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1. Introduction
Investigation of lakes in the geological record, particularly 
in the field of limnogeology, has progressed rapidly over the 
past 2 decades (Gierlowski-Kordesch and Rust, 1994; Last, 
1994; Valero Garcés et al., 1997; Bohacs et al., 2000, 2003). 
Consistent with this worldwide pattern, the mineralogy, 
petrography, and geochemistry of volcanic and pyroclastic 
rocks (especially ignimbrites) and the tectonics of the 
Cappadocian Volcanic Province (CVP) have been studied by 
many researchers (Beekman, 1966; Pasquaré, 1968; Innocenti 
et al., 1975; Pasquaré et al., 1988; Temel, 1992; Göncüoğlu and 
Toprak, 1992; Le Pennec et al., 1994, 2005; Schumacher and 
Mues-Schumacher, 1996; Toprak, 1996, 1998; Schumacher 
and Schumacher, 1997; Temel et al., 1998; Dirik, 2001; Viereck-

Goette et al., 2010). In this region, the volcano-sedimentary 
rocks and associated palaeosols and calcretes have received 
little attention (Le Pennec et al., 2005; Gürel and Kadir, 2006, 
2008, 2010; Gürel and Yıldız, 2007; Gürel, 2009; Yavuz-Işık and 
Toprak, 2010; Kadir et al., 2013). Additionally, no information 
has been provided concerning the local palaeoclimates, and 
the effects of the Messinian Salinity Crisis on terrestrial areas 
surrounding the Mediterranean Sea are currently a matter of 
discussion. Therefore, the goals of this paper are to describe 
the mineralogy, geochemistry, and depositional environment 
of the Late Miocene/Pliocene fluviolacustrine deposits and 
associated palaeosols and calcretes within the CVP and 
to interpret the palaeoenvironmental and palaeoclimatic 
evolution data. 

Abstract: This paper investigates the mineralogy, geochemistry, and depositional environment of Late Miocene/Pliocene fluviolacustrine 
deposits, including multiple ignimbrite levels and andesitic and basaltic lavas, within the Cappadocian Volcanic Province (CVP) of central 
Anatolia, Turkey. Palaeosols and calcretes formed within these terrestrial sedimentary rocks under near-surface or surface conditions. 
The palaeosols are composed predominantly of smectite ± illite with feldspar, quartz, calcite, opal-CT, and amphibole, and the calcretes 
mainly of calcite with minor feldspar, quartz, and accessory smectite ± palygorskite. The palygorskite occurs on and between the calcite 
crystals in the calcretes and at the edges of smectite flakes within the palaeosols, indicating an in situ formation from evaporated alkaline 
water rich in Si and Mg and poor in Al under arid or seasonally arid climatic conditions. In the palaeosols and calcretes, negative Ba, 
Nb, Ce, Sr, and Ti anomalies and an enrichment of light rare earth elements relative to medium rare earth elements and heavy rare earth 
elements, with a distinct negative Eu anomaly, likely reflect the alteration of feldspars and amphiboles in the ignimbrite. The alteration of 
the ignimbrites caused the depletion of SiO2, Al2O3+Fe2O3, TiO2, and K2O through the precipitation of smectite ± illite in the palaeosols 
and CaO in the form of calcite in the calcretes. The δ18O values of the calcretes and limestones range from –8.71‰ to –10.71‰, which 
are mainly related to the involvement of high-elevation meteoric water, whereas the δ13C values for the same rocks vary between –1.97‰ 
and 5.71‰. The positive δ13C values for the limestones reflect calcite precipitation in isotopic equilibrium with meteoric water in a lake. 
The slightly negative δ13C values of the lacustrine limestone carbonates may indicate precipitation from a relatively thick water column 
and an inflow of surface or groundwater through the ignimbrites with high Ba/Sr values. Conversely, the calcrete δ13C values (3.0‰ 
to 4.97‰) may suggest a pedogenic origin with low plant respiration rates and a predominance of C4 plants. Based on stable oxygen 
isotope values from the lake sediments and calcretes, this study suggests that the global warming trend that followed the Late Miocene 
continued into the Pliocene within the CVP.
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2. Geological setting 
The study area is located within the CVP, a high plateau 
situated approximately 1400–1500 m above mean sea level 
(Aydar et al., 2012). The plateau extends 300 km NE–SW 
and is 60 km wide. During the Middle to Late Miocene, the 
entire area emerged and became the site of erosion, forming 
a large plateau, due to the collision of the Afro-Arabian 
plate with the Eurasian plate. Subsequently, the region has 
experienced complex Neotectonic deformation since the 
Late Miocene/Pliocene. Many faults and intracontinental 
basins in this region were either formed or reactivated 
during this period, and the region is associated with intense 
volcanism (Dirik, 2001). In the northern part of the CVP, 
a tectonic depression was filled by lacustrine and fluvial 
deposits, including volcanic intercalations from the Late 
Miocene to Late Quaternary, based on palaeontological, 
palynological, and radiometric data. These deposits 
are the sediments of the Ürgüp Basin and have been 
previously named the Ürgüp Formation (Pasquaré, 1968; 
Viereck-Goette et al., 2010). This stratigraphic interval 
also represents the Late Miocene phase of the Messinian 
Salinity Crisis.

 The CVP mainly comprises ignimbrites at different 
stratigraphic levels, as well as andesitic and basaltic 
lavas. These volcanic rocks are intercalated with Late 
Miocene/Pliocene fluviolacustrine deposits (Table 1). In 
the province, the volcano-sedimentary units discordantly 
overlie the basement rock, including the Niğde Massif to 
the south and the Kırşehir Massif to the north (Figure 
1). The basement rocks consist of Palaeozoic-Cretaceous 
metamorphic (schist, marble, and metagabbro) and Upper 
Cretaceous ophiolitic rocks (Schumacher et al., 1990; 
Toprak, 1996). In the region, Pasquaré (1968) classified 
the volcaniclastic, siliciclastic, and carbonate sedimentary 
rocks, as well as the basaltic flows of the Ürgüp Basin, as 
members of the Ürgüp Formation. These are the Kavak, 
Zelve, Sarımaden Tepe (or Sofular of Viereck-Goette et 
al., 2010; Figure 2), Cemilköy, Tahar, Gördeles, Kızılkaya, 
and İncesu ignimbrites; the Topuzdağ and Çataltepe 
basalts; and the Bayramhacılı and Kışladağ members. 
The Bayramhacılı member includes fluviolacustrine 
sedimentary rocks, such as conglomerates, sandstones, 
limestones, marlstones, and diatomites, whereas the 
Kışladağ member comprises lacustrine limestones and 
diatomites. The Kışladağ member contains ostracod and 
gastropod fossils within the lacustrine limestones. The 
Kavak, Zelve, and Sarımaden Tepe ignimbrites are mainly 
white to grey, and the Cemilköy ignimbrites are pale grey 
and nonwelded with chimney structures (Le Pennec et 
al., 1994). The pink Tahar ignimbrite, pale grey Gördeles 
ignimbrite, and red to pink Kızılkaya ignimbrite are 
widespread welded ignimbrites, characterised by columnar 
jointing (Le Pennec et al., 1994). The red to pink Incesu 

ignimbrite crops out outside of the study area. The Ürgüp 
Formation is overlain by Quaternary alluvium (Figure 1). 
The age of the ignimbrite succession, based on 40Ar/39Ar 
plagioclase and U-Pb zircon dating, is 9 to 1 Ma (Aydar et 
al., 2012).  

3. Lithologic and pedogenic descriptions
The Bayramhacılı member comprises sedimentary rocks 
of fluvial and lacustrine deposits (Figures 3 and 4) and is 
observed in the Başköy (P1), Güzelöz (P2, P3), Şahinefendi 
(P4), Kışladağ (P5), Aktepe (P6), and Bayramhacılı (P7) 
profiles. The lithologic and pedogenic descriptions of the 
profiles are given as follows.

The fluvial deposits comprise massive conglomerate, 
trough cross-bedded sandstone, mudstone, and associated 
palaeosols and calcretes (Figures 2 and 5a–5e). The 
calcretes and palaeosols appear in the fluvial sedimentary 
rocks (Table 1; Figure 3). In the study area, 3 types of 
palaeosol are recognised (Retallack, 1990): (i) an inceptisol, 
(ii) a histosol, and (iii) an aridisol (for details, see Table 1). 
The calcretes occur in and/or on fluvial mudstones and the 
palaeosols (Figure 5e) in nodular, tubular, massive, and 
fracture infill forms.

The lacustrine units in the study area are composed of 
limestones, marlstones, and diatomites (Figures 2 and 5f–
5h). The limestones are brecciated and contain gastropod 
and ostracod fossils. The marlstone occurs mainly in profile 
P7 and is white to grey in colour and thinly laminated. 
The diatomite is white in colour and exhibits massive to 
laminated bedding.

4. Materials and methods
In the field, stratigraphic sections were measured to study 
lateral and vertical lithological variations within the 
Bayramhacılı (Late Miocene) and Kışladağ (Early-Middle 
Pliocene) members of the Neogene Ürgüp Formation 
(Figure 3). Ninety-three characteristic samples of Late 
Miocene/Pliocene limestone, conglomerate, sandstone, 
mudstone, and marlstone were collected from the study 
area. Thin sections were prepared from these samples to 
describe their petrographic properties. The limestones and 
siliciclastic sedimentary rocks were described according 
to the Dunham (1962) and Miall (1996) classifications, 
respectively. 

The mineralogical characteristics of the samples were 
determined by powder X-ray diffractometry (Rigaku 
Geigerflex) and scanning electron microscopy (SEM) 
(JEOL JSM 84A-EDX). Fine siliciclastic and carbonate 
samples were prepared for clay mineral analyses 
(size fraction <2 µm) by separating the clay fraction 
by sedimentation, followed by centrifugation of the 
suspension after an overnight dispersion in distilled water. 
The clay particles were dispersed by ultrasonic vibration 
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for approximately 15 min. Three oriented specimens of the 
<2 µm fraction of each sample were prepared by air drying, 
an ethylene-glycol solvation at 60 °C for 2 h, and a thermal 
treatment at 550 °C for 2 h. Semiquantitative estimates 
of the rock-forming minerals were obtained by using the 
external standard method of Brindley (1980). The relative 
abundances of clay-mineral fractions were determined 

using their basal reflections and the mineral intensity 
factors of Moore and Reynolds (1989). Representative 
clay- and carbonate-dominated bulk samples were 
prepared for SEM analyses by mounting the fresh, broken 
surface of each sample onto an aluminium sample holder 
with double-sided tape and thinly coating them (350 Å) 
with gold using a Giko ion coater. 

Table 1. Summary of the lithologic and pedogenic descriptions and the palaeoenvironmental interpretations.

Facies Codes Description Interpretation

Massive conglomerate Gm

Grain-supported conglomerate; massive, pink-coloured, unsorted,
and rounded; clasts are approximately 5 cm in size; normal grading; 
lens-shaped layers; average thickness 0.5 to 1 m; containing clasts 
derived from gabbro, serpentinite, metamorphic rocks, pumice, 
sandstone, and mudstone; matrix consists of clay, silt, and sand; 
outcrops are relatively limited and horizontally extend between
3 and 5 m.

River channel fill 

Trough-cross-bedded 
sandstone St

Fine- to coarse-grained sands containing current ripples with curved 
foresets and asymptotic downlap at their bases; layer thickness varies 
from 15 to 20 cm, and trough-cross-bed sets have a thickness of 
approximately 5 mm, laterally extending 5-10 m. 

River sheet-flood to
main-channel deposits 

Mudstone Fm Brown-coloured mudstone, massive; average thickness 0.5 m; lateral 
extent 4 km.

River floodplain deposits 

-- AL-P

(1) Not well-differentiated soil profile including B and C horizons, 
B horizon is appreciably enriched in sand and gravel, light brown in 
colour, a recompaction thickness of 1–2 m; (2) a surface organic soil 
horizon of uncarbonaceous peat and a recompaction thickness of 30 
cm; (3) soil with muddy and fine-grained, locally scattered pebbles
and light pink colour, as well as rarely a very thin calcareous layer
near the surface of the horizon, a recompaction thickness of 1–2 m; 
lateral extent 5–6 km.

Palaeosol; (1) inceptisol,
(2) histosol, (3) aridisol; 
river floodplain deposits
 

-- AL-Ca

(1) Pink- or white-coloured massive carbonate level comprising 
lithic, tuffaceous, and pumice clasts cemented and partially replaced 
by calcite, grading downward into calcareous tuff and pumice 
clasts; thickness ranges from 50 cm to 70 cm, and characterised by 
nonuniform cementation, which accentuates surface cavities; (2) 
carbonate level, pink-coloured massive comprising sand grain
pumice, rock fragment; thickness range of 1–20 cm and characterised 
by micritic to sparitic cementation; lateral extent 1–500 m developed 
in palaeosol.

Calcrete; (1) tube and 
massive calcrete,
(2) nodular and fracture-
infill calcrete

Diatomite AL-D
White, argillaceous massive diatomite or laminated diatomite 
including Aulacoseira (Melosira) islandica (Müller, 1895); overlies 
brown palaeosols; average thickness 1–2 m; lateral extent 500–600 m.

Shallow-lake environment

Marlstone M White to grey, finely laminated;
average thickness 4–5 m; lateral extent 2–7 km. Shallow-lake environment

Limestone L

Micritic limestones intercalate with diatomite beds; limestones are 
brecciated and contain abundant microscopic rhizolith holes;
biogenic components are mainly freshwater mollusc fragments 
(gastropods) and ostracods present rarely; locally contain coaly
organic matter; lateral extent 10–15 km.

Shallow-lake environment
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Figure 1. Simplified geological map of the study area (modified from Toprak, 1998; Gürel and Kadir, 2006; and Yavuz-Işık and 
Toprak, 2010).
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Figure 3. Correlation of measured sections within the study area. P1: Başköy section (S), P2–P3: Güzelöz section (GKA, GUZ), 
P4: Şahinefendi section (SAH), P5-P6: Sofular section (KIS, AK), P7: Bayramhacılı section (BH).
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Figure 3. (continued).
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The chemical analysis of 25 fresh and altered whole-
rock samples were performed at Acme Analytical 
Laboratories Ltd. (Vancouver, Canada) using ICP-AES 
for major and trace elements and ICP-MS for rare earth 
elements (REEs). The detection limits for the analyses 
were between 0.01 and 0.1 wt.% for the major elements, 
0.1 and 5 ppm for the trace elements, and 0.01 to 0.5 ppm 
for the REEs. 

The stable isotope analyses (δ18O and δ13C) were 
performed at the Iso-Analytical Ltd. laboratories (Crewe, 
UK). The samples for isotope analysis were selected by 
removing 0.5–3 mg of powder from micritic carbonates 
using a microdrill and avoiding any visible sparry calcite 
cement in the cracks. Ten powdered carbonate samples 
were weighed into Exetainers and then placed in an oven 
to dry prior to continuing the analysis to ensure there 
was no moisture in the samples and/or containers prior 
to sealing them and performing the acid conversion to 
carbon dioxide. The sample tubes and tubes containing 
the reference and control carbonates were then flushed 

with 99.995% helium. After flushing, 0.5 mL of phosphoric 
acid (H3PO4) was added to digest the carbonates (McCrea, 
1950) by injecting it through the septum caps into the 
vials. The vials were left for 24 h at room temperature to 
allow the acid to react with the samples. After 24 h, the 
vials were heated to 60 °C for 2 h to ensure that all of the 
available carbonate was converted to carbon dioxide. The 
CO2 gas liberated from the samples was then analysed 
by continuous-flow isotope-ratio mass spectrometry on 
a 20-20 mass spectrometer linked to an ANCA-G gas 
purification module (Europa Scientific, Crewe, UK). The 
isotope values are reported per mill (‰) relative to V-PDB 
and were calibrated against the reference material IA-
R022 (iso-analytical working standard calcium carbonate, 
δ13CV-PDB = –28.63‰ and δ18OV-PDB = –22.69‰), NBS-18 
(carbonatite, δ13CV-PDB = –5.01‰ and δ18OV-PDB = –23.2‰), 
and NBS-19 (limestone, δ13CV-PDB = 1.95‰ and δ18OV-PDB = 
–2.2‰), which were run as quality-control check samples 
during the analysis of the samples. The overall analytical 
error was 0.1‰ for δ13C and 0.15‰ for δ18O.

....................................................................................
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.........................................
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Figure 4. Depositional model showing the evolution of Late Miocene/Pliocene fluviolacustrine 
deposits in the study area.
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Figure 5. Field photographs of: (a) alternation of conglomerate and sandstone in the Bayramhacılı member in the Kışladağ section showing trough-cross-bedding 
(Figure 3, P5, samples AK1 and AK2; hammer length: 30 cm); (b) plant remains in the aridisol in the Başköy section (Figure 3, P7, sample S-7; length: 15 cm); (c) 
calcrete mottling in the moderately mature palaeosol in the Başköy section (Figure 3, P7, sample S-5); (d) calcrete tubes in the palaeosol in the Şahinefendi section 
(Figure 3, SAH-5, sample P4); (e) gradual transition from massive to nodular calcretes on/in the palaeosol in the Şahinefendi section (Figure 3, P4 sample SAH-9, 
SAH-10); (f) lacustrine limestone beds in the Kışladağ member, exhibiting local brecciation (arrow) (Figure 3, P5, sample KIS-7); (g) thinly laminated marlstone 
in the Bayramhacılı section (Figure 3, P7, sample DH-1); (h) massive and laminated diatomite in the Şahinefendi section (Figure 3, P4, SAH-1).
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5. Results
5.1. Petrographic and mineralogical determinations
Certain calcrete samples developed in altered tuffs with 
calcitised grains, volcanic glass, amphiboles, feldspars, and 
opaque minerals (Figures 6a–6c). The limestone samples 
were classified as mudstones and wackestones (Dunham, 
1962) and contain ostracod and gastropod fossils, organic 
material (Figures 6d and 6e), and plagioclase and volcanic 
glass shards.

Nontectonic cracks, possibly caused by compaction, 
were visible in some limestone thin sections, and these 

were filled with sparitic dogtooth-rim and sparitic calcite 
cements (Figure 6f; Atabey et al., 1998; Karakaş and Kadir, 
1998; Gürel and Kadir, 2006).

The mineralogical compositions of the sedimentary 
rock samples collected from the study area were determined 
by X-ray diffractometry (Table 2). The minerals feldspar, 
quartz, calcite, opal-C,T and amphibole with smectite, 
illite, and accessory palygorskite were identified. 

The calcretes consist predominantly of calcite 
with minor feldspar and quartz ± accessory smectite 
± palygorskite, and the palaeosols are predominantly 

microsparitic
calcite

c micritic
calcite

sparitic calcite cement

f

micritic
calcite

d

gastropod

a

feldspar

volcanic glass

hornblende

e

b

volcanic glass shard

ostracod

0. mm2

0. mm mm.02 2
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Figure 6. Photomicrographs of the following: (a) altered feldspar and hornblende phenocrysts in the volcanic glass groundmass of an 
ignimbrite (Figure 3, P1, S8, crossed polars); (b) devitrification of volcanic glass shards in calcrete from the Kışladağ member in the 
Güzelöz section (Figure 3, P2, GKA-3, plane-polarised light); (c) view of sparitic calcite cement in a crack of calcrete from the Kışladağ 
member in the Güzelöz section (Figure 3, P2, GKA-9, crossed polars); (d) well-preserved gastropod(?)-fossil-bearing limestone from 
the uppermost portion of the Kışladağ member in the Güzelöz section (Figure 3, P3, GUZ-10C, plane-polarised light); (e) thin curved 
shells of ostracods in limestone (Dunham, 1962): a wackestone, likely indicating a low-energy lacustrine environment (Figure 3, P6, 
AK-12, plane-polarised light); (f) microbrecciation developed due to the cracking of micritic limestone of the upper level of the Kışladağ 
member in the Sofular section. Organic material is represented by root traces. The crack is filled by microsparitic calcite cement (Figure 
3, P6, AK-11, plane-polarised light).
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Table 2. Mineralogical variations in the stratigraphic sections of the study area.

Sample Rock Type cal qtz op smc ilt/mc pal fds am

SAH-13 Limestone +++ + acc
GKA-10 Limestone ++++ acc
GUZ-9A Limestone ++++ + + acc
GUZ-10A Limestone +++++ acc
AK-11 Limestone +++++ +
KIS-7 Limestone ++++ acc
KIS-8 Limestone +++++
BH-1 Marlstone +++ + acc acc acc
S-3 Calcrete ++ acc ++
SAH-9 Calcrete +++ + acc + acc
SAH-10 Calcrete ++++ acc acc
SAH-18 Calcrete +++ +
GKA-3 Calcrete ++ + acc +
GUZ-1A Calcrete +++ + acc +
GUZ-2A Calcrete ++ + + + ++
GUZ-2C Calcrete ++ + acc + acc ++
GUZ-3A Calcrete ++ acc acc + acc acc ++
GUZ-3B Calcrete ++ + + ++
GUZ-3C Calcrete +++ + +
S-1 Palaeosol + + + + ++
S-2 Palaeosol + + + + acc ++
S-4 Palaeosol acc ++ + ++ +
S-5 Palaeosol ++ acc + + +
S-7 Palaeosol + ++ ++ ++
S-9A Palaeosol ++ + + +++
S-9B Palaeosol + acc ++
S-10 Palaeosol ++ ++
SA-2 Palaeosol + + + acc acc
SAH-2 Palaeosol ++ acc + ++
SAH-5 Palaeosol + + acc ++ acc
SAH-12 Palaeosol acc + + ++ acc
SAH-17 Palaeosol acc + + + + ++
SAH-19 Palaeosol + + + +
KIS-3 Palaeosol + + ++ +++ acc +++
AK-3 Palaeosol acc + ++ +++ acc acc ++++
AK-5 Palaeosol acc + + ++ acc +++++
GKA-2 Palaeosol + + acc ++
GKA-6 Palaeosol + + + + ++
SAH-1 Diatomite +++ ++ ++ acc +
GUZ-7 Diatomite +++ ++ + + +
SA-3 Fluvial sedimentary rocks ++++ + +
SA-4 Fluvial sedimentary rocks acc + + ++ acc ++
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smectite ± illite with feldspar, quartz, calcite, opal-CT, and 
amphibole. The smectite in mudstones is associated mainly 
with palygorskite. Feldspar and quartz are dominant in 
most samples, whereas calcite is abundant in the limestone 
and calcrete units. The limestone and marlstone units 
are composed mainly of calcite associated with accessory 
feldspar, quartz, clay minerals, and opal-CT.

 Smectite is characterised by very sharp basal reflections 
between 14 and 15 Å. These peaks expanded to 17–18 Å 
following the ethylene-glycol treatment, and then collapsed 
to 10 Å after being heated to 550 °C. Palygorskite has a sharp 
diagnostic basal reflection at 10.5 Å, which was unaffected 
by the ethylene-glycol treatment but collapsed after being 
heated to 550 °C. Illite is indicated by reflections at 10 and 5 
Å, and amphibole by a reflection at 8.3 Å.
5.2. Scanning electron microscopy
The SEM images indicate that popcorn- or honeycomb-form 
smectite occurs in the palaeosols and is generally developed 
on devitrified volcanic glass, having grown as bridges 
and fills between voids and grains (Figure 7a). Clay and 
carbonate minerals are present with bar-shaped structures 
resembling organic material (Figure 7b). Microsparitic to 
sparitic calcite cement is present in fine-grained limestone 
sample and dogtooth-type sparitic calcite crystals in cracks 
(Figure 7c). 

The calcrete and limestone samples from the Güzelöz 
section contain abundant euhedral to subhedral, authigenic, 
rhombic calcite crystals, which were altered and dissolved. 
Palygorskite occurs as fibre masses and interwoven fibres 
grown on calcite crystals and as long fibre bundles developed 
authigenically at the edges of smectite flakes (Figure 7d). 
5.3. Chemical analyses
The chemical analyses of the representative samples of 
the limestones, calcretes, palaeosols, fluvial sedimentary 
rocks, diatomites, gabbros, pyroclasts, and ignimbrites are 
provided in Table 3. The limestone and calcrete samples 
are characterised by the values of CaO (48.5% and 26.5%, 
respectively), loss on ignition (LOI) (39.4% and 24.4%), 

SiO2 (8.7% and 32.8%), Al2O3 (1.4%), Fe2O3 (0.5%), MgO 
(0.7%), K2O (0.2%), Sr (157 and 160 ppm), Ba (37.7 and 
248.4 ppm), and Rb (12.3 and 56.7 ppm). 

The CaO contents are attributed mainly to the presence 
of calcite, and its abundance is inversely related to SiO2 and 
Fe2O3 (Figures 8a and 8b). The CaO values are positively 
correlated with the LOI values (Figure 8c) due to the 
clear dominance of CaCO3 in the samples. The trend 
crosses the LOI axis at a point somewhat greater than 
zero, corroborating the already established clay and/or 
(plagioclase) feldspar contents. The clay content decreases 
with increasing CaO and decreasing Al2O3 (Figure 8d). The 
inverse relationship (the negative correlation between the 
concentration values) between CaO and Rb is only evident 
in the limestone samples, and a similar relationship for Sr 
is only evident in the calcretes (Figures 8e–8h). The Al2O3 
values increase in the palaeosols (average: 14.2%), fluvial 
sedimentary rocks (average: 14.5%), diatomites (average: 
13.7%), and calcretes (average: 9.0%) relative to limestone 
and calcrete, and they positively correlate with SiO2, Fe2O3, 
MgO, Na2O, TiO2, and K2O contents (Figures 8h–8m), 
indicating the presence of feldspar and smectite ± illite (see 
Table 3; Gürel and Kadir, 2006). 

There is a positive relationship between K2O and Rb+Ba 
(Figure 8n) in the volcanic material due to the presence 
of K-bearing minerals, such as illite/mica and feldspar, 
which is similar to the Early Miocene alluvial-fan to cyclic 
shallow-lacustrine depositional system of the Aktoprak 
Basin (central Anatolia) (Gürel and Kadir, 2010). The 
palaeosols, calcretes, and pyroclastic-ignimbritic material 
display similar primitive mantle-normalised (Taylor and 
McLennan, 1985) and chondrite-normalised (Boynton, 
1984) spider diagrams, revealing strongly negative 
anomalies for Ba, Nb, Ce, Sr, and Ti (Figures 9a), and an 
enrichment of light rare earth elements (LREEs) relative to 
medium rare earth elements (MREEs) and heavy rare earth 
elements (HREEs), as well as negative Eu anomalies (EuN/
Eu* = 0.61–0.80) (Figure 9b; Table 3).

SAH-3 Fluvial sedimentary rocks + acc ++
SAH-14 Fluvial sedimentary rocks ++ + +
GKA-4 Fluvial sedimentary rocks + + acc + + +
GKA-8 Fluvial sedimentary rocks + + + ++
GUZ-5 Fluvial sedimentary rocks + + + + +++ +
BH-2 Fluvial sedimentary rocks +++ ++ acc ++++ + acc ++
SAH-8 Pyroclast ++ + acc +

cal: calcite,  qtz: quartz, op: opal-CT, smc: smectite, ilt/mc: illite/mica,  pal: palygorskite, fds: feldspar, am: amphibole. +: relative 
abundance of mineral phase, acc: accessory, GUZ-GKA: Güzelöz, SA-SAH: Şahinfendi, S: Başköy, BH: Bayramhacılı, AK: Aktepe, KIS: 
Kışladağ. 

Table 2. (continued).
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The molecular alteration ratios of the limestones, 
calcretes, palaeosols, pyroclasts, fluvial sedimentary rocks, 
diatomites, and ignimbrites are provided in Table 4. These 
units exhibit salting, heterogenic calcification, and soil 
formation by hydrolysis, as well as a leaching mechanism, 
when compared to the normal indicator values of the Soil 
Survey Staff (1998) (Table 5). 
5.4. Stable isotopes 
The stable isotope compositions of the calcite in the 
limestone and calcrete samples are provided in Table 
6 and Figure 10. The limestone samples yield δ18O and 
δ13C values ranging from –8.71‰ to –10.71‰ and from 
–1.97‰ to 5.71‰, respectively. The δ13C values vary in a 
fairly broad range with respect to the δ18O values. The δ18O 
and δ13C values of calcrete samples vary from –9.13‰ to 
–10.69‰ and from 4.97‰ to 3.00‰, respectively. 

6. Discussion
Central Anatolia emerged during the Middle to Late 
Miocene and became an erosional site, eventually 
becoming a vast plateau (Erol, 1999). The westward escape 
of the Anatolian plate initiated the development of a 
transtensional basin in central Anatolia and imparted a 
NE–SW trend to the Ürgüp Basin filled by Late Miocene/
Pliocene volcanic and volcano-sedimentary materials 
(Figure 4). The fluvial deposits accumulated in a terrestrial 
environment and are associated with palaeosols and 
calcretes. The presence of palygorskite in the calcretes is 
indicative of arid or seasonally arid climatic conditions 
(Sancho et al., 1992). Additionally, palynological analyses 
from the Güzelöz (Early Pliocene) and the lower part of 
the Bayramhacılı (Late Miocene) sections suggest steppe 
vegetation and arid climatic conditions (Yavuz-Işık and 

a b

c d

organic material ?

smectite

palygorskite

calcite

sparitic
calcite

micritic
calcite

microsparitic
calcite

smectite

volcanic glass

Figure 7. SEM images of the following: (a) smectite crystals on devitrified volcanic glass in an ignimbrite 
(Figure 3, P7, BH-6); (b) organic material (?) in the aridisol (Figure 3, P1, S-4); (c) euhedral, authigenic 
rhombic calcite, micrite, and microsparitic to sparitic calcite (dogtooth-type calcite crystal) in limestone 
samples (Figure 3, P2, GKA9); (d) development of palygorskite fibres on calcite rhombs, and palygorskite 
fibres edging smectite (Figure 3, P3, GUZ-3A).
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Table 3. Chemical compositions of various lithofacies of the study area. ΣREE = the sum of (La-Lu)+Y; ΣLREE = the sum of La-Nd; 
ΣMREE = the sum of (Sm-Ho); ΣHREE = the sum of (Er-Lu); Eu/Eu*=Eu/√Sm*Gd, where N refers to a chondrite-normalised value 
(McDonough and Sun, 1995).

Major oxides
(wt.%)

Limestone
GUZ-9A GKA-10 KIS-7 KIS-8 AK-11 AK-12 AK-13       Mean

SiO2 25.34 2.83 4.57 0.93 11.16 9.58 6.66 8.7
Al2O3 5.97 0.41 0.20 0.14 1.15 1.39 0.54 1.4
ΣFe2O3 1.63 0.25 0.12 0.16 0.52 0.47 0.22 0.5
MgO 0.82 1.54 0.22 0.24 0.75 0.78 0.82 0.7
CaO 34.70 52.34 53.18 55.22 46.44 47.54 50.30 48.5
Na2O 0.83 0.05 0.02 0.02 0.10 0.14 0.03 0.2
K2O 1.24 0.06 0.02 0.02 0.13 0.17 0.06 0.2
MnO 0.05 <0.01 0.26 0.22 0.38 0.08 0.11 0.2
TiO2 0.20 0.02 <0.01 <0.01 0.05 0.05 0.02 0.1
P2O5 0.05 0.14 0.08 0.05 0.08 0.11 0.09 0.1
LOI 29.1 42.3 41.3 43.0 39.2 39.6 41.1 39.4
Total 99.93 99.95 99.98 99.97 99.96 99.95 99.94 99.95
ppm
Ba 251 29 22 25 41 59 47 67.7
Be <1 <1 <1 <1 <1 <1 <1 <1
Co 4.6 0.8 1.3 0.6 3.0 2.1 1.3 2.0
Cs 6.0 0.3 0.5 0.3 1.4 1.1 0.7 1.5
Ga 6.3 <0.5 <0.5 <0.5 1.5 1.3 0.6 2.4
Hf 1.9 <0.1 <0.1 <0.1 0.4 0.3 0.1 0.7
Nb 4.9 0.4 0.2 <0.1 0.7 0.8 0.3 1.2
Rb 48.7 2.7 2.1 1.4 14.2 12.1 4.9 12.3
Sn <1 <1 <1 <1 <1 <1 <1 <1
Sr 124.9 117.2 99.4 156.4 160.0 186.2 257.7 157.4
Ta 0.4 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.4
Th 9.8 0.3 <0.2 <0.2 0.4 1.2 0.5 2.4
U 2.3 1.1 1.4 2.2 0.7 1.6 3.5 1.8
V 29 31 48 16 21 30 36 30.1
W 1.6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 1.6
Zr 68.3 4.8 4.3 3.2 13.5 14.6 9.0 16.8
Y 15.5 0.8 0.3 0.2 0.8 1.9 0.6 2.9
Mo 0.2 <0.1 0.2 0.2 0.3 0.4 0.4 0.3
Cu 6.1 0.4 1.6 1.1 1.6 4.9 2.6 2.6
Pb 5.7 0.4 0.2 0.2 0.7 1.5 1.0 1.4
Zn 14 1 3 2 3 5 4 4.6
Ni 17.1 2.1 8.1 6.0 8.7 13.3 14.4 10.0
As 6.2 8.2 8.3 9.8 6.7 10.0 8.2 8.2
Cd 1.8 <0.1 0.2 <0.1 0.2 <0.1 <0.1 0.7
Sb 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.2
Bi 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.1
Au (ppb) <0.5 <0.5 0.5 <0.5 <0.5 0.7 1.5 0.9
Hg <0.01 <0.01 0.02 0.03 <0.01 <0.01 <0.01 0.0
La 19.0 1.3 0.3 0.3 1.1 2.0 0.6 3.5
Ce 24.4 1.9 0.5 0.6 1.7 3.9 1.2 4.9
Pr 3.44 0.22 0.06 0.05 0.18 0.41 0.11 0.6
Nd 12.2 0.6 <0.3 <0.3 0.7 1.4 0.4 3.1
Sm 2.23 0.12 0.05 <0.05 0.12 0.34 0.09 0.5
Eu 0.48 0.03 <0.02 <0.02 0.03 0.08 0.02 0.1
Gd 1.96 0.21 <0.05 <0.05 0.15 0.36 0.09 0.6
Tb 0.35 0.04 <0.01 <0.01 0.02 0.05 0.01 0.1
Dy 2.13 0.12 <0.05 <0.05 0.15 0.32 0.08 0.6
Ho 0.47 0.05 <0.02 <0.02 0.02 0.06 <0.02 0.2
Er 1.40 0.04 <0.03 <0.03 0.09 0.19 0.05 0.4
Tm 0.21 0.03 <0.01 <0.01 0.01 0.03 <0.01 0.1
Yb 1.58 0.16 <0.05 <0.05 0.10 0.21 0.07 0.4
Lu 0.25 0.02 <0.01 <0.01 0.01 0.03 <0.01 0.1
ΣREE 85.6 5.64 1.76 1.75 5.18 11.28 3.36 18.1
ΣLREE 59.04 4.02 1.16 1.25 3.68 7.71 2.31 12.1
ΣMREE 7.62 0.57 0.2 0.2 0.49 1.21 0.31 2.1
ΣHREE 3.44 0.25 0.1 0.1 0.21 0.46 0.14 1
EuN/Eu* 0.70 0.58 1.22 1.22 0.68 0.70 0.68 0.56
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Major oxides 
(wt.%)

Calcrete
SAH-10   SAH-18   S-3      GKA-3   GUZ-3C   Mean

SiO2 29.88 36.02 39.25 34.43 24.62 32.8
Al2O3 7.77 8.33 11.02 9.62 8.16 9.0
ΣFe2O3 2.88 2.38 3.73 3.02 3.41 3.1
MgO 1.87 1.23 1.52 1.63 1.49 1.5
CaO 28.10 25.89 21.48 25.55 31.41 26.5
Na2O 0.61 1.10 1.08 1.06 0.52 0.9
K2O 0.96 1.47 1.05 1.02 0.93 1.1
MnO 0.14 0.13 0.08 0.05 0.03 0.1
TiO2 0.31 0.25 0.42 0.36 0.37 0.3
P2O5 0.08 0.07 0.11 0.16 0.07 0.1
LOI 27.2 23.0 20.1 23.0 28.9 24.4
Total 99.80 99.87 99.84 99.90 99.91 99.9
ppm
Ba 227 339 280 232 164 248.4
Be <1 <1 <1 1 <1 1.0
Co 14.7 6.7 10.1 8.2 9.6 9.9
Cs 2.1 19.1 1.9 6.5 7.7 7.5
Ga 7.7 8.4 11.0 9.1 9.6 9.2
Hf 1.9 1.8 2.6 2.5 2.1 2.2
Nb 6.2 6.9 6.3 6.8 8.1 6.9
Rb 48.4 83.4 52.9 48.3 50.5 56.7
Sn <1 <1 <1 1 1 1.0
Sr 150.0 176.7 201.4 188.5 128.4 169.0
Ta 0.5 0.5 0.5 0.6 0.4 0.5
Th 6.4 10.6 7.9 9.6 6.3 8.2
U 1.4 2.7 1.5 1.7 1.8 1.8
V 67 36 61 58 78 60.0
W 4.6 1.9 1.1 1.4 1.6 2.1
Zr 70.2 71.3 93.5 76.9 83.7 79.1
Y 24.9 12.0 17.6 11.4 10.3 15.2
Mo 0.3 0.1 0.2 0.3 0.8 0.3
Cu 11.4 10.0 12.4 11.5 13.5 11.8
Pb 9.7 4.1 6.7 9.5 8.5 7.7
Zn 16 13 20 24 31 20.8
Ni 13.4 10.0 13.3 17.7 34.6 17.8
As 3.9 4.8 5.6 7.9 10.0 6.4
Cd 0.2 <0.1 0.3 0.7 0.3 0.4
Sb <0.1 <0.1 <0.1 0.1 0.2 0.2
Bi 0.1 <0.1 0.1 0.3 0.2 0.2
Au (ppb) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Hg <0.5 <0.5 <0.5 1.0 <0.5 1.0
La 28.1 17.3 19.3 18.0 16.4 19.8
Ce 38.7 28.4 32.4 31.1 27.0 31.5
Pr 5.49 3.22 3.76 3.59 3.23 3.9
Nd 21.3 11.1 14.3 13.9 11.8 14.5
Sm 3.55 1.95 2.29 2.33 2.03 2.4
Eu 0.81 0.43 0.64 0.55 0.47 0.6
Gd 3.49 1.74 2.36 2.06 1.84 2.3
Tb 0.60 0.31 0.41 0.34 0.29 0.4
Dy 3.69 1.71 2.45 1.98 1.76 2.3
Ho 0.80 0.38 0.52 0.38 0.37 0.5
Er 2.61 1.19 1.53 1.25 1.07 1.5
Tm 0.35 0.15 0.20 0.16 0.14 0.2
Yb 2.79 1.16 1.61 1.20 1.10 1.6
Lu 0.41 0.18 0.25 0.18 0.18 0.2
ΣREE 137.59 81.22 99.62 88.42 77.98 96.9
ΣLREE 93.59 60.02 69.76 66.59 58.43 69.7
ΣMREE 12.94 6.52 8.67 7.64 6.76 8.5
ΣHREE 6.16 2.68 3.59 2.79 2.49 3.5
EuN/Eu* 0.70 0.71 0.84 0.77 0.74 0.78

Table 3. (continued).
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Table 3. (continued).

Major oxides 
(wt.%)

Palaeosol
SAH-19 S-2 S-5 S-9A   SA-2        GKA-6        Mean

SiO2 62.82 67.28 64.03 56.83 45.55 51.34 58.0
Al2O3 14.99 12.48 13.88 16.76 11.99 15.26 14.2
ΣFe2O3 3.82 4.34 5.17 6.44 4.40 5.42 4.9
MgO 1.49 2.02 1.89 3.04 2.64 2.10 2.2
CaO 3.93 4.31 4.38 2.88 14.50 7.73 6.3
Na2O 2.34 1.26 1.31 1.12 0.87 0.92 1.3
K2O 2.82 1.06 1.09 1.72 1.42 1.80 1.7
MnO 0.08 0.09 0.09 0.09 0.13 0.04 0.1
TiO2 0.40 0.47 0.55 0.63 0.46 0.59 0.5
P2O5 0.04 0.06 0.07 0.04 0.05 0.10 0.1
LOI 7.1 6.5 7.4 10.3 17.8 14.5 10.6
Total 99.83 99.87 99.86 99.85 99.81 99.80 99.9
ppm
Ba 469 388 367 172 281 307 330.7
Be 1 <1 <1 <1 <1 <1 1.0
Co 8.4 12.9 14.5 13.0 16.5 11.0 12.7
Cs 45.4 2.2 2.1 2.9 3.3 25.2 13.5
Ga 13.5 13.6 14.0 17.6 11.6 14.9 14.2
Hf 3.6 2.8 3.0 3.6 2.7 3.3 3.2
Nb 10.9 7.5 8.7 9.9 8.6 13.1 9.8
Rb 151.6 51.8 59.7 73.5 66.2 111.0 85.6
Sn 1 <1 1 2 1 2 1.4
Sr 232.5 222.5 252.2 164.6 146.1 138.9 192.8
Ta 0.9 0.5 0.6 0.6 0.6 1.0 0.7
Th 18.2 8.4 10.5 8.7 9.4 14.8 11.7
U 4.4 6.8 2.2 2.6 1.2 2.7 3.3
V 59 81 103 89 70 127 88.2
W 2.7 1.1 1.2 2.4 4.7 1.5 2.3
Zr 117.2 100.0 110.8 127.8 98.4 112.6 111.1
Y 14.9 24.0 19.0 41.3 20.8 17.5 22.9
Mo 0.4 0.3 0.2 0.2 <0.1 0.2 0.3
Cu 15.6 21.6 18.7 15.0 15.0 19.2 17.5
Pb 6.1 5.8 7.6 7.7 11.8 15.2 9.0
Zn 27 27 32 36 24 55 33.5
Ni 14.1 13.8 17.0 20.1 17.3 28.6 18.5
As 2.5 5.5 5.2 4.1 2.8 4.2 4.1
Cd <0.1 <0.1 <0.1 0.20 0.10 <0.1 0.2
Sb 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.1
Bi 0.1 0.1 0.2 0.2 0.2 0.4 0.2
Au (ppb) <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 0.5
Hg <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.01
La 25.2 22.3 22.7 32.3 29.4 27.3 26.5
Ce 45.9 32.8 39.5 33.9 46.4 56.5 42.5
Pr 4.59 4.95 4.92 7.01 5.87 6.20 5.6
Nd 16.4 18.6 18.0 26.8 22.2 23.6 20.9
Sm 2.71 3.50 3.28 4.98 3.72 4.10 3.7
Eu 0.66 0.87 0.82 1.30 0.89 0.91 0.9
Gd 2.28 3.41 2.98 5.28 3.63 3.55 3.5
Tb 0.41 0.60 0.50 0.98 0.62 0.59 0.6
Dy 2.47 3.50 2.86 6.19 3.63 3.27 3.7
Ho 0.52 0.75 0.58 1.26 0.78 0.63 0.8
Er 1.55 2.22 1.79 3.99 2.22 1.80 2.3
Tm 0.21 0.31 0.24 0.56 0.31 0.23 0.3
Yb 1.61 2.41 1.83 4.11 2.36 1.82 2.4
Lu 0.26 0.36 0.29 0.67 0.35 0.26 0.4
ΣREE 119.67 120.58 119.29 170.63 143.18 148.26 137
ΣLREE 92.09 78.65 85.12 100.01 103.87 113.6 95.5
ΣMREE 9.05 12.63 11.02 19.99 13.27 13.05 13.2
ΣHREE 3.63 5.3 4.15 9.33 5.24 4.11 5.4
EuN/Eu* 0.81 0.77 0.80 0.77 0.74 0.73 0.76



402

GÖZ et al. / Turkish J Earth Sci

Major oxides 
(wt.%)

Fluvial Diatomite Pyroclast
SA-4     GKA-8   Mean SAH-1   GUZ-7 Mean SAH-8 SAH-16 Mean

SiO2 61.82 55.69 58.76 60.62 52.34 56.48 55.82 60.48 58.15
Al2O3 14.44 14.59 14.52 12.36 14.98 13.67 12.59 14.89 13.74
ΣFe2O3 4.34 6.06 5.20 4.55 4.84 4.70 3.49 4.05 3.77
MgO 2.27 6.10 4.19 2.24 2.49 2.37 1.65 1.82 1.74
CaO 2.53 7.80 5.17 4.71 7.34 6.03 11.59 4.48 8.04
Na2O 1.12 2.01 1.57 0.96 1.01 0.99 2.00 1.85 1.93
K2O 1.96 1.18 1.57 1.80 1.35 1.58 1.73 1.47 1.6
MnO 0.07 0.08 0.08 0.04 0.06 0.05 0.09 0.12 0.11
TiO2 0.48 0.68 0.58 0.44 0.65 0.55 0.36 0.44 0.4
P2O5 0.05 0.10 0.08 0.04 0.17 0.11 0.07 0.06 0.07
LOI 10.8 5.4 8.10 12.0 14.6 13.30 10.4 8.9 9.7
Total 99.88 99.69 99.82 99.76 99.83 99.83 99.83 99.81 99.82
ppm
Ba 316 456 386 300 274 287 447 512 480
Be 1 <1 1 1 <1 1 <1 1 1
Co 7.4 15.2 11.3 8.8 15.9 12.4 11.5 12.2 11.9
Cs 4.3 5.4 4.9 6.7 13.8 10.3 2.8 4.6 3.7
Ga 13.1 14.1 13.6 12.6 16.9 14.8 11.8 8.4 10.1
Hf 3.8 2.7 3.3 3.6 3.3 3.5 2.6 1.8 2.2
Nb 12.9 7.0 10.0 11.4 12.2 11.8 6.8 6.9 6.9
Rb 97.6 45.9 71.8 91.2 89.7 90.5 68.1 83.4 75.8
Sn 2 1 2 3 2 3 2 <1 2
Sr 147.4 382.8 265.1 245.1 191.5 218.3 222.1 176.7 199.4
Ta 1.0 0.4 0.7 0.9 1.0 1.0 0.6 0.5 0.6
Th 15.9 6.7 11.3 15.4 12.6 14.0 7.9 10.6 9.3
U 2.4 1.2 1.8 3.5 2.2 2.9 2.0 2.7 2.4
V 61 150 106 443 170 307 91 36 63.5
W 3.2 0.7 2.0 1.7 2.9 2.3 2.6 1.9 2.25
Zr 120.8 92.9 106.9 131.0 150.4 140.7 97.7 71.3 84.5
Y 15.4 15.9 15.7 14.5 25.8 20.2 16.9 12.0 14.5
Mo 0.2 0.2 0.2 0.5 0.2 0.4 0.2 0.1 0.15
Cu 17.4 17.4 17.4 21.5 32.5 27.0 8.7 10.0 9.4
Pb 10.5 5.3 7.9 13.9 13.6 13.8 5.6 4.1 4.9
Zn 29 34 32 31 64 48 19 13 16
Ni 13.3 14.1 13.7 28.3 45.1 36.7 10.3 10.0 10.2
As 2.5 5.6 4.1 2.3 3.0 2.7 2.2 4.8 3.5
Cd <0.1 <0.1 <0.1 <0.1 0.1 0.1 <0.1 <0.1 <0.1
Sb <0.1 <0.1 <0.1 <0.1 0.1 0.1 <0.1 <0.1 <0.1
Bi <0.1 <0.1 <0.1 0.2 0.4 0.3 <0.1 <0.1 <0.1
Au (ppb) 0.3 <0.1 0.2 <0.5 <0.5 <0.5 <0.1 <0.1 <0.1
Hg 1.6 <0.5 1.1 <0.01 <0.01 <0.01 1.0 <0.5 1
La 26.6 18.0 22 29.1 32.5 30.8 19.6 17.3 18.5
Ce 52.1 38.5 45 52.7 52.9 52.8 33.7 28.4 31.1
Pr 5.42 4.51 4.97 5.99 7.47 6.73 3.98 3.22 3.6
Nd 18.9 18.8 18.9 22.3 28..7 25.5 15.7 11.1 13.4
Sm 3.15 3.35 3.25 3.32 5.14 4.23 2.61 1.95 2.28
Eu 0.67 0.91 0.79 0.71 1.14 0.93 0.73 0.43 0.58
Gd 2.83 3.20 3.02 2.80 4.74 3.77 2.55 1.74 2.15
Tb 0.49 0.51 0.50 0.46 0.76 0.61 0.43 0.31 0.37
Dy 2.73 2.81 2.77 2.46 4.26 3.36 2.56 1.71 2.14
Ho 0.57 0.56 0.57 0.50 0.84 0.67 0.57 0.38 0.48
Er 1.62 1.61 1.62 1.49 2.57 2.03 1.58 1.19 1.39
Tm 0.21 0.22 0.22 0.22 0.34 0.28 0.23 0.15 0.19
Yb 1.73 1.47 1.60 1.63 2.60 2.12 1.64 1.16 1.40
Lu 0.24 0.22 0.23 0.24 0.39 0.32 0.26 0.18 0.22
ΣREE 132.66 110.57 121.14 138.42 170.15 154.35 103.04 81.22 92.3
ΣLREE 103.02 79.81 90.87 110.09 121.57 115.83 72.98 60.02 66.6
ΣMREE 10.44 11.34 10.9 10.25 16.88 13.57 9.45 6.52 8
ΣHREE 3.8 3.52 3.67 3.58 5.9 4.75 3.71 2.68 3.2
EuN/Eu* 0.68 0.85 0.77 0.71 0.70 0.71 0.86 0.71 0.80

Table 3. (continued).
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Major oxides (wt.%)
Ignimbrite Basement rocks   

▲ Cemilköy ▲ Gördeles ▲ Kızılkaya Mean *gabbro
SiO2 73.16 68.82 47.81 71.80 47.81
Al2O3 12.62 14.58 16.34 13.32 16.34
ΣFe2O3 1.00 2.30  7.41 1.55  7.41
MgO 0.28 0.72 10.25 0.44 10.25
CaO 0.95 2.14 14.79 1.46 14.79
Na2O 2.26 2.90 1.46 2.75 1.46
K2O 5.47 5.42 0.09 5.19 0.09
MnO 0.06 0.08 0.13 0.06 0.13
TiO2 0.11 0.30 0.28 0.21 0.28
P2O5 0.03 0.08 0.02 0.05 0.02
LOI 3.29 2.95 1.30 2.92 1.30
Total 99.23 100.28 99.88 99.76 99.88
ppm
Ba 785.5 656.7 148 706.87 148
Be    –    –    – -    –
Co 3.8 2.6 <50 3.47 <50
Cs   –   –   – -   –
Ga 12.7 13.3   – 12.9   –
Hf   –   –   – -   –
Nb 8.6 17.0 <10 11.23 <10
Rb 203.6 186.2     6 194.3     6
Sn   –   –   – -   –
Sr 81.3 174.4 115 127.7 115
Ta   –   – <50 - <50
Th   –   –   – -   –
U   –   –   – -   –
V 6.8 20.6   – 13.17   –
W   –   –   – -   –
Zr 95.6 236.7 22 156.9 22
Y 9.7 25.4 <10 14.73 <10
Mo   –   –   – -   –
Cu   –   – 116 - 116
Pb   –   –   – -   –
Zn   –   – <50 - <50
Ni 7.4 8.6 122 13.37 122
As   –   –   – -   –
Cd   –   –   – -   –
Sb   –   –   – -   –
Bi   –   –   – -   –
Au (ppb)   –   –   – -   –
Hg   –   –   – -   –
La 29.43 35.58 0.60 32.09 0.60
Ce 48.94 61.01 0.50 52.73 0.50
Pr 3.83 5.67 <0.20 4.43 <0.20
Nd 12.91 18.99 1.20 14.51 1.20
Sm 2.31 3.24 0.60 2.41 0.60
Eu 0.32 0.61 0.40 0.43 0.40
Gd 1.77 2.88 0.60 2.02 0.60
Tb   –   – <0.20 - <0.20
Dy 1.85 2.89 0.50 2.05 0.50
Ho   –   – 0.50 - 0.50
Er 1.37 2.08 1 1.53 1
Tm   –   – 0.40 - 0.40
Yb 1.58 2.34 0.50 1.74 0.50
Lu 0.25 0.38 0.20 0.28 0.20
ΣREE 114.26 161.07 17.4 128.96 17.4
ΣLREE 95.11 121.25 2.5 103.77 2.5
ΣMREE 6.25 9.62 2.8 8.10 2.8
ΣHREE 3.2 4.8 2.1 3.56 2.1
EuN/Eu* 0.48 0.61 2.03 0.61 2.03

Data sources: * = Işık et al.,(2002), ▲= Temel (1992).

Table 3. (continued).
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Figure 8. Elemental variation diagrams for major oxides (wt.%) and trace elements (ppm), plotted versus 
CaO, Al2O3, and K2O, for samples from the study area.
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Toprak, 2010). Görür et al. (1995) and Akgün et al. (1995) 
also emphasised that a warming trend in the Late Miocene 
sedimentary successions of central Anatolia shows a 
fluctuation of dry and wet-warm periods based on pollen 
assemblages. The calcretes in and/or on palaeosols consist 
predominantly of calcite associated with quartz, feldspar, 
and accessory smectite ± palygorskite. The presence of 
fibrous palygorskite on calcite crystals and at the edges 

of smectite plates suggests that the palygorskite formed 
authigenically through the high Si and Mg and low Al 
ion activities originating from the degradation of volcanic 
materials and smectitic clays under the predominantly 
arid or seasonally arid climatic conditions. These 
conditions controlled the strongly evaporated percolating 
groundwater during or following calcite precipitation in a 
vadose zone (Suárez et al., 1994; Sánchez and Galán, 1995; 
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Figure 9. (a) Primitive-mantle- (Taylor and McLennan, 1985) and (b) chondrite- (Boynton, 1984) normalised spider diagrams of 
the calcrete, palaeosol, pyroclast, and ignimbrite.
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Verrecchia and Le Coustumer, 1996; Colson et al., 1998; 
Galán and Pozo, 2011; Yalçın and Bozkaya, 2011). 

The palaeosol samples are characterised by high 
Al2O3, Fe2O3, and SiO2, all related to the presence of 
feldspar and smectite in the samples (Gürel and Kadir, 
2006). An increasing correlation between Al2O3 and SiO2 

associated with elevated smectite and feldspar contents 
in the source rocks has been reported for Pliocene 
fluvial lacustrine deposits in the central part of the CVP 
(Gürel and Kadir, 2006) and in Kalahari duricrusts of the 
Moshaweng dry valleys in Botswana (Kampunzu et al., 
2007). The molecular alteration ratio of fluvial, lacustrine, 

Table 4. Molecular alteration ratios of ignimbrite and fluvial-lacustrine sedimentary rock samples (profiles P1–P7).

Sample # Na2O/K2O CaO+MgO/Al2O3   Al2O3/SiO2              Al2O3/(CaO+MgO+Na2O+K2O)        Ba/Sr

GUZ-9a 0.67 5.95 0.24 0.16 2.01
GKA-10 0.83 131.41 0.14 0.01 0.25
KIS-7 1.00 267.00 0.04 0.01 0.22
KIS-8 1.00 396.14 0.15 0.01 0.16
AK-11 0.77 41.03 0.10 0.02 0.26
AK-12 0.82 34.76 1.15 0.03 0.32
AK-13 0.5 94.67 0.08 0.01 0.18
SAH-10 0.64 3.86 0.26 0.25 1.51
SAH-18 0.75 3.26 0.23 0.28 1.92
S-3 1.03 2.09 0.28 0.44 1.39
GKA-3 1.04 2.83 0.28 0.33 1.23
GUZ-3C 0.56 4.03 0.33 0.24 1.28
SAH-19 0.83 0.36 0.24 1.42 2.02
S-2 1.19 0.51 0.19 1.44 1.74
S-5 1.20 0.45 0.22 1.60 1.46
S-9A 0.65 0.35 0.29 1.91 1.04
SA-2 0.61 1.43 0.26 0.61 1.92
GKA-6 0.51 0.64 0.30 1.22 2.21
SA-4 0.57 0.33 0.23 1.83 2.14
GKA-8 1.70 0.95 0.26 0.85 1.19
SAH-1 0.53 0.56 0.20 1.27 1.22
GUZ-7 0.75 0.66 0.29 1.23 1.43
SAH-8 1.16 1.05 0.23 0.74 2.01
SAH-16 1.26 0.42 0.25 1.55 2.90
Cemilköy 0.41 0.10 0.17 1.41 9.66
Gördeles 0.54 0.20 0.21 1.30 3.77
Kızılkaya 0.66 0.13 0.17 1.36 5.32

Table 5. Standard indicator of palaeosols based on the classification and geochemistry (Soil Survey Staff, 1998). 

Molar ratio Indicator Normal value Strong effect

Na2O/K2O Salting <1 >1
CaO+MgO/Al2O3 Calcification <2 >10
Al2O3/SiO2 Formation of clays 0.1–0.3 >0.3
Al2O3/CaO+MgO+Na2O+K2O Hydrolisation <2 >100
Ba/Sr Podzolisation (leaching) ~2 >10
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and volcano-sedimentary rocks (Table 5) also suggests that 
the region has undergone continuous erosion, resulting 
in normal salting, calcification, and the formation of clay 
minerals by hydrolysis, and a leaching mechanism. Thus, the 
weathering of volcanic materials would be the main source 
in the development of palaeosols in the CVP. In contrast, the 
presence of aridisols associated with calcretes indicates arid 
and semiarid climatic conditions in the region (Khadkikar et 
al., 1998, 2000). 

The high Rb, Ba, and Sr values in the calcretes and the 
general inverse relationship of CaO with Sr and Ba suggest 
that the calcretes developed within the palaeosol horizons 
and that the major- and trace-element budgets of both the 
soils and the calcretes reflects, to the first order, those of the 

bedrock, which experienced chemical weathering coeval 
with soil formation in the fluvial floodplain deposits. Similar 
negative anomalies for Ba, Nb, Ce, Sr, and Ti; the parallel REE 
profiles of the palaeosol, calcrete, pyroclast, and ignimbrite 
samples; the enrichment of LREEs relative to the MREEs 
and HREEs; and the negative Eu anomaly all suggest that the 
formation of the palaeosols and calcretes benefited from the 
alteration of amphibole and plagioclase on/in volcanogenic 
materials (Braide and Huff, 1986; Gürel, 1991; Rollinson, 
1993). The alteration process(es) of these materials resulted 
from the influence of groundwater during pedogenesis. The 
relatively high SiO2 and Ba/Sr contents of both the palaeosols 
and the calcretes suggest an influx of volcanic material, which 
is also supported by petrographic data. 

Table 6. δ13C and δ18O values of limestone and calcrete samples from the Kışladağ 
and Bayramhacılı members.

Sample Rock type δ18O ‰ δ13C ‰

Pliocene

P2
GKA-11 Limestone –8.80 1.54
GKA-10 Limestone –8.71 3.37
GKA-9 Limestone –9.77 5.71

Pliocene

P3*
*GUZ- 10C Limestone –10.71 1.81
*GUZ-10B Limestone –10.51 1.78
*GUZ-10A Limestone –10.51 1.85
*GUZ-3C Calcrete –9.13 4.97
*GUZ-3B Calcrete –9.13 4.97
*GUZ-3A Calcrete –9.13 4.97
*GUZ-2C Calcrete –10.00 3.80
*GUZ-2B Calcrete –10.05 3.80
*GUZ-2A Calcrete –10.02 3.80
*GUZ-1C Calcrete –10.64 3.06
*GUZ-1B Calcrete –10.69 3.00
*GUZ-1A Calcrete –10.60 3.03

Pliocene

P6
AK-13 Limestone –9.17 4.05
AK-12 Limestone –9.28 1.11
AK-11 Limestone –9.99 5.26

Pliocene
P5
KIS-8 Limestone –9.81 2.62
KIS-7 Limestone –10.00 3.26

Late Miocene
P4
SAH-13 Limestone –9.68 -0.84
SAH-11 Limestone –9.75 -1.97

Data source:  * = Gürel (2009).
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The δ18O values of the limestones and calcretes are 
almost identical and vary within a narrow range (Table 
6; Figure 10). These more negative δ18O values (–8.71‰ 
to –10.71‰ V-PDB) reflect the meteoric water under the 
influence of high-elevation precipitation (Xu et al., 2013). 
Similar δ18O values, ranging from –8‰ to –12‰ SMOW 
and –9.99‰ to –11.28‰ SMOW, were obtained by 
Lüdecke et al. (2013) for present-day meteoric waters on 
the plateau in central Anatolia and by Yıldız et al. (2008) 
in a neighbouring area, respectively. In Figure 10, the δ18O 
values of the calcrete samples are similar to those of the 
lacustrine carbonate samples, indicating deposition in a 
shallow lake or at the lake margin, where carbonates were 
affected by subaerial exposure. Therefore, these values 
reflect not only the sedimentary but also the pedogenic 
and/or diagenetic environment (Wright and Platt, 1995). 
Ostracods and gastropods in the micritic limestones 
reflect very low energy conditions. Despite the isotopic 
similarity, the lacustrine carbonates are differentiated 
from calcrete samples by their fossil content and bedding 
characteristics. The calcretes are nodular, tubular, massive, 
and fracture infilling in and/or on palaeosols. The δ18O 
values of the lacustrine carbonates provide evidence of the 
hydrologic conditions, in terms of evaporative enrichment 
and water inflow. The absence of covariance between δ18O 
and δ13C values in Figure 10 suggests a hydrologically open 
lake system (Talbot, 1990). The lake was fed by surface and 
groundwater.  

The δ13C isotope values of the limestones and calcretes 
vary over a wider range (from –1.97‰ to 5.71‰) than the 

δ18O values. These values reflect the changing conditions in 
the lake system. The main factors determining the carbon 
isotope value of the lake water are the isotopic composition 
of the inflowing water, the level of biotic productivity, the 
atmospheric exchange, and the residence time (Talbot and 
Kelts, 1990; Bristow et al., 2012). Under isotopic equilibrium 
with atmospheric CO2, which normally has a δ13C value of 
–8‰, lake water δ13C values would be between 1‰ and 
3‰ (Leng and Marshall, 2004). Therefore, positive δ13C 
values of lacustrine carbonates, as well as calcretes, indicate 
precipitation from lake and surface water or groundwater 
under isotopic equilibrium with atmospheric CO2 (Botz 
and Von Der Borch, 1984). Calcretes with positive δ13C 
values indicate a pedogenic environment with low plant 
respiration and a predominance of C4 plants (Harrison et 
al., 1993; Eren, 2011). Certain lacustrine limestone samples 
have slightly negative δ13C values despite stable δ18O values, 
and these samples show high Ba/Sr values. Therefore, 
these values are due to increased water depth in the lake, 
indicating a significant input of most likely surface water 
that was strongly influenced by the weathering products of 
ignimbrites with high Ba/Sr values.             

The major outcomes of this study can be summarised 
as follows:

(1) The lake was filled by pyroclastic and siliciclastic 
fluvial sediments and intercalated with limestones, 
marlstone, and diatomites.

(2) The presence of palaeosols and calcretes indicates 
surface or near-surface conditions. The palaeosols mainly 
comprise smectite ± illite with feldspar, quartz, calcite, 
opal-CT, and amphibole. The calcretes are composed 
predominantly of calcite, accompanied by minor feldspar, 
quartz, and accessory smectite ± palygorskite.

(3)  Micromorphologically, palygorskite formation 
on/between calcite and at the edge of smectite indicates a 
direct precipitation from relatively more evaporated Si- and 
Mg-rich and Al-poor water in an alkaline environment.

(4) The alteration of ignimbrites resulted in the 
consumption of SiO2, Al2O3+Fe2O3, TiO2, and K2O by the 
precipitation of smectite ± illite in palaeosols and of CaO 
by calcite in calcretes during pedogenesis.

(5) The high Ba/Sr ratios; the negative anomalies for 
Ba, Nb, Ce, Sr, and Ti; the enrichment of LREEs relative 
to the MREEs and HREEs; and a negative Eu anomaly 
in palaeosols, calcretes, pyroclasts, and ignimbrite 
samples likely reflect crystal fractionation of feldspar and 
amphibole, as well as syngenetic soil formation from the 
alteration of volcaniclastic source rocks.

(6) The δ18O values of the calcretes and limestones 
indicate precipitation from meteoric water at high 
elevation. The positive δ13C values of the limestones exhibit 
calcite precipitation in isotopic equilibrium with the lake 
water. The slightly negative δ13C values of certain limestone 
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Figure 10. Cross-plot of δ18O versus δ13C values showing the 
distribution of the lacustrine limestone and calcrete samples.
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samples may indicate deposition during periods with 
higher surface or groundwater contributions. The high 
positive δ13C values of calcretes indicate a predominance 
of C4 plants. 
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