,na )

T

where
a b _% _1
Saman = (K2EE) 77 (2) 7 (1 )7
91Uty b a 2b

Second case : Assume that a > |a] +n+ 1 and b > 0. We use Plancherel formula
4.2, we find

9 2_2\u|+an+1 olalt+ntl
112, < M (Be, ) IS5 Nl ol £ -
2
+ ‘xm 5 (/) :
or 2,7
where M is given in Theorem 4.2.
Using Plancherel formula (2.2) again, we get
2 g_glal+n+l 2|a‘+++1
Xse S(f) <Al = |[Xse S(F)
o 2,%a o 2,%a
Substituting (4.6) in (4.5), we obtain
glaltn+1 _ glaltntl
1fllz, = < MPAFTIE (2 0]k fl,, 0
o b 2|0‘H’71+1
SR o] [V S 1051 v

We minimize the right hand side of the above inequality, we get

—a
a+20b
b

2b
a at2b b
11|z, < Homan 1@ Ok flls 50 ||10ms Mg S (F)

2,%a

where

2 PI(EE==y)
2b\ et 2b
Hoz,n,a,b = ((Mzaa,n) (]— + )) .
a a

(2.2) and Theorem

(4.5)

(4.6)

Third case : Assume that a = |a|+n+1 and b > 0. Using Plancherel formula (2.2) and Theorem 4.3,

we get for all 7 > 0

2-2 2

1
2 Tal+n+1 2 a %
115, <% (v (Be,.) )™ Il G o) £115,, + \

XBI%’TS (f)

; (4.7)

2,%a
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where (2 is given in Theorem 4.3.

Again the Plancherel formula (2.2) allows us to say that

2 2
2-2 o
‘Xss 5(f) < fllzns (|Xse §(F) (4.8)
for 2,%a for 2,%a
Substituting (4.8) in (4.7), we get
: 2 [P FT a r2 -2 b C
15, = rOE™ @ )l fll5,, + 77 [0 Mg S A,
Minimizing over r > 0, we get
1 ll2n, < B 1@ Bl Fllz . |[10ms Mg S |,
where
1 % 2b ﬁ
=TaFnFt | ° ¢ a
b ()™ (2) 105).
U
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