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Abstract: In this article, we solve in closed form a class of Fredholm integral equations and systems of Fredholm
integral equations with nondegenerate kernels by using techniques of convolutions and generalized convolutions related
to the Kontorovich-Lebedev, Fourier sine, and Fourier cosine integral transforms.
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1. Introduction
Fredholm integral equation is of the form (see [4])

α(x)f(x) + λ

∫
Γ

k(x, τ)f(τ)dτ = g(x), (1.1)

where α(x), g(x) are given functions, f is unknown function, λ ∈ C , k(x, τ) is a kernel, and the integral is on
the curve Γ , or in general case Γ = Γ0 + Γ1 + ...+ Γn,Γi is collection of curve.

The Fredholm integral equation was studied first by I. Fredholm, and further developed by Riesz [3].
In the last two decades, the theory of abstract Volterra and Fredholm integral equation has undergone rapid
development. To a large extent this was due to the applications of this theory to problems in mathematical
physics, such as viscoelasticity, heat conduction in materials with memory, electrodynamics with memory, and
to the need of tools to tackle the problems arising in these fields. Many interesting phenomena are not found
with differential equations but observed in specific examples of integral equations (see [4, 5]).

However, the equation (1.1) is only solved by a method for approximating solutions. The equation (1.1)
was only solved in closed form for some classes of degenerate kernels. The solution in closed form of the equation
(1.1) in general case is still open.

In recent years, the equation (1.1) with Γ = [0, T ] and the kernel is a periodic function that has been
studied by many authors (see [1] and references therein). In [8–11, 13–15], the authors studied the equation
(1.1) in case Γ = (0,+∞) and kernel is of the Toeplitz plus Hankel type.

In this paper, we attempt to solve in closed form a class of Fredholm integral equations and systems of
Fredholm integral equations with nondegenerate kernels and Γ = (0,+∞) by using techniques of convolutions
∗Correspondence: tuantrinhpsac@yahoo.com
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and generalized convolutions related to Kontorovich–Lebedev and Fourier sine, Fourier cosine integral transform.
These convolutions and inverse formulas were studied in [6, 12, 15–17].

The main results of the article are presented in Sections 3 and 4. In Section 3, we obtain the closed
form of solutions of the equation (1.1) in the case of Γ = (0,+∞) , α(x) = 0 , λ = 1 , and the kernel
k(x, τ) = k1(x, τ) + k2(x, τ) is certain nondegenerate kernel (3.1). In Section 4, we solve in closed form a
class systems of Fredholm integral equations (4.1). The results obtained in Theorems 3.1, 3.2, 4.1, and 4.2 give
explicit formulas of solutions which contain of integral transformations such as Kontorovich–Lebedev, Fourier
sine, Fourier cosine. Each equation of system (4.1) is of the form (1.1), with Γ = (0,+∞), α(x) = 1, λ = 1 , and
the kernels k3, k4 are nondegenerated.

The key tool in proofs of results in papers [8–10, 14, 15] is Wiener–Levy theorem. However, we prove
Theorems 3.1, 3.2, 4.1 and 4.2 by a method without using Wiener–Levy theorem. Tuan et al. [13] studied the
equation (1.1) with a kernel of the generalized convolution. It is harder to make function spaces of solution for
the equation in Theorem 3.1, 3.2 if compared with results in [13].

2. Related integral transforms and function spaces
In this section, we recall several integral transform and function spaces which are usefull throughout this article.

The Fourier cosine transform (Fc ) and its inverse formula (F−1
c ) in L1(R+) are defined by (see [2])

(Fcf)(y) =

√
2

π

∫ +∞

0

f(x) cos(xy)dx, y > 0, (2.1)

and

f(x) =

√
2

π

∫ +∞

0

(Fcf)(y) cos(xy)dy, x > 0. (2.2)

The Fourier sine transform (Fs ) and its inverse formula (F−1
s ) in L1(R+) are defined by (see [2])

(Fsf)(y) =

√
2

π

∫ +∞

0

f(x) sin(xy)dx, y > 0, (2.3)

and

f(x) =

√
2

π

∫ +∞

0

(Fsf)(y) sin(xy)dy, x > 0. (2.4)

The Kontorovich–Lebedev integral transform (K ) in L1(R+) is of the form (see [12])

(Kf)(y) =

∫ +∞

0

Kiy(x)f(x)dx, y > 0, (2.5)

here, Kiy(x) is the Macdonald function (see [12])

Kiy(x) =

∫ +∞

0

e−x coshu cos(yu)dy, y ≥ 0, x > 0.

The inverse Kontorovich–Lebedev transform (K−1 ) is of the form

(K−1f)(x) = f(x) =
2

π2x

∫ +∞

0

y sinh(πy)Kiy(x)(Kf)(y)dx, y > 0. (2.6)
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In the space L2(R+) , the integral transforms (Fc), (Fs) are of the form

(
F{ c

s}f
)
(y) = lim

N→∞

∫ N

0

f(x)
{ cos xy

sin xy

}
dx, y > 0. (2.7)

The inverse transforms of the (Fc) và (Fs) are defined by formulas (2.2) and (2.4) respectively.
In the space L2(R+, x

α), α ∈ R , the Kontorovich–Lebedev integral transform (K) is of the form

(Kf)(y) = lim
N→∞

∫ N

1
N

Kiy(x)f(x)dx, y > 0. (2.8)

The inverse transform is defined by formula (2.6) .
The function space Lp(R+, γ) with the weight function γ is defined as follow (see [2])

Lp(R+, γ) =

{
f :

(∫ +∞

0

γ(x)|f(x)|p dx
) 1

p

<∞

}
, 1 ≤ p <∞.

Note that
Lp(R+) ⊂ Lp(R+, γ).

The function space Lα,β
p is introduced in a research of Yakubovich and Britvina [16]

Lα,β
p ≡ Lp(R+,K0(βx)x

α), α ∈ R, 0 < β ≤ 1.

This function spaces is equived the norm

||f ||Lα,β
p

=

(∫ +∞

0

|f(x)|pK0(βx)x
αdx

) 1
p

< +∞.

Note that Lp(R+) ⊂ Lα,β
p , Lα,1

1 ≡ L1(R+,K0(x)x
α) , and

K0(x) =

∫ +∞

0

e−x coshudu, x > 0.

3. A class of Fredholm’s type integral equations

In this section, we solve in close form a class of integral equations of Fredholm’s type with nondegenerate kernel
k(x, τ) = k1(x, τ)+ k2(x, τ) with the help of convolutions and generalized convolutions techniques. Namely, we
use the convolutions and generalized convolutions related to the Kontorovich–Lebedev (K ), Fourier sine (Fs ),
Fourier cosine (Fc ) transforms (see [12, 16, 17]) and their inverses.

Consider the following problem:

∫ +∞

0

[k1(x, τ) + k2(x, τ)]f(τ)dτ = g(x), x > 0, (3.1)
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where 
k1(x, τ) =

1

2π

∫ +∞

0

1

x
[e−x cosh(τ+θ) − e−x cosh(τ−θ)]h(θ)dθ, x, τ > 0.

k2(x, τ) =
1

2π2

∫ +∞

0

[sinh(τ + θ)e−x cosh(τ+θ) + sinh(τ − θ)e−x cosh(τ−θ)]φ(θ)dθ, x, τ > 0,

(3.2)

where h, φ are given functions in L2(R+) , g ∈ L2 (R+, x
α) (α ∈ R) is given function, and f is unknown

function.

Theorem 3.1 Suppose that π

2
(Fsh)(y) + y(Fcφ) ̸= 0 , ∀y > 0 such that

y sinh(πy)(Kg)(y)
π

2
(Fsh)(y) + y(Fcφ)(y)

∈ L2(R+),

then the equation (3.1) has the solution in L2(R+) , which is of the form

f(x) =

√
2

π

∫ +∞

0

y sinh(πy)(Kg)(y)
π

2
(Fsh)(y) + y(Fcφ)(y)

sin(xy)dy, x > 0.

Proof In order to prove this theorem, we use the generalized convolution for the Kontorovich–Lebedev, Fourier
sine transforms which is defined by (see [17]):

(f
γ1∗
1
h)(x) :=

1

2π

∫
R+

2

1

x
[e−x cosh(τ+θ) − e−x cosh(τ−θ)]f(τ)h(θ)dτdθ, x > 0, (3.3)

where γ1(y) =
1

y sinh(πy)
.

For f, h ∈ L2(R+) , the generalized convolution (f
γ1∗
1
h) ∈ L2(R+, x

α) and satisfies the following

factorization equality:

K(f
γ1∗
1
h)(y) =

π

2
γ1(y)(Fsf)(y)(Fsh)(y), ∀y > 0. (3.4)

The generalized convolution for the Kontorovich–Lebedev, Fourier transforms is defined by (see [12])

(f
γ2∗
2
h)(x) :=

1

2π2

∫
R+

2

[sinh(τ + θ)e−x cosh(τ+θ) + sinh(τ − θ)e−x cosh(τ−θ)]f(τ)h(θ)dτdθ, x > 0, (3.5)

where γ2(y) =
1

sinh(πy)
.

For f, h ∈ L2(R+) , the generalized convolution (f
γ2∗
2
h) ∈ L2 (R+, x

α) , α ∈ R and satisfies the following

factorization equality

K(f
γ2∗
2
h)(y) = γ2(y)(Fcf)(y)(Fsh)(y), ∀y > 0. (3.6)
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When the kernels k1, k2 are defined by formula (3.2), the equation (3.1) can be rewritten in the dual convolutions
equation as follow:

(f
γ1∗
1
h)(x) + (φ

γ2∗
2
f)(x) = g(x), x > 0, (3.7)

where f is unknown function, γ1(y) =
1

y sinh(πy)
, γ2(y) =

1

sinh(πy)
, h, φ are given functions in L2(R+) , g is

given function in L2(R+, x
α), α ∈ R.

Applying the (K) transform on both sides of equation (3.7) , with the help of factorization equalities
(3.4), (3.6) , we have

K(f
γ1∗
1
h)(y) +K(φ

γ2∗
2
f)(y) = (Kg)(y), ∀y > 0.

This implies that

π

2

1

y sinh(πy)
(Fsf)(y)(Fsh)(y) +

1

sinh(πy)
(Fcφ)(y)(Fsf)(y) = (Kg)(y), ∀y > 0,

or equivalent,

(Fsf)(y) =
y sinh(πy)(Kg)(y)

π

2
(Fsh)(y) + y(Fcφ)(y)

∈ L2(R+).

Thanks to the inverse formular of Fourier sine transform (2.4), we have the solution in L2(R+) as follows

f(x) =

√
2

π

∫ +∞

0

y sinh(πy)(Kg)(y)
π

2
(Fsh)(y) + y(Fcφ)(y)

sin(xy)dy, x > 0. (3.8)

2

Example 1. We use Theorem 3.1 to solve in closed form in the case

φ(x) = h(x) =

√
2

π
e−x ∈ L2(R+),

g(x) =
e−x

π2x

(√
fπx

2
− πxe2x erfe(

√
2x)

)
∈ L2(R+, x

α), α ∈ R,

then,

(Fsh)(y) =
2

π

y

1 + y2
, (Fcφ)(y) =

1

1 + y2
.

Therefore, π
2
(Fsh)(y) + y(Fcφ)(y) = (

2

π
+ 1)

y

1 + y2
̸= 0, y > 0.

Thanks to formular (2.16.48.8) in [7], we have (Kg)(y) =
y

sinh(πy) cosh(πy)
. Thus,

y sinh(πy)(Kg)(y)
π

2
(Fsh)(y) + y(Fcφ)(y)

=
y(1 + y2)

(
2

π
+ 1) cosh(πy)

∈ L2(R+), ∀y > 0.
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The solution for this case is as follows

f(x) =

√
2

π

∫ +∞

0

y(1 + y2)

(
2

π
+ 1) cosh(πy)

sin(xy)dy, x > 0.

Therefore,

f(x) =

√
2

π

π + 2

π

3

64
sech4

x

2

(
9 sinh

x

2
+ sinh

3x

2

)
, f ∈ L2(R+).

Similarly, one can solve the equation (3.1) with the following kernels
k1(x, τ) =

1

2π

∫ +∞

0

1

x
[e−x cosh(τ+θ) + e−x cosh(τ−θ)]h(θ)dθ, ∀x, τ > 0

k2(x, τ) =
1

π

∫ +∞

0

1

x
K0(

√
x2 + θ2 + 2xθ cosh τ)ψ(θ)dθ, ∀x, τ > 0,

(3.9)

where f is unknown function, and ψ ∈ L1(R+), h ∈ L2(R+), g ∈ L2(R+, x
α) are given functions.

Theorem 3.2 Suppose that
√
π

2
(Fsh)(y) + (Kψ)(y) ̸= 0 , ∀y > 0 such that

y sinh(πy)(Kg)(y)√
π

2
(Fsh)(y) + (Kψ)(y)

∈ L2(R+),

then the equation (3.1) has the solution in f ∈ L2(R+) , which can be presented in the form

f(x) =

∫ +∞

0

y sinh(πy)(Kg)(y)√
π

2
(Fsh)(y) + (Kψ)(y)

cos(xy)dy, x > 0.

Proof First, we recall the generalized convolution for the Kontorovich–Lebedev, Fourier cosine (see [17]),
defined by

(f
γ1∗
3
h)(x) :=

1

2π

∫
R+

2

1

x
[e−x cosh(τ+θ) + e−x cosh(τ−θ)]f(τ)h(θ)dτdθ, x > 0, (3.10)

where γ1(y) =
1

y sinh(πy)
.

For f, h ∈ L2(R+) , the generalized convolution (f
γ1∗
3
h) ∈ L2(R+, x

α) satisfies the following factorization

equality

K(f
γ1∗
3
h)(y) =

π

2
γ1(y)(Fcf)(y)(Fch)(y), ∀y > 0. (3.11)

The generalized convolution for the Kontorovich–Lebedev, Fourier cosine transforms (see [16]) is defined by

(f
γ1∗
4
h)(x) :=

1

π

∫
R+

2

1

x
K0(

√
x2 + θ2 + 2xθ cosh τ)f(τ)h(θ)dτdθ, ∀x > 0, (3.12)
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where γ1(y) =
1

y sinh(πy)
.

For f ∈ L1(R+), h ∈ L0,1
2 , the generalized convolution (f

γ1∗
4
h) ∈ L2(R+, x

α), α ∈ R and satisfies the

following factorization equality

K(f
γ1∗
4
h)(y) =

√
π

2
γ1(y)(Fcf)(y)(Kh)(y), ∀y > 0. (3.13)

With the kernel k1, k2 defined by formula (3.9), the equation (3.1) can be rewritten in the following dual
convolutions form

(f
γ1∗
3
h)(x) + (ψ

γ1∗
4
f)(x) = g(x), x > 0, (3.14)

where f is unknown function, h, ψ, g are given functions, and h ∈ L2(R+), ψ ∈ L1(R+), g ∈ L2(R+, x
α).

Applying Kontorovich–Lebedev transform on both sides of equation (3.14), we have

K(f
γ1∗
3
h)(y) +K(ψ

γ1∗
4
f)(y) = (Kg)(y), ∀y > 0,

By the factorization equalities (3.11), (3.13), we obtain

π

2

1

y sinh(πy)
(Fcf)(y)(Fch)(y) +

√
π

2

1

y sinh(πy)
(Fcf)(y)(Kψ)(y) = (Kg)(y), ∀y > 0.

Moreover, by conditions of the theorem, we have

(Fcf)(y) =
y sinh(πy)(Kg)(y)

π

2
(Fsh)(y) +

√
π

2
(Kψ)(y)

∈ L2(R+).

By the inverse Fourier cosine transform, we obtain

f(x) =

∫ +∞

0

y sinh(πy)(Kg)(y)√
π

2
(Fsh)(y) + (Kψ)(y)

cos(xy)dy, x > 0. (3.15)

It is clear that f ∈ L2(R+) . 2

4. A class of systems of two integral equations of Fredholm’s type
In this section, we consider a class of systems of two integral equation of Fredholm’s type with nondegenerate
kernels k3(x, τ), k4(x, τ) . We will obtain the solution in close form of these systems by using the techniques
of convolution, generalized convolution related to the Kontorovick–Lebedev, Fourier sine and Fourier cosine
transforms. These convolutions, generalized convolution were studied in [6, 15, 17].

Consider the following system of Fredholm’s integral equations
f(x) +

∫ +∞

0

k3(x, τ)g(τ)dτ = q1(x)∫ +∞

0

k4(x, τ)f(τ)dτ + g(x) = q2(x),

(4.1)
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where k3, k4 are nondegenerate kernel as follows
k3(x, τ) =

∫ +∞

0

1

2πx

[
e−x cosh(τ+θ) − e−x cosh(τ−θ)

]
φ(θ)dθ, ∀x, τ > 0,

k4(x, τ) =

∫ +∞

0

1

τ

[
e−τ cosh(x−θ) − e−τ cosh(x+θ)

]
ψ(θ)dθ, ∀x, τ > 0,

(4.2)

where q2, φ ∈ L2(R+), ψ ∈ L0,β
2 (0 < β ≤ 1), q1 ∈ L2(R+, x

α), (α ∈ R) are given functions, and f, g are
unknown functions.

Theorem 4.1 Suppose that the following conditions hold true

(C1) : 1− π

2y sinhπy

1

sin y
Fs

(
φ

γ2∗
Fs

ψ

)
(y) ̸= 0,∀y > 0 ,

(C2) :

2y sinh(πy) sin y(Kq1)(y)− πFs

(
φ

γ2∗
Fs

q2

)
(y)

2y sinh(πy) sin y − πFs

(
φ

γ2∗
Fs

ψ

)
(y)

 ∈ L1(R+) ∩ L2(R+),

(C3) :

2y sinh(πy) sin y[(Fsq2)(y)− Fs

(
q1 ∗

5
ψ
)
(y)]

2y sinh(πy) sin y − πFs

(
φ

γ2∗
Fs

ψ

)
(y)

 ∈ L1(R+) ∩ L2(R+).

Then the problem (4.1) has the solution in the form

f(x) = K−1

2y sinh(πy) sin y(Kq1)(y)− πFs

(
φ

γ2∗
Fs

q2

)
(y)

2y sinh(πy) sin y − πFs

(
φ

γ2∗
Fs

ψ

)
(y)

 (x), ∀x > 0,

g(x) = F−1
s

2y sinh(πy) sin y[(Fsq2)(y)− Fs

(
q1 ∗

5
ψ
)
(y)]

2y sinh(πy) sin y − πFs

(
φ

γ2∗
Fs

ψ

)
(y)

 (x), ∀x > 0.

Morover, f, g ∈ L1(R+) ∩ L2(R+) .

Proof
In order to prove the theorem (4.1), we will use the generalized convolution with the weight function

γ1(y) for the Kontorovich–Lebedev and the Fourier sine transform
(
f

γ1∗
1
h
)

(see [17]) defined by (3.3) and

satisfy the equality (3.4). We also use the generalized convolution for the Fourier sine, Kontorovich–Lebedev
transforms (see [15]) which are defined by(

f ∗
5
h
)
(x) :=

∫
R2

+

1

τ

[
e−τ cosh(x−θ) − e−τ cosh(x+θ)

]
f(τ)h(θ)dτdθ, ∀x > 0. (4.3)

For f ∈ L1

(
R+,

1√
x3

)
, h ∈ L1(R+) , we get that

(
f ∗

5
h
)
∈ L1(R+) , and the following factorization equality

holds
Fs

(
f ∗

5
h
)
(y) = (Kf)(y)(Fsh)(y), ∀y > 0. (4.4)
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As proof presented in Tuan et al. [15], we can show that, if f ∈ L2(R+) , and h ∈ L0,β
2 , with 0 < β ≤ 1 , then(

f ∗
5
h
)
∈ L2(R+) .

The generalized convolution with the weight function γ2(y) for the Fourier sine transform is of the form
(see [6])

(
f

γ2∗
Fs

h

)
(x) :=

1

2
√
2π

∫ +∞

0

f(y) [sign(x+ y − 1)h(|x+ y − 1|)− h(x+ y + 1)

+sign(x− y + 1)h(|x− y + 1|)

−sign(x− y − 1)h(|x− y − 1|)] dy, ∀x > 0, (4.5)

where γ2(y) = sin y .

For f, h ∈ L1(R+) , the convolution
(
f

γ2∗
Fs

h

)
∈ L1(R+) and satisfies the following factorization equality

Fs

(
f

γ2∗
Fs

h

)
(y) = sin y(Fsf)(y)(Fsh)(y), ∀y > 0. (4.6)

In case the kernels k3, k4 are defined by formula (4.2), system (4.1) becomes

f(x) +
(
g
γ1∗
1
φ
)
(x) = q1(x), ∀x > 0(

f ∗
5
ψ
)
(x) + g(x) = q2(x), ∀x > 0,

(4.7)

where φ, q2 ∈ L2(R+), ψ ∈ L0,β
2 (0 < β ≤ 1), q1 ∈ L2(R+, x

α) (α ∈ R) are given functions, and f, g are unknown
functions.

Applying the Kontorovich–Lebedev transform, Fourier sine transform respectively on both sides of the
first and the second in the system of equations (4.7)

(Kf)(y) +K
(
g
γ1∗
1
φ
)
(y) = (Kq1)(y), ∀y > 0,

Fs

(
f ∗

5
ψ
)
(y) + (Fsg)(y) = (Fsq2)(y), ∀y > 0.

Combining the factorization equalities (3.4), (4.4),(4.6) we obtain

(Kf)(y) +
π

2y sinh(πg)
(Fsg)(y)(Fsφ)(y) = (Kq1)(y), ∀y > 0,

(Kf)(y)(Fsψ)(y) + (Fsg)(y) = (Fsq2)(y), ∀y > 0.
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We have

∆ =

∣∣∣∣∣ 1
π

2y sinh(πy)
(Fsφ)(y)

(Fsψ)(y) 1

∣∣∣∣∣ = 1− π

2y sinh(πy)
Fsφ(y)(Fsψ)(y)

= 1− π

2y sinh(πy)

1

sin y
Fs

(
φ

γ2∗
Fs

ψ

)
(y), ∀y > 0,

∆1 =

∣∣∣∣∣(Kq1)(y)
π

2y sinh(πy)
(Fsφ)(y)

(Fsq2)(y) 1

∣∣∣∣∣
= (Kq1)(y)−

π

2y sinh(πy)

1

sin y
Fs

(
φ

γ2∗
Fs

q2

)
(y), ∀y > 0,

∆2 =

∣∣∣∣ 1 (Kq1)(y)
(Fsψ)(y) (Fsq2)(y)

∣∣∣∣ = (Fsq2)(y)− Fs

(
q1 ∗

5
ψ
)
(y), ∀y > 0.

Under the conditions (C1) and (C2) we get

1− π

2y sinh(πy)

1

sin y
Fs

(
φ

γ2∗
Fs

ψ

)
(y) ̸= 0, ∀y > 0,

or,

(Kf)(y) =

2y sinh(πy) sin y(Kq1)(y)− πFs

(
φ

γ2∗
Fs

q2

)
(y)

2y sinh(πy) sin y − πFs

(
φ

γ2∗
Fs

ψ

)
(y)

, ∀y > 0,

and (Kf)(y) ∈ L1(R+) ∩ L2(R+) . Using the inverse Kontorovich–Lebedev transform K−1 we have

f(x) = K−1

2y sinh(πy) sin y(Kq1)(y)− πFs

(
φ

γ2∗
Fs

q2

)
(y)

2y sinh(πy) sin y − πFs

(
φ

γ2∗
Fs

ψ

)
(y)

 (x), ∀x > 0, (4.8)

and f ∈ L1(R+) ∩ L2(R+).

Under the conditions (C1) , (C3) we have

(Fsg)(y) =
2y sinh(πy) sin y

[
(Fsq2)(y)− Fs

(
q1 ∗

5
ψ
)
(y)
]

2y sinh(πy) sin y − πFs

(
φ

γ2∗
Fs

ψ

)
(y)

, ∀y > 0.

From the inverse Fourier sine transform, we have

g(x) = F−1
s

2y sinh(πy) sin y[(Fsq2)(y)− Fs

(
q1 ∗

5
ψ
)
(y)]

2y sinh(πy) sin y − πFs

(
φ

γ2∗
Fs

ψ

)
(y)

 (x), ∀x > 0. (4.9)
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and g ∈ L1(R+) ∩ L2(R+.) 2

Simillarly, one can solve system (4.1) in close form for the following case of kernel


k3(x, τ) =

∫ +∞

0

1

πx
K0

(√
x2 + θ2 + 2xθ cosh τ

)
ξ(θ)dθ, ∀x, τ > 0,

k4(x, τ) =

∫ +∞

0

1

2x
exp

[
−1

2

(
τθ

x
+
τx

θ
+
θx

τ

)]
η(θ)dθ, ∀x, τ > 0,

(4.10)

where ξ ∈ L0,1
2 , η ∈ L1(R+,K0(x)) , q1, q2 ∈ L2(R+, x

α), α ∈ R are given functions, and f, g are unknown
functions.

Theorem 4.2 Suppose that the following conditions hold true

(C4) : 1−K
(
η
γ1∗
4
ξ
)
(y) ̸= 0, ∀y > 0 ,

(C5) :

K
(
q1 −

(
q2

γ1∗
4
ξ
))

(y)

1−K
(
η
γ1∗
4

)
(y)

 ∈ L2(R+, x
α),

(C6) :

K
(
q2 −

(
η ∗

6
q1

))
(y)

1−K
(
η
γ1∗
4
ξ
)
(y)

 ∈ L2(R+, x
α) .

Then the system (4.1) has the solution which can be written in the following form

f(x) = K−1

K
(
q1 −

(
q2

γ1∗
4
ξ
))

(y)

1−K
(
η
γ1∗
4

)
(y)

 (x),

g(x) = K−1

K
(
q2 −

(
η ∗

6
q1

))
(y)

1−K
(
η
γ1∗
4
ξ
)
(y)

 (x).

Moreover, f, g ∈ L2(R+, x
α) (α ∈ R) .

Proof In order to prove this theorem, we will use the generalized convolution with the weight function

γ1(y) for the Kontorovich–Lebedev, Fourier cosine transforms
(
f

γ1∗
4
h
)

which can be defined by (3.12) and the

respectively factorization equality (3.13). We also use the Kontorovich–Lebedev convolution which is of the
form (see [6]):

(
f ∗

6
h
)
(x) :=

∫
R+

2

1

2x
exp

[
−1

2

(
τθ

x
+
τx

θ
+
θx

τ

)]
f(τ)h(θ)dτdθ, ∀x > 0. (4.11)

If f ∈ L2(R+, x), h ∈ L1(R+,K0(x)) , then
(
f ∗

6
h
)
∈ L2(R+, x) and the following factorization equality

holds

K
(
f ∗

6
h
)
(y) = (Kf)(y)(Kh)(y), ∀y > 0. (4.12)
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For the kernels k3, k4 defined by (4.10), the system (4.1) becomesf(x) +
(
ξ
γ1∗
4
g
)
(x) = q1(x), ∀x > 0,(

η ∗
6
f
)
(x) + g(x) = q2(x), ∀x > 0,

(4.13)

where ξ ∈ L0,1
2 , η ∈ L1(R+,K0(x)), q1, q2 ∈ L2(R+, x

α), α ∈ R are given functions.
Applying the Kontorovich–Lebedev transform on both sides of (4.13)(Kf)(y) +K

(
ξ
γ1∗
4
g
)
(y) = (Kq1)(y), ∀y > 0,

K
(
η ∗

6
f
)
(y) + (Kg)(y) = (Kq2)(y), ∀y > 0,

combining the formula (3.13), (4.12) we have(Kf)(y) +

√
π

2
γ1(y)(Fcξ)(y)(Kg)(y) = (Kq1)(y), ∀y > 0,

(Kη)(y)(Kf) + (Kg)(y) = (Kq2)(y), ∀y > 0.

We have

∆ =

∣∣∣∣∣∣ 1

√
π

2

1

y sinh(πy)
(Fcξ)(y)

(Kη)(y) 1

∣∣∣∣∣∣ = 1−K
(
η
γ1∗
4
ξ
)
(y), ∀y > 0,

∆1 =

∣∣∣∣∣∣(Kq1)(y)
√
π

2

1

y sinhπy
(Fcξ)(y)

(Kq2)(y) 1

∣∣∣∣∣∣
= (Kq1)(y)−K

(
q2

γ1∗
4
ξ
)
(y) = K

(
q1 −

(
q2

γ1∗
4
ξ
))

(y), ∀y > 0,

∆2 =

∣∣∣∣ 1 (Kq1)(y)
(Kη)(y) (Kq2)(y)

∣∣∣∣ = (Kq2)(y)−K
(
η ∗

6
q1

)
(y), ∀y > 0,

= K
(
q2 −

(
η ∗

6
q1

))
(y), ∀y > 0.

Under conditions (C4) and (C5) we get 1−K (η ∗γ1

4 ξ) (y) ̸= 0, ∀y > 0 , then

(Kf)(y) =
K
(
q1 −

(
q2

γ1∗
4
ξ
))

(y)

1−K
(
η
γ1∗
4

)
(y)

∈ L2(R+, x
α), α ∈ R,

or,

f(x) = K−1

K
(
q1 −

(
q2

γ1∗
4
ξ
))

(y)

1−K
(
η
γ1∗
4

)
(y)

 (x) ∈ L2(R+, x
α). (4.14)

Under conditions (C4) and (C6) we have

(Kg)(y) =
K
(
q2 −

(
η ∗

6
q1

))
(y)

1−K
(
η
γ1∗
4
ξ
)
(y)

∈ L2(R+, x
α), α ∈ R.
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This implies that

g(x) = K−1

K
(
q2 −

(
η ∗

6
q1

))
(y)

1−K
(
η
γ1∗
4
ξ
)
(y)

 (x) ∈ L2(R+, x
α).

2
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